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T
he outbreak of the severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2) and its associated disease, COVID-19,  
led to a pandemic of the highest concern1–6. The genome of 

the new virus and the epidemiological and clinical features of the 
infection have been reported1–4. The viral infection frequently pres-
ents as an infection of the upper respiratory tract or pneumonia 

A deep-learning pipeline for the diagnosis and 
discrimination of viral, non-viral and COVID-19 
pneumonia from chest X-ray images

Guangyu Wang   1,25 ✉, Xiaohong Liu2,25, Jun Shen   3,25, Chengdi Wang4,25, Zhihuan Li5,25, Linsen Ye6,25, 

Xingwang Wu7,25, Ting Chen   2 ✉, Kai Wang2, Xuan Zhang2, Zhongguo Zhou8, Jian Yang9, Ye Sang9, 

Ruiyun Deng10, Wenhua Liang11, Tao Yu3, Ming Gao3, Jin Wang6, Zehong Yang3, Huimin Cai10, 

Guangming Lu   12, Lingyan Zhang13, Lei Yang14, Wenqin Xu5, Winston Wang   5, Andrea Olvera5, 

Ian Ziyar5, Charlotte Zhang10, Oulan Li10, Weihua Liao15, Jun Liu   16, Wen Chen17, Wei Chen18, 

Jichan Shi19, Lianghong Zheng5, Longjiang Zhang12, Zhihan Yan18, Xiaoguang Zou20, Guiping Lin3, 

Guiqun Cao4, Laurance L. Lau5, Long Mo   15, Yong Liang5, Michael Roberts   21,22, Evis Sala   23, 

Carola-Bibiane Schönlieb22, Manson Fok5, Johnson Yiu-Nam Lau24, Tao Xu10, Jianxing He11, 

Kang Zhang   5,10 ✉, Weimin Li4 ✉ and Tianxin Lin   3 ✉

Common lung diseases are first diagnosed using chest X-rays. Here, we show that a fully automated deep-learning pipeline for 
the standardization of chest X-ray images, for the visualization of lesions and for disease diagnosis can identify viral pneumonia 
caused by coronavirus disease 2019 (COVID-19) and assess its severity, and can also discriminate between viral pneumonia 
caused by COVID-19 and other types of pneumonia. The deep-learning system was developed using a heterogeneous multi-
centre dataset of 145,202 images, and tested retrospectively and prospectively with thousands of additional images across 
four patient cohorts and multiple countries. The system generalized across settings, discriminating between viral pneumonia, 
other types of pneumonia and the absence of disease with areas under the receiver operating characteristic curve (AUCs) of 
0.94–0.98; between severe and non-severe COVID-19 with an AUC of 0.87; and between COVID-19 pneumonia and other viral 
or non-viral pneumonia with AUCs of 0.87–0.97. In an independent set of 440 chest X-rays, the system performed comparably 
to senior radiologists and improved the performance of junior radiologists. Automated deep-learning systems for the assess-
ment of pneumonia could facilitate early intervention and provide support for clinical decision-making.
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(COVID-19 pneumonia) that can rapidly progress to acute respira-
tory failure, multiple organ failure and death. Chest X-ray (CXR) 
radiography is the mainstay of screening, triaging and diagnosing 
varieties of pneumonia, including bacterial, viral and other types of 
pneumonia5–7. During the flu season, viral pneumonia is prevalent, 
and CXR radiography has a critical role in frontline patient care. 
Radiologists are aware of certain CXR features that may suggest the 
diagnosis of viral pneumonia; it is multifocal, reflecting the under-
lying pathogenesis, and may induce more rapid alveolar and poten-
tially endothelial damages.

Recent developments in artificial intelligence (AI) have provided 
new potential opportunities for the rapid growth of radiological 
diagnostic applications8–10. Previous studies have proposed the con-
cept of radiomics and imageomics, which refer to the extraction 
of quantitative imaging feature information in a high-throughput 
manner11. The AI model also demonstrated general applicability 
in retinal diseases and childhood diseases using medical images, 
pretrained with data of conventional approaches based on trans-
fer learning12. To diagnose common lung and heart diseases on the 
basis of CXRs, AI models using weakly supervised classification 
or attention-based convolution neural networks13 have also been 
studied.

Although computational methods have been proposed for the 
detection of lung disease, a fully automatic analysis pipeline that is 
robust to variable CXR image conditions and that meets the stan-
dard of actual clinical application is lacking6,14. One of the challenges 
is anatomical landmark detection, which has a vital role in medical 
image analysis. Radiologists routinely align an input image to these 
landmarks and perform diagnosis and quantification15,16. However, 
most landmark-detection methods were developed for facial recog-
nition. To date, it remains a challenge to standardize medical images 
to facilitate the downstream diagnostic tasks automatically. Other 
challenges for the translation of AI systems to clinical applications 
include the lack of a gold standard for clinical evaluation and the 
generalization of the systems to different populations or new set-
tings. Another critical obstacle for the general use of medical AI sys-
tems is that the inner decision-making processes of deep-learning 
algorithms remain opaque, hindering the translation into clinical 
practice. Thus, under this unprecedented COVID-19 pandemic, it 
is particularly relevant to develop a general AI system for CXRs that 
can provide a fast and accurate diagnosis and severity assessment 
of viral pneumonia even before molecular test results are available. 
It is of utmost importance to public health, as this system can be 
deployed quickly to healthcare centres to provide a first-line assess-
ment with a quick turn-around time.

In this Article, we aim to develop a comprehensive system to 
combat SARS-CoV-2 or any other emerging upper-respiratory viral 
pandemic. The shortcoming of CXR images is evident. A plain CXR 
image is the summation of the effect of X-ray on all of the tissues 
between the X-ray source and the capturing film; tissue structures 
are less-well defined in an X-ray compared with a computed tomog-
raphy (CT) image and lack three-dimensional information. To over-
come these shortcomings, we integrated multiple state-of-the-art 
computational methods to construct a robust AI system for CXR 
diagnosis. This CXR diagnostic system detects common thoracic 
pathologies, performs viral pneumonia diagnosis and differen-
tiates between COVID-19 and other types of viral pneumonia. 
Technically, our AI system is a modular analysis pipeline that com-
prises automated detection of the anatomical landmarks, lung-lesion 
segmentation and pneumonia diagnosis prediction, using CXRs as 
input. Furthermore, the AI system could assess the clinical severity 
of COVID-19 on the basis of the proposed CXR lung-lesion seg-
mentation model (Fig. 1 and Supplementary Fig. 6).

To develop this AI system, we used a large-scale hospital-wide 
dataset (n = 120,702) for the detection of common thoracic pathol-
ogies and a large multicentre dataset for pneumonia analysis.  

We also examined the deliverability of the AI system. To assess its 
real-world clinical performance and generalizability, we applied the 
system to external datasets collected from different populations 
from those used to train the model. Furthermore, we compared the 
performance of the system with the performance of radiologists in 
routine clinical practice. The results show that the performance of 
the AI is accurate and robust across multiple populations and set-
tings. The system could be integrated into the workflow to improve 
a radiologist’s diagnostic performance.

