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A deep learning model to detect 
pancreatic ductal adenocarcinoma 
on endoscopic ultrasound‑guided 
fine‑needle biopsy
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Histopathological diagnosis of pancreatic ductal adenocarcinoma (PDAC) on endoscopic 
ultrasonography‑guided fine‑needle biopsy (EUS‑FNB) specimens has become the mainstay of 
preoperative pathological diagnosis. However, on EUS‑FNB specimens, accurate histopathological 
evaluation is difficult due to low specimen volume with isolated cancer cells and high contamination of 
blood, inflammatory and digestive tract cells. In this study, we performed annotations for training sets 
by expert pancreatic pathologists and trained a deep learning model to assess PDAC on EUS‑FNB of 
the pancreas in histopathological whole‑slide images. We obtained a high receiver operator curve area 
under the curve of 0.984, accuracy of 0.9417, sensitivity of 0.9302 and specificity of 0.9706. Our model 
was able to accurately detect difficult cases of isolated and low volume cancer cells. If adopted as a 
supportive system in routine diagnosis of pancreatic EUS‑FNB specimens, our model has the potential 
to aid pathologists diagnose difficult cases.

Pancreatic ductal adenocarcinoma (PDAC) is a disease with a poor prognosis among gastrointestinal  cancers1,2. 
Although long-term survival rates remain poor, surgical resection is the mainstay of treatment for  PDAC3. 
Poor prognosis is due to the fact that the PDCA is already advanced at the initial diagnosis and that e�ective 
treatment methods have not been  developed4. However, in recent years, the diagnostic results of endoscopic 
ultrasonography-guided �ne-needle aspiration cytology (EUS-FNA) and endoscopic ultrasonography-guided 
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�ne-needle biopsy (EUS-FNB) for PDAC have improved and have had a positive impact on the diagnostic and 
therapeutic strategy of PDAC.

In the past, trans-papillary pancreatic juice cytology was the mainstay for preoperative diagnosis of pancreatic 
 cancer5,6. It was di�cult to obtain adequate specimens for ERCP (endoscopic retrograde cholangiopancrea-
tography) because of the collection of cells from thin pancreatic ducts. EUS-FNA and EUS-FNB changed this 
and made it easier to obtain adequate specimens via direct punctures leading to improvements in diagnostic 
results. EUS-FNA can bene�t from the addition of rapid on-site evaluation (ROSE) which provides immediate 
feedback, and it has improved diagnosis. However, there are still issues such as the limited number of facilities 
where ROSE can be performed. On the other hand, more recently, EUS-FNB is being used more than EUS-
FNA for tissue  acquisition7 as it has been reported to provide stable diagnostic results via improvements to the 
puncture  needle8–10.

Clinically, diagnosis of pancreatic tumors has improved, but pathological diagnosis remains di�cult. �e 
reason is that the amount of tissue collected is small and fragmented. �e majority of pancreatic cancer histolo-
gies are adenocarcinomas (Fig. 1a,b). �e cancer cells in EUS-FNB tissue are mainly invasive ductal carcinoma 
components (IDC) (Fig. 1c) and fragmented isolated carcinoma components (ICC) (Fig. 1d). IDC typically show 
adenocarcinomas in desmoplastic stroma. �e desmoplastic stroma is a reliable diagnostic clue because it is a 
result of stromal invasion by adenocarcinoma. On the other hand, ICCs are fragmented cancer cells contained 
within blood cells, which is o�en di�cult to diagnose because only cellular atypia is available. EUS-FNB tis-
sues o�en contain ICCs in greater abundance than IDCs. General pathologists �nd it di�cult to diagnose such 
specimens; even pathologists who specialize in pancreatic pathology cannot easily diagnose pancreatic pathol-
ogy based on ICC alone. �erefore, to obtain good diagnostic results, pathologists would need specimens that 
contain a variety of tissue components in addition to ICCs.

