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Abstract
Nowadays, electricity is a basic commodity necessary for the well-being of any modern society. Due to the growth in

electricity consumption in recent years, mainly in large cities, electricity forecasting is key to the management of an

efficient, sustainable and safe smart grid for the consumer. In this work, a deep neural network is proposed to address the

electricity consumption forecasting in the short-term, namely, a long short-term memory (LSTM) network due to its ability

to deal with sequential data such as time-series data. First, the optimal values for certain hyper-parameters have been

obtained by a random search and a metaheuristic, called coronavirus optimization algorithm (CVOA), based on the

propagation of the SARS-Cov-2 virus. Then, the optimal LSTM has been applied to predict the electricity demand with 4-h

forecast horizon. Results using Spanish electricity data during nine years and half measured with 10-min frequency are

presented and discussed. Finally, the performance of the proposed LSTM using random search and the LSTM using CVOA

is compared, on the one hand, with that of recently published deep neural networks (such as a deep feed-forward neural

network optimized with a grid search) and temporal fusion transformers optimized with a sampling algorithm, and, on the

other hand, with traditional machine learning techniques, such as a linear regression, decision trees and tree-based

ensemble techniques (gradient-boosted trees and random forest), achieving the smallest prediction error below 1.5%.
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1 Introduction

Nowadays, electrical energy is one of the main sources of

energy in our society. In addition, the demand for electric

energy has a growing trend due to great challenges such as

the electric vehicle, and new restrictions are emerging

related to the use of renewable energy while ensuring a

reliable and secure supply. Since electric energy cannot be

stored in large quantities, it is extremely important that the

amount of electric energy necessary to cover the demand is

generated as approximately as possible.

The demand forecasting is often classified as short-term,

medium-term and long-term. Short-term forecasting prob-

lems involve predicting events only a few hours or days

into the future. Medium-term forecasts extend to a few

weeks or months and long-term forecasting problems can

extend beyond that by few years. The electricity con-

sumption profile for a working day in Spain usually has a

valley corresponding to sleeping hours and two demand

peaks, a high peak of consumption corresponding to the

hours from 08:00 to 09:00 pm and a lower peak of demand

corresponding to working hours during the morning. Some

days this peak occurring in the morning is divided into two

peaks thus obtaining a camel type profile.

The electricity demand analysis has traditionally been

done by means of classical statistical tools based on time

series models [34, 35]. Time series data can be defined as a

chronological sequence of observations on a target vari-

able. In the last years, machine learning techniques have

been successfully applied for electricity demand forecast-

ing due to its ability to capture complex non-linear
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relationships in the data [18, 25–27]. However, deep

learning techniques are acquiring a great relevance nowa-

days to solve a large number of applications in multiple

areas due to the enhancements in computational capabili-

ties [33, 40, 41]. In particular, specific deep learning

models such as Long Short-Term Memory (LSTM) net-

works have shown its effectiveness to deal with time series

[11, 37, 42].

In this work, a deep LSTM neural network along with a

hyperparameter optimization is proposed to forecast energy

demand for the next 4 h. First, the hyperparameters

defining the architecture of the LSTM such as number of

hidden layers and units per layer have been optimized

along with several important parameters that have a great

influence on the performance of the network as the dropout

and learning rates. Next, results using electricity demand

from Spain for more than nine years measured with 10-min

frequency are reported. In addition, the performance of the

proposed LSTM is compared to a deep feed-forward neural

network and a temporal fusion transformers (TFT) and

other recently published forecasting techniques showing a

remarkable improvement in the prediction.

The main novelties of this work include the exhaustive

analysis of different optimization processes carried out to

obtain the best hyper-parameters along with the use of a

very novel, architecture such as TFT for comparative

purposes. First, an ad hoc estimation process of the learn-

ing rate has been carried out through a dynamic adjustment

of the learning rate. Subsequently, a joint optimization of

all the hyper-parameters, including the learning rate, has

been developed through two optimization methods: a ran-

dom search and a recently published guided metaheuristic,

called CVOA, based on the propagation of the COVID

[13]. This in-depth analysis of optimization processes has

led to really very good results, errors of 1.45%, that

improve all previously published results for the prediction

of electricity demand in Spain to the best of the authors’

knowledge. Moreover, extensive experimentation has been

done to evaluate the performance of the proposed LSTM,

comparing with two deep neural networks, a classical deep

feed forward and TFT, currently very novel architecture, in

addition to traditional machine learning methods. Conse-

quently, both the network architecture defined by the

selected hyperparameters and the results obtained along

with the extensive comparison justify the novelty and

research contributions of this work.

2 Related works

This section reviews the most relevant works related to the

application of deep learning models to the problem of

electricity demand forecasting.

Two recent reviews analyze the topic of deep learning

for time series forecasting. The first one provides a theo-

retical background and an extensive list of applications,

categorized by the type of deep learning model [32]. The

second one conducts an experimental study comparing the

performance of the most popular deep learning architec-

tures, in terms of efficiency and accuracy [8]. In addition, a

specific review that emphasizes the application of machine

learning techniques to the problem of electricity forecast-

ing can be found in [12].