Results
Image characteristics and system overview. We constructed a 
large CXR dataset on the basis of the China Consortium of Chest 
X-ray Image Investigation (CC-CXRI) to develop the AI system. 
The CC-CXRI consists of two large-scale datasets—the first dataset 
is a CXR database for common thoracic diseases containing 145,202 
CXR images that were retrospectively collected from the Memorial 
Hospital of Sun Yat-sen University (SYSU), and the second dataset 
is a CXR dataset (CC-CXRI-P) containing 16,196 CXR images for 
detecting suspicious pneumonia, including COVID-19 pneumonia. 
Here, a general AI system was developed for identifying common 
thoracic diseases and pneumonia diagnoses and triaging patients 
using CXR images with an application to COVID-19 pneumonia. 
Our proposed AI system, which is an automated CXR analysis pipe-
line, consists of three modules: (1) a CXR standardization module, 
(2) a common thoracic disease detection module and (3) a final 
pneumonia analysis module.

The CXR standardization module comprises anatomical land-
mark detection and image registration techniques (Fig. 1 and 
Supplementary Fig. 7). This module was designed to overcome the 
notorious problem and well-known challenges of data diversity/
variations and non-standardization of CXR images. Here we used 
12 anatomical landmarks labelled on 676 CXR images to train 
the landmark-detection model. We implemented and compared 
three deep-learning models for landmark detection—including 
the U-Net17, fully convolutional networks (FCN)18 and DeepLabv3 
(ref. 19)—using a fivefold cross-validation test (Supplementary 
Methods). DeepLabv3 showed the best performance, so we  
adopted DeepLabv3 for the landmark detection and subsequent 
analyses (Supplementary Fig. 8 and Supplementary Table 3). 
Supplementary Figure 9a shows a visualization example of our 
AI model compared with the radiologist’s annotation, showing 
that the AI model obtained accurate landmark-detection results. 
Interestingly, we observed that all three models performed bet-
ter for the right part of the landmarks than for the left, probably 
due to the contrast condition caused by the cardiovascular region 
(Supplementary Fig. 9b).

The common thoracic disease detection module classified the 
standardized CXR images into 14 common thoracic pathologies 
that are frequently observed and diagnosed, including cardio-
megaly, consolidation, oedema, effusion, emphysema, fibrosis, her-
nia, infiltration, mass, nodule, pleural thickening, pneumonia and 
pneumothorax (Table 1).

The pneumonia analysis module, which consists of a lung-lesion 
segmentation model and a final classification model, estimates the 
subtype of pneumonia (for example, viral pneumonia) and assesses the 
severity of COVID-19. We trained the lung-lesion segmentation using 
1,016 CXR images that were manually segmented into four anatomi-
cal categories and common lesions of opacification (Supplementary 
Table 4). We implemented and compared the three segmentation 
models. The results showed that DeepLabv3 outperformed both FCN 
and U-Net, and its performance was compared with that of manual 
delineations by radiologists (Supplementary Table 5).

The SCR dataset is a public CXR dataset with annotated land-
marks for lung segmentation (https://www.isi.uu.nl/Research/
Databases/SCR/)20,21. We validated our system on this database and 
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achieved a good performance for landmark detection with a mean 
(± s.d.) of 5.568 ± 6.175 mm for the actual physical distance error. 
As the SCR database was established to facilitate studies on the ana-
tomical segmentation of CXR images, we also validated our lung 
segmentation model, which showed good accuracy, with a Dice 
coefficient of 0.954 and 0.961 for segmentation of the left and right 
lung fields, respectively (Supplementary Table 7).

Multilabel classification of common thoracic diseases. Here, a 
large-scale dataset (the SYSU set) from CC-CXRI—consisting of 
120,702 CXR images from 92,327 patients with labels of 14 com-
mon thoracic pathologies—was used to train the model. All of the 
patients were from hospital visits between October 2018 and July 
2020. This dataset was randomly partitioned into three subsets with 
a ratio of 8:1:1 for training, validation and testing, respectively. The 
images were first analysed by automated detection of anatomical 
landmarks to permit image registration. Next, the standardized 
CXR images were classified into 14 common thoracic patholo-
gies. All 14 labels were common lung pathologies extracted from 
real-world clinical reports for CXR images. As some pathologies 
may coexist or overlap on the same CXR image, we used a multilabel 
classification approach instead of a multiclass classification method, 
whereby overlaps between labels were allowed, and labels were pre-
dicted individually before being integrated into a final prediction. 
The AI system achieved a macro performance with an AUC of 0.930 
on the test set (Supplementary Table 1). Among the 14 pathologies, 
pneumonia belongs to the category of pulmonary opacity, which 
represents the pattern of a decrease in the ratio of gas to soft tissue  

(blood, lung parenchyma and stroma) in the lung. The opacity can 
be broadly divided into five levels of atelectasis, mass, oedema, 
pneumonia and consolidation, which are vital for the differential 
diagnosis of pneumonia. On the test set, the AI system achieved an 
AUC of 0.914 for differentiating between pneumonia and all of the 
other groups and an AUC of 0.935 for the overall classification of 
lung opacity (Fig. 2a).

To evaluate the generalizability of the AI system across  
various screening settings, we tested it on a cohort called SYSU-PE, 
which consisted of an additional 24,500 CXR images from  
23,585 patients who underwent a routine annual health  
check. Compared with the SYSU cohort, there were fewer con-
solidation or oedema cases among the SYSU-PE cohort. The  
results showed an overall AUC of 0.916 for multilabel image clas-
sification of commonly occurring lung opacity (Fig. 2b). We fur-
ther applied our AI model to the open public data source RSNA 
Kaggle competition dataset, and the results also show that our 
method achieved good performance for detecting lung opacity 
(Supplementary Fig. 1).

Training the AI system to identify viral pneumonia. To develop a 
model that could differentiate between viral pneumonia and other 
types of pneumonia and absence of pneumonia on the basis of 
CXR images, we constructed a deep neural network based on the 
DenseNet-121 (ref. 22) architecture. The AI system first standard-
ized an input CXR image through anatomical landmark detection 
and registration before performing lung-lesion segmentation and 
pneumonia diagnosis (Supplementary Fig. 7).
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Fig. 1 | The AI system for the detection of viral pneumonia. a, Model development of the AI system. The system includes a pipeline consisting of a CXR 

standardization module, a common thoracic diseases detection module and a pneumonia analysis module. The pneumonia analysis module comprises 

viral pneumonia classification, COVID-19 detection and COVID-19 severity assessment. b, Application and evaluation of the AI system. Left: an AI system 

was trained to identify the presence and absence of 14 common thoracic diseases, and its performance was evaluated in external validation cohorts. 

Middle: during training with the Chinese cohort (CC-CXRI-P) and the reannotated public US dataset (CheXpert-P), the AI system made a diagnosis of viral 

pneumonia (including COVID-19 pneumonia). The model was then tested on external cohorts to assess the generalizability of the AI system. Right: the 

performance of the AI system was compared with the performances of radiologists and with the performance of the combination of human and machine 

intelligence.
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The diagnosis of pneumonia was verified by a positive poly-
merase chain reaction (PCR) test or other laboratory test methods, 
including culture and staining, which served as the ground truth. 
Medical imaging is considered to be part of the diagnostic workup 
of symptomatic individuals with suspected COVID-19 in settings 
in which laboratory testing information is not available or results 
are delayed or initially negative in the presence of symptoms that 
are attributable to COVID-19 (ref. 23). Here, we adopted the terms 
‘gold-standard labels’ and ‘silver-standard labels’ to differentiate 
between the labels obtained from a confirmed laboratory-based 
ground truth versus diagnoses based on clinical and radiographic 
findings by a consensus of radiologists24,25. CXR images were clas-
sified into three types—viral pneumonia, other aetiologies/types 
of pneumonia and the absence of pneumonia (normal). The viral 
pneumonia group consisted of patients with common types of viral 
pneumonia and with COVID-19.