Arti�cial intelligence based on a deep learning model that can assist the pathologists in evaluation of such 
di�cult cases for diagnosis may be of great help. Deep learning models, especially convolutional neural networks 
(CNNs), have found numerous successful applications in the computational  pathology11–23. One of the primary 
applications in histopathology is performing automatic cancer detection in whole-slide images (WSIs)22,23. How-
ever, as far as we are aware, there has not been any previous applications of deep learning to detect adenocarci-
noma on pancreatic EUS-FNB specimens.

Figure 1.  Histology of pancreatic ductal adenocarcinoma (PDAC). A representative resected PDAC in white 
color and showed an invasive growth pattern (a) Histologically, tumor cells with distinct glandular formation 
were in�ltrating and proliferating within abundant stroma (b) �e representative EUS-FNB specimen consists 
of the IDC (c) and ICC (d) foci within the blood or �brin component. Arrows (a): tumor; stars (b–d): pancreatic 
ductal adenocarcinoma. Scale bars: 500 μm (b), 200 μm (c, d).
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In this paper, we propose a deep learning model for pancreatic EUS-FNB WSI classi�cation. We used a 
combination of transfer learning and fully-supervised learning to train an E�cientNet-B122,23 CNN on a dataset 
consisting of 372 WSIs. We then evaluated the model on a test set of 120 WSIs with a pathological diagnosis 
matched by three pancreatic pathologists, achieving high ROC AUC performance.

Results
A deep learning model for PDAC classification of EUS‑FNB samples. �e aim of this study was 
to train a deep learning model to evaluate PDAC in EUS-FNB WSIs. �e �nal dataset used for developing the 
model consisted of 532 WSIs from Kurume University. �e dataset was divided as follows: a training set of 372 
WSIs (161 PDAC), a validation set of 40 WSIs (20 PDAC), and a test set of 120 (86 PDAC) (see Supplementary 
Fig. S1 online). �e test set was derived from completely agreed WSIs of independent reviews of 182 WSIs by 
three pancreatic pathologists (Y.N., N.F and T.F). (see Supplementary Table  S1 online). 62 WSIs that had a 
disagreement on the diagnosis were considered as “indeterminate” and were excluded from the test set. Fleiss’s 
Kappa value, which assesses agreement with the diagnosis, was 0.677, which was determined to be substantial 
agreement. We evaluated the model on the test set and computed a combination of metrics (Table 1). �e model 
has high Receiver Operator Curve (ROC) area under the curve (AUC) (0.9836; CI [0.9603–0.9977]), accuracy 
(0.9417; CI [0.8917–0.975]), f1-score (0.9581; CI [0.915–0.9827]), sensitivity (0.9302; CI [0.8602–0.9753]) and 
speci�city (0.9706; CI [0.9091–1]). Figure 2 shows the ROC curve (Fig. 2a) and confusion matrix (Fig. 2b).

In true positives, cancer cells were accurately detected and no background blood cells or contamination were 
detected (Fig. 3a,b). Interestingly, despite the inclusion of IDC, some of the IDC nests were not recognized in the 
true positives (Fig. 3c,d). Moreover, in false negatives, small cancer nests of ICC were not detected (Fig. 3e,f). 

Table 1.  A variety of metrics computed on the test sets. A threshold of 0.47 was used.

Metrics Value Con�dence interval

ROC AUC 0.9836 [0.9603–0.9977]

Log loss 0.3419 [0.2949–0.3864]

Accuracy 0.9417 [0.8917–0.975]

MCC 0.8667 [0.7622–0.9473]

f1-score 0.9581 [0.915–0.9827]

Sensitivity (TPR) 0.9302 [0.8602–0.9753]

Speci�city (TNR) 0.9706 [0.9091–1]

Precision (PPV) 0.9877 [0.9571–1]

Negative predictive value (NPV) 0.8462 [0.7297–0.9512]

False discovery rate (FDR) 0.0123 [0–0.0429]

