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Aiming at the irregularity of nonlinear signal and its predicting di�culty, a deep learning prediction model based on extreme-
point symmetric mode decomposition (ESMD) and clustering analysis is proposed. Firstly, the original data is decomposed by
ESMD to obtain the �nite number of intrinsic mode functions (IMFs) and residuals. Secondly, the fuzzy �-means is used to cluster
the decomposed components, and then the deep belief network (DBN) is used to predict it. Finally, the reconstructed IMFs and
residuals are the �nal prediction results. Six kinds of prediction models are compared, which are DBN prediction model, EMD-
DBN prediction model, EEMD-DBN prediction model, CEEMD-DBN prediction model, ESMD-DBN prediction model, and the
proposed model in this paper. 
e same sunspots time series are predicted with six kinds of prediction models. 
e experimental
results show that the proposed model has better prediction accuracy and smaller error.

1. Introduction

At present, there are still many di�culties in predicting non-
linear signal such as sunspots and underwater acoustic signal.
Sunspots are the basic parameters of the solar activity level.

ey are closely related to the geomagnetic disturbance and
ionospheric electron concentration. Prediction of sunspots
is an important part of spatial forecast which can pro-
vide important reference information for communication,
navigation, and positioning. Some scholars have conducted
extensive research on the theory of forecasting [1, 2]. In the
time-frequency signal analysis, the commonly used method
is Fourier transform which is mainly mapping the time
domain signal to the frequency domain energy spectrum
space, but Fourier transform only applies to the stationary
signal. Arti�cial neural network has the characteristics of
independent learning compared with the previous regression
analysis which is especially suitable for nonlinear signal
processing. However, due to the limitation of synchronous
instantaneous input, the time cumulative eect of continuous
signal cannot be re�ected, and the prediction accuracy is
low [3]. Wavelet neural network is combined with the char-
acteristics of arti�cial neural network and wavelet analysis
which has been widely applied to the processing of nonlinear

signal. Li and Wang [1] propose the prediction model based
on complementary ensemble empirical mode decomposition
andwavelet neural network. Although its prediction accuracy
is improved to a certain extent, there is room for further
improvement.
e emergence of empirical mode decomposi-
tion [4] (EMD) provides an idea for the processing of nonlin-
ear signal. It does not need to select a basis function, but it is
di�cult to determine the number of screenings and there are
many defects in Hilbert spectral analysis. 
e extreme-point
symmetric mode decomposition [5–7] (ESMD) method is a
further improvement of the EMD, whose envelope interpola-
tion from extreme points of the original external changes to
internal upper and lower extreme symmetric interpolation.

e residual modal component is optimized by the least
squares method, which has the characteristics of adaptive
global to determine the number of screenings. ESMD uses
the direct interpolation (DI) method, which is dierent from
Fourier transform only by the idea of transformation of the
integral algorithm. In view of the advantages of ESMD, this
paper selects the ESMDmethod to decompose the nonlinear
time series. 
en, fuzzy �-means [8, 9] clustering analysis
is used to aggregate the data of the same membership to
facilitate the prediction analysis of the model. Finally, the
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deep belief network [10–13] (DBN) is trained to achieve the
expected output value, and then the predicted output value is
reconstructed to obtain the �nal predicted value.

2. ESMD Method

ESMD is a newdevelopment of theHilbert-Huang transform,
and its algorithm is as follows:

(1) Find all the extreme points (maximum and min-
imum) of the data � and record them as � ={�1, �2, . . . , ��} ∈ ���.

(2) Connect the adjacent poles with lines, and the mid-
point is recorded as �� (	 = 1, 2, . . . , 
 − 1).

(3) Supplement the le� and right border midpoint �0, ��
by certain methods.

(4) Use the obtained 
 + 1 midpoints to construct � bar
dierential lines and calculate their mean curves� ={�1, �2, . . . , ��} ∈ ���.

(5) Repeat the above steps until the number of screenings
reaches the preset maximum value; then the �rst
decomposed empirical mode is recorded as�1.

(6) Repeat the above steps for � − �1 to obtain�2,�3, . . . until the �nal margin � only has a certain
number of poles.

(7) Let the maximum number of screenings  process
and cycle of the above process in the integer interval� = {�1, �2, . . . , ��} ∈ ��� to get some components,
and then calculate the variance ratio �/�0 and draw
it with the  change map, where � is the relative
standard deviation of � − � and �0 is the standard
deviation of the original data.

(8) Select the maximum number of screenings0 which
corresponded to the minimum variance ratio �/�0 in
the interval [min, max], and repeat the �rst six steps
to output the decomposition results.

3. Clustering Algorithm


e fuzzy clustering algorithm was originally proposed by
Dunn [14] and further introduced by Bezdek [15], which is
now being applied to many �elds. Its operation steps can be
expressed as follows: the sample set � = {�1, �2, . . . , ��} ∈��� is divided into � class. Membership degree of any element�� in the sample on the 	 class is recorded as ���. 
e fuzzy
membership matrix is used in the matrix a�er clustering,
which is recorded as � = {���} ∈ ��� and satis�es the
following conditions:

��� ∈ [0, 1] , ∀	, �
0 < ∑
�
��� < 
, ∀	

∑
�
��� = 1, ∀�.