The CXR images in the CC-CXRI-P dataset were all con-
firmed cases with a definitive gold-standard label determined by a 
gold-standard viral PCR with reverse transcription (RT–PCR) test 
or other standard laboratory diagnostic tests. Among the 16,196 
images in the CC-CXRI-P dataset, 4,436 showed viral pneumonia—
including 1,571 COVID-19 pneumonia—6,282 were other types of 
pneumonia and 5,478 showed an absence of pneumonia. To train 
our AI model to be generalizable across different populations and 
new settings, we purposely included CXRs with silver-standard 
labels from the CheXpert dataset for training. The CheXpert dataset 
is an open-source retrospective patient cohort that contains mix-
tures of different types of pneumonia and other lung disorders. Our 
radiologists manually regraded 13,148 CXR images with the label of 
pneumonia and classified them into 2,840 viral pneumonia, 5,309 

other types of pneumonia and 4,999 absence of pneumonia. This 
reannotated pneumonia dataset was named CheXpert-P.

To train the model, we initially trained the AI system with the 
gold-standard labels on the subset of 13,158 images from CC-CXRI, 
and then tested it on an independent test set with 1,519 CXR images 
from the CC-CXRI. The CXR images in CC-CXRI were all con-
firmed with definitive gold-standard labels using PCR-based tests 
or other standard laboratory diagnostic tests. The three-way clas-
sification results showed an overall performance of an AUC of 
0.963 (95% confidence interval (CI) = 0.955–0.969; Supplementary  
Fig. 10a). We next added the CheXpert-P dataset with silver-standard 
labels into the training set of CC-CXRI. Again, we retrained the AI 
model and tested it on the same test set from the CC-CXRI. The 
results showed better performance, with an AUC of 0.977 (95% CI 
= 0.971–0.982) for the three-way classification. Thus, we conclude 
that including the weak labels or ‘silver-standard labels’ for train-
ing can potentially lead to an improvement in classification perfor-
mance. The improvement is due to the AI model being exposed to 
different types of images. As a result, the AI system differentiated 
between viral pneumonia and the other two groups with a sensitiv-
ity of 92.94%, a specificity of 87.04% and an AUC of 0.968 (95% CI 
= 0.957–0.978; Fig. 3a,b).

To quantify the impact of the standardization module on the 
diagnostic performance, we evaluated the AI system on the test  
set skipping the whole module or part of the module. The AI  
system performed poorly without the image registration, lesion 
segmentation or both (Supplementary Fig. 10b). The whole pipe-
line demonstrated a statistically significant improvement in abso-
lute specificity from 76.2% to 91.1% (permutation test, P < 0.001 
for superiority) compared with the baseline model (Supplementary 

Table 1 | The CXR datasets for the training, validation and testing of the deep-learning system

Subset Developmental dataset External validation (SYSu-PE)

Training dataset Tuning dataset Testing dataset

Number of images 96,543 12,035 12,124 24,500

Number of individuals 73,917 9,160 9,250 23,585

Inpatients 38,438 (52.0%) 4,761 (52.0%) 4,871 (52.7%) −

Outpatients 35,479 (48.0%) 4,377 (47.8%) 4,354 (47.1%) −

Patients for physical examination − 22 (0.2%) 25 (0.2%) 23,585 (100.0%)

Male 31,019 (42.0%) 3,840 (41.9%) 3,850 (41.6%) 11,868 (50.3%)

Mean age (years) (IQR) 44.9 (32–59) 45.1 (32–60) 44.9 (32–59) 37.8 (28–46)

Atelectasis 167 (0.23%) 26 (0.28%) 22 (0.24%) 4 (0.02%)

Cardiomegaly 1,828 (2.47%) 242 (2.64%) 239 (2.58%) 46 (0.20%)

Fibrosis 4,405 (5.96%) 523 (5.71%) 560 (6.05%) 431 (1.83%)

Infiltration 7,085 (9.59%) 914 (9.98%) 886 (9.58%) 88 (0.37%)

Mass 708 (0.96%) 86 (0.94%) 82 (0.89%) 17 (0.07%)

Nodule 4,187 (5.66%) 550 (6.00%) 554 (5.99%) 463 (1.96%)

Pleural thickening 4,192 (5.67%) 545 (5.95%) 544 (5.88%) 412 (1.75%)

Pneumonia 8,099 (10.96%) 1,015 (11.08%) 1,042 (11.26%) 164 (0.70%)

Pneumothorax 552 (0.75%) 67 (0.73%) 61 (0.66%) 0 (0.00%)

Consolidation 118 (0.16%) 12 (0.13%) 12 (0.13%) 0 (0.00%)

Oedema 133 (0.18%) 12 (0.13%) 21 (0.23%) 0 (0.00%)

Effusion 3,903 (5.28%) 485 (5.29%) 462 (4.99%) 43 (0.18%)

Hernia 23 (0.03%) 3 (0.03%) 1 (0.01%) 1 (0.01%)

Emphysema 715 (0.97%) 84 (0.92%) 84 (0.91%) 29 (0.12%)

No finding 55,320 (74.84%) 6,823 (74.49%) 6,882 (74.40%) 22,319 (94.63%)

IQR, interquartile range. For all the subsets (except ‘Number of images’), the numbers given are of individuals.
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Table 8). The results showed that, with a specific decision threshold, 
the whole pipeline achieved a significantly higher specificity while 
retaining a sensitivity of 90%. This demonstrated the importance of 
every component of the pipeline to screen patients for suspicious 
pneumonia.

External validation in multicountry datasets. To test the gen-
eralizability of the AI system to various clinical settings, we con-
ducted four external validations. The first test was performed on a 
prospective pilot study in a non-epidemic area of China, with 1,899 
CXR images containing 240 viral pneumonia images (including 98 
COVID-19 pneumonia), 610 CXRs of other types of pneumonia 
and 1,049 CXRs of absence of pneumonia (normal images). The AI 
system achieved an average AUC of 0.941 (95% CI = 0.931–0.952) 
in the three-way classification. For differentiating between viral 
pneumonia images and images of other types of pneumonia and 
normal images, the AI system achieved a sensitivity of 90.00%, a 
specificity of 87.40% and an AUC of 0.947 (95% CI = 0.931–0.962; 
Fig. 3c,d).

The second external validation was performed on another 
Chinese population screening cohort that included participants in 
a routine clinical care setting for suspected pneumonia. The exter-
nal test set contains a total of 1,034 CXR images, including 46 viral 
pneumonia CXRs, 220 CXRs of other types of pneumonia and 768 
normal images (Table 2). The AI model achieved an AUC of 0.938 
(95% CI = 0.922–0.955) in the three-way classification, and a sensi-
tivity of 89.13%, a specificity of 93.02% and an AUC of 0.969 (95% 
CI = 0.943–0.987; Fig. 3e,f) for differentiating between viral pneu-
monia and the other two groups.