Figure 2.  Evaluation performance of the model on the test set. �e ROC curve of ADC WSI classi�cation using 
a test set of 120 veri�ed WSIs (a). Confusion matrix for WSI binary classi�cation into ADC and non-ADC on 
the test set (b).
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�e area of cancer cell foci was predominantly larger in the true positives than the false negatives (Fig. 4). On 

Figure 3.  Examples of model prediction outputs for pancreatic ductal adenocarcinoma (PDAC). EUS-FNB 
samples are mainly composed of fragmented tissues. Our model was able to detect cancer cells selectively among 
the isolated cells in the specimen (a, b). However, the identi�cation of invasive cancer cells (arrow) was not 
always made accurately (c, d). �e detection of cancer cells in small cluster areas was di�cult (e, f). In the false 
positive case, gastric glands were mislabelled as adenocarcinoma (g, h). Scale bars: 100 μm.
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the other hand, there was no signi�cant di�erence in the number of cancer cell foci between the true positives 
and false negatives (Fig. 4). �ere was a false positive case which had mislabelled contaminated gastric gland 
tissues (Fig. 3g,h).

Discussion
In the present study, our deep learning model established using pancreatic EUS-FNB specimens contain-
ing fragmented pancreatic tissue and large amounts of blood was shown to have high accuracy (0.9417; CI 
[0.8917–0.975]), sensitivity (0.9302; CI [0.8602–0.9753]) and speci�city (0.9706; CI [0.9091–1]). It is particularly 
noteworthy that it was possible to extract even ICCs, which are di�cult for pathologists to evaluate. Although 
there were false negatives, the results were dependent on the area of PDAC foci, not on the sample volume. Our 
deep learning model can be e�ectively used as a diagnostic support system for EUS-FNB specimens with a large 
amount of blood and �brin.

�e model was trained on a small dataset of 372 WSIs and evaluated on a test set of 120. �e model achieved 
high ROC AUC performance of 0.984 (CI: [0.9603–0.9977]), which is comparable to the performance of clas-
si�cation models for other malignant  tumors21–24. �e maximal use of the training set, which consisted in the 
annotation by the expert pancreatic pathologists of all the adenocarcinoma cells within a specimen (ICCs as 
well as IDC components), in combination with the adopted training methodology (transfer learning and fully-
supervised learning) has been an important factor in achieving the high performance.

�e trained model had a few false-negative and false-positive predictions on the test set. In some false-negative 
cases, the foci were signi�cantly smaller than that of true-positive foci. �is is most likely due to the facts that 
there were only a limited number of cases within the training set that had focus areas with cancer in�ltration and 
stromal induction. �is is in contrast to colonic, gastric, and prostate cancer biopsy specimens where there are 
a large number of cases with such �ndings. Interestingly, even in true-positive WSI diagnosis cases, some of the 
IDC in�ltrations were not detected, which are representative of PDAC �ndings. �is could be due to the limited 
number of annotations of IDC in�ltrations, which means that our model might not have learned from enough 
examples to be able to detect all instances of IDC. As for the false positives, our deep learning model detected 
contaminated tissue (gastric glands) as cancer cells. �e contamination was due to the process of �ne-needle 
puncture that went through the gastric glands before reaching the targeted pancreas. �e false positive was most 
likely due to the limited number of contaminated tissue fragments within the training set. False positives are less 
of a concern than false negatives in practical diagnostic work�ows given that the WSI diagnosis would always 
be revised and con�rmed by a pathologist who has studied general pathology.

Despite the high performance of the model, there are still a few limitations. One limitation of our model is 
that the training and test WSIs were all obtained from a single institution, and, therefore, it is uncertain how well 
the model would perform on WSIs obtained from a di�erent institution. Another limitation is that the test set 
size is small (n = 120), and it might not include all the potential variations of cases that could be encountered; 
therefore, it is di�cult to obtain a good approximation of the true performance of the generalization of the model. 
However, given that the incidence of pancreatic cancer is rare as compared to gastric and colonic  cancers25, far 
fewer biopsies are being performed, making it di�cult to obtain a large WSI dataset from a single institution.