(1)


e fuzzy �-means clustering is obtained by minimizing
the purpose function ��(�, �). 
e purpose function is as
follows:

�� (�, �) = �∑
�=1

�∑
�=1
(���)� �2�� (��, V�) , (2)

where � = {���} is the membership matrix, � = {V1,
V2, . . . , V�} ∈ ��� represents � clustering center point sets, and� ∈ [1,∞) is the weighted index. 
e fuzzy clustering is
transformed into hard mean clustering [14] when � is 1. 
e
ideal range of� is [1.5, 2.5], usually� = 2.


e distance from the �th sample to the 	th class center is
�2�� (��, V�) = ������ − V�

����2� = (�� − V�)	� (�� − V�) , (3)

where � is the positive de�nite matrix of � × �, special
conditions � = �, and (3) is the Euclidean distance. FCM
[16] is achieved by continuously optimizing the objective
function. FCM algorithm process is as follows:

(1) Initialize the cluster center � = {V1, V2, . . . , V�}.
(2) Calculate membership matrix:

��� = [[
�∑

=1

[ ��� (��, V�)�
� (��, V
)]
2/(�−1)]]

−1

� = 1, 2, . . . , 
. (4)

(3) Calculate the new cluster center:

V� = ∑��=1 (���)� ��∑��=1 (���)� 	 = 1, 2, . . . , �. (5)

(4) Repeat steps (2) and (3) until (2) reaches convergence.
When ���(��, V�) = 0, a singular value is generated,
and membership cannot be calculated by (4). A class
of nonsingular values will appear when the member-
ship value is 0.
e class of singular value appears, and
then the membership is calculated according to (1).

4. Forecasting Model

4.1. DBN Network Structure. DBN [17, 18] is organized by a
number of restrictedBoltzmannmachine (RBM)models.
e
visual layer of the RBM model is similar to the input layer,
and the hidden layer is similar to the output layer. Learning
between layers and layers of a large numbers of RBMmodels
is used to end the �nal operation. 
e speci�c structure of
RBM model is shown in Figure 1. 
e unit of the visual layer
and the unit of the hidden layer can be interconnected with
each other. 
e elements inside the layers are not connected.

e units of the hidden layer can obtain a close correlation
between the units of the visual layer.


e core of DBN is restricted Boltzmann machine unit,
RBM is a typical arti�cial neural network, and it is a
special logarithmic linear Markova random �eld [19]. 
e
RBM model has three parameters: the oset vector � =(�1, �2, . . . , ��) represents the oset of each node of the visual
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Figure 1: Network structure diagram of RBM.
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Figure 2: Deep belief network architecture.

layer, ' = ('1, '2, . . . , '�) represents the oset of each
node of the hidden layer, and * represents the weight matrix
between the nodes of two layer. 
ese three parameters
directly determine themodel to encode the�dimension data
into 
 dimension data; thus the conversion between features
is realized.

DBN is composed of a large number of RBM models
from the bottom to the top and the top of a layer of BP
neural network, which is shown in Figure 2.
e bottom is the
sample input which is waiting for training. �0 and'0 are the
nodes of RBM visual layer and hidden layer in the �rst layer,
respectively. *0 represents the weight between the visual and
hidden layers [20].

4.2. DBN Training Process

(1) 
e input sample is entered from the bottom level.

(2) 
e �rst RBM model was trained and then passed
to the second RBM model for training, followed by

continuous training until the training of the top of the
RBMmodel is also complete.

(3) A�er the training is completed, the training data can
supervise the operation and adopt themaximum like-
lihood estimation method to �ne-tune the network
model.

(4) Finally, the BP model is used to �ne-tune the model
parameters of the top layer so as tominimize the value
of the loss function.

4.3. �e Training Method of Deep Learning

(1) Unsupervised Learning from Bottom Up (Pretraining).
Using unlabeled data to train each parameter hierarchically,
this is an unsupervised training method, which is the biggest
dierence from the traditional neural network, and also can
be regarded as the process of feature learning. 
e �rst
layer is �rst trained with unlabeled data, and the �rst layer
parameters are obtained. 
e output of the �rst layer is used
as the input of the second layer, so as to train the second layers
and �nally obtain the parameters of each layer.

(2) Top-Down Supervised Study (Tuning). A�er the �rst step
is completed, the network adopted discriminative training
using labeled data, and the error is transmitted from top to
bottom. 
e �rst step is similar to the random initialization
of the traditional neural network. 
e dierence is that the
�rst step of deep learning is obtained through the study
of unlabeled data, rather than random initialization. So the
initial value is closer to the overall optimal, so the eect of
deep learning is mainly the pretraining of the �rst step.