The third external validation was performed on an international 
patient cohort from Ecuador and other open public data sources 
comprising a total of 650 CXR images (Table 2). Our AI system 
achieved an AUC of 0.934 (95% CI = 0.917–0.950) for the three-way 
classification, and an AUC of 0.920 (95% CI = 0.891–0.942) for dif-
ferentiating between viral pneumonia and the other two groups 
(Supplementary Fig. 2a).

The fourth external validation was performed on an open public 
Kaggle-pneumonia dataset (https://www.kaggle.com/paultimothy-
mooney/chest-xray-pneumonia). Our AI model achieved an AUC 
of 0.948 (95% CI = 0.943–0.953) for the three-way classification, 
and an AUC of 0.916 (95% CI = 0.907–0.924) for detecting viral 
pneumonia (Supplementary Fig. 2b). Overall, these results firmly 

demonstrated that the performance of our AI system showed a high 
level of consistency, and proved its generalizability.

Potential for triaging of patients with COVID-19. We attempted 
to use the AI system to identify COVID-19 pneumonia. A total of 
17,883 CXR images—including 1,407 COVID-19 CXRs and 5,515 
CXRs of other viral pneumonia, as well as 10,961 CXRs of other 
pneumonia from CC-CXRI—were used to train and validate the AI 
model (Table 2).

We first evaluated the model on a test set with 164 COVID-19 
CXRs and 630 other pneumonia CXRs, and obtained an AUC of 
0.966 (95% CI = 0.955–0.975), a sensitivity of 92.07% and a specific-
ity of 90.12% (Fig. 4a,b). A separate, independent dataset containing 
164 COVID-19 pneumonia CXRs and 190 CXRs of other types of 
viral pneumonia was also used to test the model. The results showed 
an AUC of 0.867 (95% CI = 0.828–0.902), a sensitivity of 82.32% and 
a specificity of 72.63% (Fig. 4d,e). Both results confirmed that the AI 
system is sensitive to the subtle lesion information of CXRs in triag-
ing COVID-19 pneumonia and differentiating between COVID-19 
pneumonia and other pneumonia with a reasonable accuracy as a 
first-line diagnostic tool. We conducted additional experiments to 
differentiate between the different subgroups of COVID-19 (severe 
and non-severe COVID-19) and other types of viral pneumonia. 
The results showed that the performance for detecting non-severe 
COVID-19 was relatively inferior performance compared with the 
performance for detecting severe COVID-19 (Fig. 4c,f).

Next, we tested the AI system on the public BIMCV dataset 
from the Valencia region of Spain26, including 663 COVID-19 
images from BIMCV-COVID19 and 1,277 normal images from 
BIMCV-COVID19-PADCHEST. The results showed an AUC of 
0.916 (95% CI = 0.904–0.933) for identifying COVID-19 as viral 
pneumonia and differentiating it from normal. The AI without the 
image registration and lesion segmentation (the baseline model) 
obtained inferior performance, with an AUC of 0.856 (95% CI = 
0.838–0.876; Supplementary Fig. 3).

Assessing the clinical severity of COVID-19. We next investigated 
the feasibility of assessing the severity level of COVID-19 pneu-
monia on the basis of our AI analytic module. We hypothesized 
that the lung severity could be systematically scored by quantify-
ing a CXR image, which we called the severity index based on the 
lung-lesion segmentation. Figure 5e presents an example of viral 
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pneumonia with comparable lung-lesion segmentation by the AI 
model and human radiologists. Compared with the experts, the AI 
model produced smoother and clearer lesion segmentation bound-
aries with higher accuracy. This showed that our AI system could 
be used as a visualization/reference tool to highlight the lesion areas 
for radiologists.

The CXR severity index was determined as follows. Each CXR 
image was divided into 12 sections defined horizontally by four 
anatomical categories (lung field and periphery of the lung field) 
and vertically by the vertebral column (Supplementary Fig. 4a). 
Each section was assigned an opacity score of 0 to 4 by a group of 
trained radiologists on the basis the percentage of lung lesions in 
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the section. The 1,207 CXR images of the patients with COVID-19 
were also graded manually with the CXR severity index by radi-
ologists. We evaluated the association between the severity scores 
by radiologists and by the AI model based on the quantification 
of the CXR images. The severity index graded by radiologists and 
the AI reviewer showed a strong linear relationship, with a Pearson 
correlation coefficient of 0.81 and a mean absolute error of 8.64  
(Fig. 5a). A Bland–Altman plot showed a good agreement between 
the AI model and the radiologists, with an intraclass correlation 
coefficient (ICC) of 0.68 (95% CI = 0.60–0.74), whereas the agree-
ment between evaluations of the radiologists achieved an ICC of 
0.73 (95% CI = 0.64–0.81; Fig. 5b).

We further hypothesized that the severity index used in a  
chest radiograph is correlated with the severity of clinical out-
comes. The severe level of a respiratory distress state in the clinical  
setting was defined by blood oxygen saturation < 92%, respiratory 
rate < 36 or PO2/FiO2 < 300 mmHg. It usually corresponded to dif-
fuse interstitial pneumonia, which obscured normal lung mark-
ings27. A total of 1,207 CXRs were manually graded on the basis of 
clinical diagnoses and classified into 437 severe and 770 non-severe 
labels. We next used the severity index scores by the AI model and 
the radiologist reviewers as an input for a logistic regression model 
to generate a clinical severity prediction (Methods). The results 
showed that our AI system could predict the severity of COVID-
19 pneumonia with an AUC of 0.868 (95% CI = 0.816–0.915), a 
specificity of 80.65% and a sensitivity of 82.05% (Fig. 5c), whereas 
the radiologists achieved a comparable AUC of 0.832 (95% CI = 
0.782–0.885) with a specificity of 74.84% and a sensitivity of 79.49%  
(Fig. 5c and Supplementary Fig. 4). The results demonstrated 
that the analytic pipeline could also help to predict the severity of 
COVID-19 pneumonia.

The AI system versus radiologist performance study. An inde-
pendent test set of 440 CXR images was used to compare the 
performance of the AI system against practicing radiologists in clas-
sifying the viral pneumonia, other types of pneumonia and normal 
groups. A total of eight radiologists with different levels of clinical  
experience were enrolled to participate in this study: four junior 

radiologists with longer than 10 years of experience and four senior 
radiologists with longer than 20 years of experience. The ground 
truth was determined by positive molecular test results together 
with the CXR findings verified by another independent group of 
three senior radiologists.

The performance was evaluated on the basis of AUC and the sen-
sitivity and specificity (Fig. 6a and Supplementary Table 6). The AI 
system achieved comparable performance to the level of the senior 
radiologists, with an AUC of 0.981 (95% CI = 0.970–0.990) for the 
viral pneumonia diagnosis. The operating point, selected from the 
validation dataset, generated better sensitivity (P < 0.001) and com-
parable specificity compared with the average junior radiologists 
(Supplementary Table 6).

One of our objectives was to investigate whether the AI system 
could assist junior radiologists in improving their diagnostic perfor-
mance. In this experiment, four junior radiologists performed their 
initial diagnosis and, two weeks later, they were given the diagnosis 
probability provided by our AI system and asked to repeat the image 
grading without providing any other prior information. Weighted 
error, which was calculated on the basis of a penalty score system, 
was used as a metric to evaluate and compare the performance of 
our AI system and the practicing radiologists. The performance 
of the junior radiologists with the AI assistance yielded an aver-
age weighted error of 9.82%, a significant improvement (P < 0.001) 
compared with that of 27.44% the radiologists without the AI assis-
tance (Fig. 6b).