As future work, we intend to further develop and evaluate our model on multiple test sets obtained from 
di�erent medical institutions in order to assess its generalization performance and move closer towards the 
adoption of such assistive models in routine histopathological diagnoses work�ows.

Methods
WSIs from patients with pancreatic disease. A total of 594 WSIs who underwent EUS-FNB at Kurume 
University Hospital (Kurume, Japan) between January 2010 and March 2020 were enrolled in this retrospective 
study. WSIs that had a special subtype of PDAC and metastatic tumor were excluded from this study. Informed 
consent to use histopathological samples and pathological diagnostic reports for any present or future research 
studies had previously been obtained from all patients prior to the surgical procedures and the patients were 

Figure 4.  E�ect of area and number of pancreatic ductal adenocarcinoma (PDAC) foci on false-negatives. �e 
area of ADC foci was signi�cantly larger in the true positives than in the false negatives (le� panel). On the 
other hand, there was no signi�cant di�erence in the number of ADC foci between the true positives and false 
negatives (right panel).
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aware that at any time they could change their mind and opt-out from ongoing research studies by going on 
the Kurume University o�cial website. �is study was approved by the Research Ethics Committee of Kurume 
University (#19182) on November 18, 2019, which conforms to the guidelines of the Declaration of Helsinki.

�e tissue specimens were obtained from patients with pancreatic tumors referred to Kurume University 
Hospital who were determined to be eligible for EUS-FNB. EUS-FNB specimen collection was performed mainly 
using a 22G/25G puncture needle; 15–20 strokes (average: 2.7 strokes) and 3–5 sessions were performed. �e 
specimen was �xed in neutral bu�ered formalin solution. Rapid on-site evaluation was also performed in each 
case. For each WSIs a primary pancreatic lesion hematoxylin & eosin (HE) stained histopathological specimen 
was collected a�er histopathological review by surgical pathologists and scanned into a WSI at a magni�cation 
of 20×. Pathological diagnosis was performed according to the 2019 World Health Organization Classi�cation of 
Tumors of the Digestive system  tumors26. Basically, the tissues obtained by EUS-FNB were found to be a mixture 
of distinct and fragmented pancreatic tissue on a background of various degrees of blood. For this study, we 
de�ned the tubular adenocarcinoma found in clear pancreatic tissue as IDC and the fragmented cancer cells as 
ICC. IDC was de�ned as adenocarcinoma with preserved morphology as an invasive ductal carcinoma of the 
pancreatic parenchyma. On the other hand, ICC was de�ned as adenocarcinoma with no association with the 
pancreatic parenchyma and indistinct morphology as an invasive ductal carcinoma.

Datasets and annotations. �e dataset obtained from Kurume University consisted of 594 WSIs, of 
which 182 WSIs from December 2019 and 2020 April were selected as test sets of which 62 WSIs were excluded 
due to disagreements on their diagnoses by a set of three expert pancreatic pathologists. �e dataset was solely 
composed of pancreatic EUS-FNB WSIs. 412 WSIs were used for annotation and were looked over carefully and 
veri�ed by two independent pathologists prior to annotation. �e WSIs were manually annotated by a group 
of 18 pancreatic surgical pathologists (specialists) who perform routine pancreatic EUS-FNB histopathological 
diagnoses by drawing around the areas that corresponded to one of the eleven labels (Table 2). Annotations 
performed by pathologists were modi�ed (if necessary), con�rmed, and veri�ed by another pathologist (see 
Supplementary Fig. S2 online). �e resulting WSIs contained multiple annotation labels; however, given that the 
goal was to train a binary classi�cation model, a diagnosis WSI label of adenocarcinoma (ADC) or non-ADC 
was also assigned to the WSI based on the presence of PDAC annotations. �e types of annotation labels, the 
number of annotations for each label and the annotation labels corresponding to the binary classi�cation are 
summarized in Table 2.