4.4. ESMD and DBN Prediction Model Based on Clustering.
ESMD and DBN prediction model based on clustering is
proposed, whose structure is described as follows:

(1) 
e original sequence is decomposed by ESMD; then
the �nite number of IMFs and residuals is obtained.

(2) 
e fuzzy �-means clustering analysis is performed
for each IMF component and residual; then the
frequency �uctuation rule is got.

(3) 
e DBN model is established for each IMF com-
ponent and residual, respectively; then the predicted
value of each component is obtained.

(4) Reconstruct IMF predicting value to obtain the �nal
predicting results.

5. Data Simulation and Analysis


e monthly mean total sunspot number from 1963 to 2012
was used as the original data. 
ere are a total of 600 data
points shown in Figure 3.
e original data is decomposed by
EMD and ESMD, respectively, shown in Figures 4 and 5.

In Figure 5, modal components IMF1∼IMF6 are shown
from top to bottom, and the instantaneous frequency of
modal components IMF3∼IMF6 is basically stable. 
e
modal components can achieve relatively high prediction
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Figure 3: Monthly mean total sunspot number in 1963–2012.
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Figure 4: 
e results of EMD decomposition.

results a�er they are decomposed and predicted. But IMF1∼
IMF2 are still quite complex compared to other components,
the instantaneous frequency is very large, and nonstationary
is strong. So the fuzzy �-means clustering analysis is per-
formed, and the results are shown in Figure 6.


e DBN structure contains two hidden layers. 
e
number of neurons is 2 and 12, and the learning rate is 1.

e DBN network includes two hidden layers. 
e number
of neurons is 20 and 10, the learning rate is 0.1, the cycle
number is set to 100, and the momentum is set to 0. A�er
the training is completed; each layer of the RBM model can
obtain initialization parameters which constitute the simplest
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Figure 5: 
e results of ESMD decomposition.
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Figure 6: Modal components a�er fuzzy clustering.

model of DBN.
e prediction experimental steps are shown
in Figure 7.


e predicted results of ESMD-DBN prediction model
based on clustering are shown in Figure 8. 
e same
sunspot time series is predicted by DBN directly namedDBN
prediction. 
e same sunspot time series is decomposed,
respectively, by EMD, EEMD, CEEMD, and ESMD, and the
�nite number of IMF components and residue are obtained.
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Figure 8: 
e predicted results based on clustering ESMD-DBN.


e DBN model is established for each IMF component

and residue, respectively; then the predicted value of each

component is obtained. 
ey were named, respectively, by

the predictionmodels of EMD-DBN, EEMD-DBN,CEEMD-

DBN, and ESMD-DBN.


e purple line in Figure 8 represents the predicted

number of sunspots and the blue line represents the practical

number of sunspots. It can be seen that the clustering ESMD-

DBN model proposed in this paper has good �tting to the

original data and can predict the number of sunspots well.

Figure 9 shows the comparison results of the prediction

models of DBN, EMD-DBN, EEMD-DBN, CEEMD-DBN,

and ESMD-DBN. In order to identify predicted results, local

predicted results are shown in Figure 10.

In order to verify the prediction result, the root mean

square error (RMSE) and the mean absolute percentage error
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Figure 9: Predicted results of sunspot numbers for each model.
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Figure 10: Local predicted results of sunspot numbers for each
model.

(MAPE) are used to measure the prediction performance.

e formulas are as follows:

RMSE = √ 1

�∑
�=1
[�̂ (	) − � (	)]2

MAPE = 1

�∑
�=1

77777777� (	) − �̂ (	)� (	)
77777777 × 100%,

(6)

where 
 is the number of sample datasets, �̂(	) is the 	th value
of the predicted data, and �(	) is the 	th value of the actual
data. Performance comparison of the six models is shown in
Table 1.
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Table 1: Performance comparison of the six models.

Models RMSE MAPE

DBN 8.4398 26.52%

EMD-DBN 5.8374 12.36%

EEMD-DBN 3.0837 7.58%

CEEMD-DBN 1.3405 3.67%

ESMD-DBN 1.0543 2.45%


e proposed model 0.8760 1.36%

As shown in Table 1, the RMSE and MAPE of the
proposed model are smaller than the other �ve models.

erefore, the proposed model can predict sunspot number
and the trend of sunspot time series better, and it is an
eective prediction model.

6. Conclusions

In this paper, a deep learning prediction model based on
extreme-point symmetric mode decomposition and cluster-
ing analysis is proposed to predict the sunspot monthly
mean time series. Comparing with the other models such as
DBN, EMD-DBN, EEMD-DBN, CEEMD-DBN, and ESMD-
DBN, the RMSE and MAPE of the proposed model are the
smallest. 
e experimental results show that the proposed
model can improve the prediction precision and reduce the
error compared with other models in predicting the same
sunspot time series. It can also be applied to other �elds
a�er conducting some modi�cation and has high application
value.
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