We also examined the potential role of the AI system in enhanc-
ing the diagnostic performance of radiologists in the workflow. 
In this simulated scenario, a specific diagnosis was made by two 
radiologist readers (Methods). When there was a disagreement, 
an ‘arbitrator’ was involved in reaching a decision. The average 
weighted error was 20.11% when taking a consensus diagnostic 
decision by the radiologist group. By contrast, when the AI system 
acted as an ‘arbitrator’, the error was reduced to 16.65%; further-
more, when the AI system acted as a second reader, the error was 
further reduced to 7.08% (Fig. 6c). These results demonstrated  
that the AI system could improve the performance of radiologists 
and reduce image-reading workload. The details of the receiver 

Table 2 | The number of CXR images for training, validation and testing in differentiating between viral pneumonia, other types of 
pneumonia and the absence of pneumonia (normal)

Cohorts Viral pneumonia Other types of 
pneumonia

Normal Total

Other types of viral 
pneumonia

COVID-19 pneumonia

Training

Gold-standard labels
China (CC-CXRI)

2,506 1,248 5,015 4,389 13,158

Silver-standard labels
United States (CheXpert-P)

2,840 − 5,309 4,999 13,148

Validation

Gold-standard labels (CC-CXRI) 169 159 637 554 1,519

Testing

Gold-standard labels (CC-CXRI) 190 164 630 535 1,519

First external validation

Gold-standard labels (China cohort) 142 98 610 1,049 1,899

Second external validation

Gold-standard labels (China screening cohort) 46 0 220 768 1,034

Third external validation

Gold-standard labels on COVID-19 
(international cohort)

63 132 226 229 650
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operating characteristic (ROC) curves and confusion matrices of 
the eight radiologists’ performance were given in the Supplementary 
Fig. 5.

Discussion
This study showed a few crucial points. First, despite the limitation 
of a plain CXR image, an accurate AI system can assist radiologists 
in identifying viral pneumonia and COVID-19 accurately, show-
ing that it can be used as a frontline tool in an emergency clinic, 
remote places or the developing world. A noteworthy feature of the 
AI system is that the modular processing pipeline, including ana-
tomical landmark detection, registration, lung-lesion segmentation 
and diagnosis prediction, provided robust and explainable results. 
Second, this AI system can help junior radiologists to perform close 
to the level of senior radiologists. Finally, this system can differenti-
ate between COVID-19 and other types of viral pneumonia with 
reasonable accuracy. The AI system can also accurately determine 
the severity of the lesions in patients with established COVID-19. 
Overall, this diagnostic tool can assist radiologists in managing 
COVID-19 cases.

A rapid diagnosis of viral pneumonia with high suspicion of 
COVID-19 is an important first step for clinical management. A 
positive result should trigger a molecular viral test for SARS-CoV-2, 
sending the patient to an infectious disease unit with isolation.  

If confirmed, contact tracing should be initiated quickly. The  
patient may then receive CT imaging with an AI-based system or 
CT analysis that is accurate in providing a more detailed description 
of lesion pathologies28. However, the chest CT scan is not a front-line 
tool, as it takes more time to conduct, is more expensive and is not 
readily available in remote places, thereby limiting its application in 
the general population. By contrast, CXR is a front-line tool with a 
quick turnaround time and could be used more conveniently in an 
intensive care setting.

The optimal use of the AI system to improve the clinical work-
flow remains to be explored. Pneumonia is fundamentally a clinical 
diagnosis and, in suspected COVID-19, RT–PCR is the reference 
gold standard. However, owing to high rates of false-negative test 
results for SARS-CoV-2 PCR testing by nasal swab sampling, imag-
ing findings may also be used to make a presumptive diagnosis. 
Previous studies indicated that CXR images contained specific dif-
ferences in imaging findings between viral pneumonia and bacterial 
pneumonia. These differential or subtle features can be detected by 
the AI system, yet are beyond the observational ability and compre-
hension of the clinicians. The specificity advantage exhibited by the 
AI system suggests that it could help to reduce the false-negative 
rate of PCR testing. Taken together, CXR imaging has been consid-
ered to be part of the diagnostic workup of symptomatic individuals 
with suspected COVID-19 in settings in which laboratory testing 
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(RT–PCR) is not available or results are delayed or initially nega-
tive in the presence of apparent symptoms that are attributable to 
COVID-19 (ref. 23). Such a workflow could help healthcare/hospital 
administrators to plan and make an informed decision on resource 
allocation during an epidemic/pandemic.

Although there are published studies that used AI in diagnos-
ing pneumonia, the actual clinical applicability remains unknown 
as they have not been shown to be free of experimental data bias, 
and they have not been tested by the peer-reviewed gold-standard 
labels and by external data in different populations and new clini-
cal settings to show generalizability. Here we examined the general 

applicability of the present AI system. We first trained our AI sys-
tem using large, heterogenous multicentre datasets. We next pre-
sented evidence of the ability of the AI system to translate between 
different populations and settings. In particular, we trained a model 
to detect common thoracic diseases in patients coming for hospital 
visits (SYSU set), and then measured the performance in popula-
tions coming for physical examination (SYSU-PE set). Compared 
with the training set, the external validation set represented popula-
tions with less chest pathology. In this context, the system continued 
to achieve accurate performance. This practice is rare in the current 
literature.
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Notably, the AI system can also assist in assessing the severity 
of a patient’s condition. This is particularly important in the inten-
sive care setting or when resources are stretched, as CXR imaging is 
much easier to perform than a chest CT scan. As a monitoring tool, 
it will assist the intensive care physicians in assessing patients more 
comprehensively. Furthermore, the CXR severity index that is auto-
matically scored by the AI model can be used to assess patients’ risk 
level of complications and mortality, leading to earlier detection, 
intervention and treatment of high-risk patients with COVID-19.

Despite these potential advantages, it is critical to emphasize that 
this AI system is an assistant to radiologists for diagnosis. A com-
prehensive analysis of all other clinical and laboratory information 
is necessary for an accurate diagnosis. Our demonstration that this 
AI system improved the junior radiologists’ performance proved 
the benefit of integrating it into radiologists’ present workflow. This 
integration can be crucial during a pandemic, such as the current 
COVID-19 situation, when resources are stretched thinly. The abil-
ity of our AI system to recognize features in the diffuse pattern of 
lung involvement, which is relatively common among viral diagnos-
tics but difficult to discern by radiologists, may represent an advan-
tage offered by the AI system.

Our study has several limitations, which we hope to address in 
the future. First, as the AI system was trained in a population in 
which more than 90% were symptomatic patients with abnormal 
imaging findings, its ability to diagnose very early COVID-19 cases 
will need to be validated. Although our AI system achieved good 
performance with an AUC of 0.901 when evaluated in patients with 
no apparent findings versus normal X-ray images (using the test set 
of CC-CXRI), further training with more non-evident COVID-19 
cases will be necessary to establish its clinical use in a broad range of 
populations. Another limitation is its ability to differentiate between 
COVID-19 and non-focal (diffuse) acute respiratory distress syn-
drome. However, acute respiratory distress syndrome is a crucial 
acute condition with associated pulmonary oedema; therefore, 
through additional clinical findings or laboratory testing, it can be 
differentiated from severe COVID-19.