Deep learning models. For the current study we used the E�cientNet-B127 architecture, which is a smaller 
version of the state-of-the-art E�cientNet architecture that has achieved a good compromise in performance 
and model size. We trained the model using transfer learning and fully-supervised learning. �e model was 
instantiated by using the fully-convolutional layers of an E�cientNetB1 CNN that pre-trained on ImageNet 
and appending a global average pooling layer followed by a fully-connected classi�cation layer with a single 
sigmoid output. �e WSIs were down-sampled to a magni�cation of 10 × from 20 × without loss of classi�cation 
performance. �e large size of the WSIs, typically in the tens of thousands of pixels along each dimension, poses 
a computational challenge, making it di�cult to apply a CNN to the entire WSI at once. We followed the typical 
approach of breaking down the WSIs into thousands of smaller �xed-sized tiles and applying the CNN on the 
tiles, rather than directly on WSIs. �e training WSIs were divided into overlapping �xed-sized tiles of 512 × 512 
pixels with a stride of 256 pixels. During training, the tiles were fed into the model using balanced batch sam-
pling with real-time data augmentation consisting of variations in brightness, saturation, and rotation.

�e fully-supervised training method that we used is similar to the fully-supervised method described  in22. 
�e model was trained for a total of 50 epochs and the model’s performance was monitored on a validation set. 
We used early stopping, where we selected the model from the epoch with the lowest validation loss. To obtain 
a WSI classi�cation, the model was applied with a stride of 256 pixels in a sliding window fashion resulting in a 
probability output for ADC for each tile. We then took the maximum probability as the probability for the WSI. 

Table 2.  Summary of annotation labels and model output labels.

Annotation label Label description Number of veri�ed annotations AI output label

Pancreatic duct Normal duct 872 Non-ADC

Acinus Normal acinus 454 Non-ADC

Islets of Langerhans Normal islet cell 10 Non-ADC

ADC Adenocarcinoma 7250 ADC

NET Neuroendocrine tumor 695 Non-ADC

SPN Solid pseudopapillary neoplasm 0 Non-ADC

ACC Acinar cell carcinoma 47 Non-ADC

No tumor Pancreatitis 515 Non-ADC

AIP Autoimmune pancreatitis 11 Non-ADC

Background
Hemocyte, epithelial contamination, �brin, non-neoplastic 
stroma

6207 Non-ADC

Indeterminate cell Cells impossible to distinguish 7858 Non-ADC
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If this probability was greater than a threshold (0.5) then the WSI is predicted as ADC, non-ADC otherwise. 
�is means that a WSI is assigned the diagnosis of ADC if at least one tile was predicted as ADC.

Software and statistical analysis. �e Fleiss’ kappa statistics were performed to assess the pathologi-
cal diagnostic concordance of three pancreatic pathologists for selecting appropriate test sets. Fleiss’ kappa is a 
measure of inter-rater agreement used to determine the level of agreement between two or more raters when the 
method of assessment, known as the response variable, is measured on a categorical  scale28. �e Kappa values 
were calculated using Microso� Excel 2016 MSO (16.0.13029.20232) 64 bit and interpreted as follows: < 0.0, 
poor agreement; 0.01–0.20, slight agreement; 0.21–0.40, fair agreement; 0.41–0.60, moderate agreement; 0.61–
0.80, substantial agreement; 0.81–1.00, almost perfect agreement.

We used the TensorFlow framework to implement the deep learning models, the scikit-learn package was 
used to calculate the metrics and matplotlib was used to plot the ROC curves. We used the bootstrap method 
with 1000 iterations to estimate the 95% CIs of the AUCs. �e number and area of cancer cell foci were calcu-
lated using ImageJ (https:// imagej. nih. gov/ ij/) so�ware in all false-positives (6 WSIs) and randomly selected 
true-positives (6 WSIs).

Data availability
Due to speci�c institutional requirements governing privacy protection, all of the datasets used in this study are 
not publicly available.
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