Finally, this study demonstrated an AI system’s value in assisting 
medical professionals for rapid and accurate diagnoses of pneumo-
nia during a pandemic. Future refinement and improvement will 

expand its use into diagnostic assessments of other common and 
routine lung disorders, such as tuberculosis and malignancies.

Methods
Images from patients. CXR images were extracted from the CC-CXRI data, 
which were collected from multiple hospitals, including the Sun Yat-sen Memorial 
Hospital and the �ird A�liated Hospital, which are both a�liated with Sun 
Yat-sen University, West China Hospital, Guangzhou Medical University First 
A�liated Hospital, Nanjing People’s Hospital, the First A�liated Hospital of 
Anhui Medical University and the Yichang Central People’s Hospital. All CXRs 
were collected as part of the patients’ routine clinical care. For the analysis of 
CXR images, all radiographs were �rst de-identi�ed to remove any patient-related 
information. �e CC-CXRI images consisted of both an anterior-posterior view 
and posterior-anterior view of CXR images. �ere are two sets of data in CC-CXRI: 
a large-scale dataset for common thoracic disease detection from the Sun Yat-sen 
University Hospital System (the SYSU set), and a pneumonia assessment survey 
(CC-CXRI-P). COVID-19 diagnosis was given when a patient had pneumonia 
with a con�rmed viral RT–PCR test. �e other types of pneumonia were diagnosed 
on the basis of standard clinical, radiological or culture/molecular assay results 
(Supplementary Table 9). Institutional Review Board (IRB)/Ethics Committee 
approvals were obtained from the Sun Yat-sen University Memorial Hospital, 
West China Hospital, and all of the patients signed a consent form. �e research 
was conducted in a manner compliant with the United States Health Insurance 
Portability and Accountability Act (HIPAA). It was adherent to the tenets of 
the Declaration of Helsinki and in compliance with the Chinese CDC policy on 
reportable infectious diseases and the Chinese Health and Quarantine Law.

CXR dataset construction of common thoracic diseases. We constructed CXR 
datasets for the development and evaluation of the AI model for common thoracic 
diseases. We used a natural language processing (NLP) pipeline to extract disease 
labels from clinical reports for CXR images. The pipeline included disease concept 
detection and negation classification, similar to CheXpert29 and the NIH Chest 
X-ray dataset13 (Supplementary Methods).

We selected 14 common thoracic diseases according to their clinical 
importance and prevalence, as defined on the basis of the ICD-10 and the NIH 
Chest X-ray dataset. They were extracted from real-world clinical reports for 
corresponding CXR images, and each label comes with both the localization of 
the critical finding and the classification of common thoracic diseases that can be 
revealed by the CXR image. These disease labels included atelectasis, cardiomegaly, 
consolidation, oedema, effusion, emphysema, fibrosis, hernia, infiltration, nodule, 
mass, pleural thickening, pneumonia and pneumothorax. We also defined another 
label of ‘no finding’ that was positive if and only if all of the other labels of a CXR 
image were negative. Thus, each CXR image in the dataset was annotated by the 
presence or absence of the 15 labels.

Two datasets were constructed. The SYSU dataset is composed of 120,702 CXR 
images from 92,327 patients between October 2018 and July 2020 in both inpatient 
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Fig. 6 | The performance of the AI system and of radiologists in identifying pneumonia conditions from CXR images. Performance comparison of four 

groups: the AI system; an average of a group of four junior radiologists; an average of a group of four senior radiologists; and an average of the group of 

four junior radiologists with AI assistance. a, The ROC curves for diagnosing viral pneumonia from other types of pneumonia and from the absence of 

pneumonia. The star denotes the operating point of the AI system. The filled dots denote the performance of the junior and senior radiologists, and the 

hollow dots denote the performance of the junior group with assistance from the AI system. The dashed lines link the paired performance values of the 

junior group. Inset: magnification of the plot. b, Weighted errors of the four groups on the basis of a penalty metric. The grey dashed line represents the 

performance of the AI system, and the grey shaded region represents the 95% confidence interval. P < 0.001 computed using a two-sided permutation test 

of 10,000 random resamplings. c, An evaluation experiment on diagnostic performance when the AI system acted as a ‘second reader’ or an ‘arbitrator’.
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and outpatient centres. The SYSU-PE dataset is comprised of 24,500 CXR images 
from 23,585 patients coming for the health check. The SYSU dataset was used for 
model development and internal validation, and the SYSU-PE dataset was used for 
external validation. The labels of the validation data were manually reviewed for a 
reliable evaluation.

Silver-standard labels of pneumonia. Previous research suggested specific 
differences in CXR imaging findings between viral pneumonia and bacterial 
pneumonia. Thus, imaging has been considered to be part of the diagnostic 
workup of symptomatic individuals with suspected COVID-19 in settings in which 
the laboratory testing (RT–PCR) is not available or results are delayed or initially 
negative in the presence of symptoms attributable to COVID-19 (ref. 23).

Here we manually curated CheXpert to expand the dataset for training. The 
CheXpert dataset is a public dataset containing 224,316 CXR images from 65,240 
patients. Each image was labelled with the presence or absence of each of 14 
common chest radiographic observations. The original CXR images were given 
only a general diagnosis of pneumonia without a detailed label of viral pneumonia 
or other types of pneumonia. Here, we considered the manually graded image to be 
the silver standard, in contrast to the ground truth gold-standard labels discussed 
below. A total of 15 radiologists with longer than 10 years of clinical experience 
manually reviewed and graded a subset of CheXpert with pneumonia labels. 
They labelled them with viral pneumonia, other types of pneumonia (including 
bacterial pneumonia and mycoplasma pneumonia) and absence of pneumonia 
(normal). Next, 20% of their results in the dataset were checked and validated by 
a group of five independent senior radiologists, each with longer than 20 years of 
clinical experience. In the case of inconsistency, the expert consensus was used to 
correct labels. A total of 13,148 CXR images from CheXpert were relabelled into 
three categories: 2,840 viral pneumonia, 5,309 other types of pneumonia and 4,999 
normal CXRs. We named this reannotated dataset CheXpert-P and treated it as the 
silver-standard label dataset for training.

Gold-standard labels and ground truth of pneumonia. All of the CXR 
images from the CC-CXRI dataset had a definitive diagnosis determined by the 
gold-standard PCR-based/standard laboratory diagnosis; each CXR image was 
given a specific and definitive diagnosis of COVID-19 pneumonia, other viral 
pneumonia or bacterial pneumonia. The above laboratory test results served as 
ground truth for the data used for validation. More specifically, the CC-CXRI 
dataset consists of 4,436 viral pneumonia (including 1,571 COVID-19 pneumonia), 
6,282 other types of pneumonia and 5,478 normal CXRs. We used the CC-CXRI 
for model development and testing. Specifically, patients were randomly assigned 
for training (80%), validation (10%) or testing (10%) (Table 1).

Quality control of image labels of CXR. For all CXRs for validation/testing, each 
image went through a tiered grading system consisting of two layers of trained 
graders of increasing expertise for verification and correction of image labels. Each 
image imported into the database started with a label matching the diagnosis of 
the patient. This first tier of graders conducted initial quality control of the image 
labels to exclude unreadable images, including those that were missing the whole 
bilateral lungs or with metal artifacts. The second tier of five senior independent 
radiologists read and verified the true labels for each image. In the case of 
disagreement, an expert of consensus was used to correct the labels. The resulting 
labels served as the ground truth for the evaluation dataset.

Annotation of landmarks and lung-lesion segmentation on CXRs. We used 
676 manually annotated CXR images from individuals with viral pneumonia and 
other pneumonia, as well as healthy individuals to train the anatomical landmark 
determination. Twelve anatomical landmarks were labelled on each CXR image: 
midpoint of clavicle left and right, sternal end of clavicle left and right, hilar angle 
left and right, costophrenic angle left and right, diaphragmatic dome left and right, 
cardiac diaphragmatic angle left and right.

We manually segmented 1,016 CXR images at the pixel level to train and 
evaluate our semantic segmentation model. Among these CXR images, 228 were 
from patients with viral pneumonia (including 121 patients with COVID-19 
pneumonia), 1,163 from patients with bacterial pneumonia, 187 from patients with 
other types of pneumonia and 438 from healthy individuals. The annotation was 
performed using polygons. The lung segmentation labels included lung field (left), 
the periphery of the lung field (left), lung field (right) and the periphery of the lung 
field (right). The lesion segmentation labels consisted of two classes: opacification 
and interstitial pattern, which were relevant pneumonia lesion features. The 
segmentations were annotated and reviewed by five senior radiologists. A fivefold 
cross-validation test was applied for the landmark detection and lung-lesion 
segmentation.

Performance comparisons with radiologists. To evaluate the performance of 
our AI system in classifying the three types of pneumonia, we constructed an 
independent validation set of 440 CXR images, including 160 CXRs of viral 
pneumonia, 160 CXRs of other types of pneumonia and 120 CXRs of normal cases. 
We used this set to compare the performance of our AI system and the diagnosis of 
the radiologists. A weighted error scoring was used to consider that a false-negative 

result (failing to refer to a viral pneumonia case) is more detrimental than a 
false-positive result (making a referral when it was not warranted). Predicted errors 
based on a weighted penalty table were used to compute a metric to evaluate and 
compare performance between the AI system and the radiologists. We weighted 
the misidentification of a ‘viral pneumonia’ as ‘normal’ with an error score of 2, 
which is larger than the score of 1 for the misidentification of the other two groups 
(Supplementary Fig. 5f). This is because, if a patient with COVID-19 or other viral 
pneumonia is mistriaged to normal, this may cause the spread of the disease.

We conducted a simulation study in which the AI system was deployed first 
as a ‘second reader’ and second as an ‘arbitrator’ of the diagnostic decisions of 
radiologists. As for the role of a second reader, we used a junior radiologist as 
the first reader and the AI system as the second reader. Whenever there existed a 
disagreement, the opinion of the senior reader was introduced. We also simulated 
the scenario in which the AI system acted as an ‘arbitrator’ by using human 
radiologists as the first and second readers and the opinion of the AI as a final 
reader. The weighted error was also calculated. The performance of the AI system 
was compared with that of the radiologists based on AUC curves, sensitivity and 
specificity. The operating point of the AI system was chosen on the basis of the 
separate validation set. For the statistical significance of the comparison results, we 
computed CIs and P values using 1,000 random resamplings (bootstraps).

Transfer learning and deep learning. We trained our AI model using a large 
number of CXR images from three public datasets—CheXpert dataset29, 
MIMIC-CXR dataset30 and NIH Chest X-ray dataset13.

Transfer learning was adopted by pretraining a DenseNet-121 model22 for 
the CXR image classification. The DenseNet-121 architecture has been proven 
to be effective for CXR classification tasks29. The convolutional layers were 
fine-tuned when transferring to other tasks, whereas the fully connected layer 
was trained from scratch. The number of the outputs was also modified in the last 
fully connected layer to adapt to the appropriate classification task. The softmax 
operation was used for the classification tasks. For data augmentation, each CXR 
image was transformed through geometric transformations (such as scale and 
translation) and changes in contrast and saturation. Four DenseNet-121 models 
were trained separately to classify common chest diseases, identify pneumonia 
conditions, differentiate viral pneumonia from other types of pneumonia, triage 
COVID-19 from other types of viral pneumonia and predict the severity level of 
patients with COVID-19. The input CXR images were resized to 512 × 512 by 
bilinear interpolation.

We used the cross-entropy loss function and adopted an Adam optimizer31 for 
training, with a learning rate of 0.003, and the batch size was set to 32. All of the 
deep-learning models were implemented with Pytorch v.1.4 (ref. 32). A validation 
set was used for early-stopping with a patience of 10 to avoid overfitting. The 
model with the best validation loss was finally selected. All training, validation 
and testing procedures were conducted on NVIDIA GeForce 1080Ti graphical 
processing units.

Overview of the AI system. For our proposed AI system, we applied a 
modular pipeline approach, which consisted of three main components: a CXR 
standardization module, a common thoracic disease detection module and a 
pneumonia analysis module. A detailed description of the AI system is provided in 
the Supplementary Methods.

The CXR standardization module performed invert-greyscale CXR33 detection, 
anatomical landmark detection and CXR image registration in this study. We first 
trained an invert-greyscale CXR detection model to detect whether the input of 
CXR was inverted-greyscale and, if so, the system automatedly converted it into 
a conventional CXR. The anatomical landmark-detection model next performs 
the detection of landmarks of the CXR. On the basis of the detected landmarks, 
we generated a registered CXR image using the image registration algorithm. 
These components were specially designed to address the common problems 
that are encountered in computer-assisted detection with CXRs, including 
variations/inconsistency in the radiographs due to orientation, distance and the 
difference in imaging pathology area, breathing movement and spatial alignment. 
These registered CXR images were used as the input to the model for disease 
classification or severity prediction.

The common thoracic disease detection module was developed for chest 
disease detection. As some pathologies may coexist or overlap on the same CXR 
image, we used a multilabel classification approach that could predict multiple 
categories at the same time and is therefore more suitable for clinical settings in 
which combinations or simultaneous occurrences of the categories often exist. 
Using the standardized CXR images, we trained a multilabel classification model 
with 15 binary classifications, including 14 disease labels and 1 no-finding label. 
The number of the output scalars was 15 with a sigmoid activate function. For 
the scenario of opacity detection, the case was defined as positive if at least one 
label of atelectasis, mass, oedema, pneumonia and consolidation was present. 
The predicted probability of opacity was composited by averaging over outputs of 
atelectasis, mass, oedema, pneumonia and consolidation.

The pneumonia analysis module is a two-stage architecture for identifying the 
subtype of pneumonia, predicting the presence and absence of COVID-19 and 
assessing the severity of COVID-19. In the first stage, a lung-lesion segmentation 
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module identifies suspicious regions in the segmented lung region. The networks 
were trained sequentially: the lung segmentation network was trained using the 
registered CXR images as inputs, and extracted lung regions were then used to 
train the lesion segmentation network. As the raw CXR images may contain 
irrelevant information for lesion segmentation (for example, body parts that are 
not related to the lungs), a lung segmentation network was trained to discard such 
information such that the lesion segmentation network can concentrate on the lung 
area. Next, the diagnostic model—a neural network classifier—made a prediction 
on the basis of the outputs of the previous models, namely, the anatomical 
landmark-detection model and the lung segmentation model.

To design the classifier, we conducted experiments to compare the 
multi-channel model with the single-channel model. The results showed that the 
multi-channel model had better performance (Supplementary Fig. 11).

Classification of severity levels. We investigated how to score the CXR images 
to quantify the severity of lung opacity and then investigated whether this CXR 
severity score is associated with the clinical severity of patients with COVID-19. 
The clinical severity level is a clinical diagnosis of a respiratory distress state: 
blood oxygen saturation < 92%; respiratory rate < 36 or PO2/FiO2 < 300 mmHg. It 
usually corresponds to diffuse interstitial pneumonia, which obscures normal lung 
markings27. For the analysis of the severity of patients with COVID-19 pneumonia, 
a total of 1,207 CXR images was manually graded, resulting in 437 images with 
‘severe’ labels and 770 images with ‘non-severe’ labels.

We first calculated the CXR severity index by dividing CXR images into 12 
sections. The 12 sections were defined horizontally by the four anatomical parts 
(including the lung fields and periphery of the lung fields) and vertically by the 
vertebral column (Supplementary Fig. 4). Each section was assigned a severity 
index from 0 to 4 to quantify the extent of opacity by radiologists (corresponding 
to <1, 1–25, 25–50, 50–75 and 75–100, respectively), whereas the AI system 
automatedly segmented the lung lesion and quantified the severity of the CXR 
image. Each CXR image of 1,027 patients with COVID-19 was given a severity 
score by a group of radiologists on the basis of the above definition. To evaluate 
the association between the AI model and radiologists for scoring the CXR 
severity, we calculated the mean absolute error and Pearson correlation coefficient. 
Bland–Altman plots34 and ICC were also used to assess the agreement between the 
AI reviewer and radiologists. We further associated the CXR severity index with 
clinical outcomes. Instead of directly using the final CXR index, we predicted the 
clinical severity by using the scores of all 12 sections as input features and adopted 
the logistic regression as the classification model. A ROC curve and a confusion 
table were then generated.

Operating point selection. An AI system for pneumonia diagnosis was proposed 
to produce a probability score for each class. For different clinical applications35, 
the operating point can be set differently to compromise between the true positive 
rate (TPR) and the false-positive rate (FPR) (Supplementary Table 2).

Statistical analysis. A ROC analysis and AUC were used to assess model 
performance for each classification task. For multiclass tasks, the macro averages 
of ROC and AUC were used as the metrics for each class. The ROC curves were 
plotted by using the true-positive rate (sensitivity) versus the false-positive 
rate (1 − specificity) under different decision thresholds. For a model f and a 
given ROC curve TPR = f(FPR), where FPR ∈ [0, 1], the AUC is defined as: 
AUC =

∫
1

0

f (x) dx. Normalized confusion matrices were used to illustrate the 
classification results. To evaluate the performance of the models and experts, 
the weighted error was calculated by weighting the error of the ith class 
being predicted by the jth class by a defined weight matrix. We evaluated the 
performance of the landmark-detection model on our annotated dataset using 
two evaluation metrics—normalized distance error and successful detection rate. 
Furthermore, we evaluated landmark-detection performance on the external 
dataset SCR using two additional metrics—pixel distance error and physical 
distance error. The normalized distance error is defined as the distance between 
the predicted normalized coordinates and the normalized true coordinates, where 
the original coordinates are normalized with x and y divided by the width and the 
height of the image, respectively. The successful detection rate is defined as the 
number of accurate detections versus the total number of detections, where an 
accurate detection is a prediction with a margin of error of less than or equal to a 
specified threshold. Physical distance errors were reported when the pixel size was 
known (for example 0.175 mm pixel size on the SCR dataset). We evaluated the 
performance of the segmentation model with two evaluation metrics, including 
intersection over union and Dice coefficient. The intersection over union is the 
area of the overlap between the predicted segmentation and the ground truth 
divided by the area of the union. The Dice coefficient is twice the area of the 
overlap between the predicted segmentation and the ground truth divided by the 
sum of the areas of the predicted segmentation and the ground truth.

A bootstrapping strategy (1,000 random resamplings) was adopted to analyse 
the CI of the AUC36. The empirical distribution of the test dataset was used 
to approximate the data distribution and draw n samples from the empirical 
distribution (n is the size of the test dataset) to calculate an AUC. Repeating such 
an operation yields the sampling distribution of AUC, from which the CI of the 

AUC was calculated. The shortest two-sided 95% CIs of the AUC were reported 
for each experiment. P values for sensitivity, specificity and weighted-error 
comparisons were generated using two-sided permutation tests of 10,000 random 
resamplings. The ROC curves and confusion matrices were generated using the 
Python scikit-learn library and plotted with the Python matplotlib and seaborn 
libraries. The measures of sensitivity, specificity and accuracy were calculated using 
the Python scikit-learn library.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The main data supporting the results in this study are available within the paper 
and its Supplementary Information. De-identified and anonymized data generated 
during this study, including source data and the data used to generate the figures, 
were deposited at the China National Center for Bioinformation at the Big Bay 
Branch (http://miracle.grmh-gdl.cn/chest_xray_ai).

Code availability
The custom codes for the diagnosis and discrimination between viral, 
non-viral and COVID-19 pneumonia from chest X-ray images are available at 
the China National Center for Bioinformation at the Big Bay Branch (http://
miracle.grmh-gdl.cn/chest_xray_ai). The codes are available for download for 
non-commercial uses.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection No special software or code was used to collect the data.

Data analysis Pytorch and python libraries.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 

We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A list of figures that have associated raw data 

- A description of any restrictions on data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. De-identified and anonymised data generated 

during this study, including source data and the data used to make the figures, were deposited at the China National Center for Bioinformation at the Big Bay 

Branch at http://miracle.grmh-gdl.cn/chest_xray_ai.
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Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size A total of  145,202 chest x-ray images were used to train and validate our AI models for diagnosis and discrimination of viral, non-viral and 

COVID-19 pneumonia.

Data exclusions No data were excluded after passing the initial image-quality-control step.

Replication Replication was not relevant. We used independent validation cohorts.

Randomization Samples were randomly allocated to the training, tuning and testing sets. 

Blinding All images were de-identified during image processing to remove any patient-related information. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants

Policy information about studies involving human research participants

Population characteristics Chest x-ray photographs were obtained as a part of routine clinical care.

Recruitment Participants were recruited from multiple hospitals.

Ethics oversight The China Consortium of Chest X-ray Image Investigation (CC-CXRI) Ethics Committee.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies

All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration The Institutional Review Boards of Sun Yat-sen University Second and Third Affiliated Hospitals and West China Hospital 

approved the study protocols. All participants were informed about the study objectives and signed a written informed consent. 

Study protocol The training included studying tutorials of each disease image atlas and a quiz on 1,000 images of pneumonia with a passing 

grade of over 95% accuracy. Phase-II graders consisted of general radiology specialists who individually reviewed every image 

classified by phase-I graders to ensure diagnostic accuracy. To improve consistency among phase-II graders, 20% of images were 

randomly selected and reviewed by senior experts. After establishing the consensus diagnoses, images were transferred to the 

AI team to undergo a final stage of data preprocessing.
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Data collection Chest x-ray photographs were obtained as a part of routine clinical care.

Outcomes The AUC, sensitivity and specificity of the automated deep-learning pipeline for diagnosis and discrimination of viral, non-viral 

and COVID-19 pneumonia. 
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