Different deep learning architectures have been pro-

posed during the last year to address the electricity load

forecasting problem. However, deep feedforward neural

networks (DFFNN) and deep recurrent neural networks

(DRNN) and their variants have been the most successfully

used for this purpose.

The DFFNN have been widely used in the literature in

order to obtain forecasts in electric markets. The authors in

[23] developed a model to predict hourly demand by using

the data provided by Korea Electric Power Corporation.

The prediction horizon was set to 24 h. The results

achieved outperformed a variety of approaches including

ARIMA, SNN or DSHW. A grid search was selected as

optimization strategy to optimize the weights of a DFFNN

in [31]. The method was developed to be applied to multi-

output and multi-step time series. Data from the Spanish

electricity market were used and the method outperformed

linear regression, gradient boost and decision trees and

random forest models. Later, the same dataset was ana-

lyzed with another DFFNN, but this time optimized with a

random search strategy [30]. The authors claimed that, by

using this optimization, the learning time is decreased

leading to a reduced execution time. They concluded that

competitive results in terms of accuracy were produced,

generating a smaller number of models. Divina et al. [4]

also used a DFFNN to forecast the Spanish electricity

consumption. The main novelty of this work lies in the use

of a genetic algorithm (GA) to optimize the hyper-param-

eters of the deep learning model. The approach proposed

outperformed several deep learning models with a variety

of optimization strategies, an ensemble model composed of

regression trees, artificial neural networks and random

forests. An ensemble of DFFNN networks was developed

by the authors in [21] to forecast time series of general

purpose. After that, this strategy has been also used to

forecast load demand time series [20]. More recently,

Iruela et al. [6] proposed an approach for energy con-

sumption forecasting by using artificial neural networks.

As main novelty, the authors simultaneously processed a

large amount of data and models thanks to the parallel

implementation with TensorFlow and the GPU usage.

Despite the existence of works using other networks,

long short-term memory (LSTM) networks are the most
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successful algorithms applied to forecast electricity con-

sumption. Thus, the work introduced in [3] explored the

use of several LSTM configurations for short to medium-

term electricity consumption forecasting. A GA was used

to determine the optimal number of layers and time lags.

France consumption data were used to validate the suit-

ability of the approach. Bedi et al. [1] proposed a frame-

work that analyzed long-term dependencies in the

historical data and short-term patterns in segmented data.

LSTM was later applied by including a moving window

using electricity demand data from India. The model

developed outperformed DRNN, artificial neural networks

(ANN) and support vector regression (SVR). A case study

of electricity forecasting by using the temperature as

exogenous variable can be found in [15]. The LSTM net-

work was automatically optimized using a Matlab toolbox.

The results were compared to those of autoregressive

moving average (ARMA), seasonal autoregressive inte-

grated moving average (SARIMA) and ARMA with

exogenous variables (ARMAX) for several prediction

horizons in terms of accuracy. Kwon et al. [7] also fed the

LSTM network with exogenous variables. The configura-

tion of the hyper-parameters was done through a trial and

error method. Two years were used by the power system

operator in Korea to evaluate the model, with an error

verging on 1.5%. On the contrary, the LSTM introduced in

[38] proposed a data dimensionality reduction to decrease

the computation cost. The authors designed two groups of

experiments to validate the quality of the approach. Com-

parisons made with ANN, ARMA and autoregressive

fractionally integrated moving average (ARFIMA) con-

firmed the superiority of the proposed method. Finally, the

coronavirus optimization algorithm (CVOA) was proposed

in [13] and used to optimize the hyper-parameters of a

LSTM network. The reported results outperformed a great

number of deep learning models hybridized with well-

established optimization heuristics. Data from Spanish

electricity consumption were used as benchmark. A multi-

layer bidirectional RNN based on LSTM and gated recur-

rent units (GRU) was introduced in [28] to predict elec-

tricity consumption. The authors considered separately the

peak loads and seasonality and outperformed the results of

ANN and SVR. Recently, Pegalajar et al. used three types

of RNN to predict the Spanish electricity demand and

compared the results to a wide variety of machine learning

models, outperforming all of them [17].

Other deep learning-based approaches have also been

used in the literature to forecast electricity consumption.

Thus, an early work using Elman neural network (ENN)

was introduced in [24]. The work used data from Anand

Nagar, India, to evaluate the performance of the model in

terms of MSE and MPE. It outperformed several methods,

including a weather sensitive model and a non weather

sensitive model. Additionally, an ENN optimized with a

GA was proposed in 2018 [22]. The approach was tested on

Spanish data and its performance compared to non-linear

ANN with and without exogenous variables. Later, in

2020, another approach based on ENN but adjusted with

particle swarm optimization was proposed in [43]. This

time the authors evaluated data from eastern Slovakia. The

model outperformed other deep learning algorithms in

terms of MAE and RMSE. Qian et al. [19] also used ENN

but, this time, it was combined with support vector

machines (SVM), after having applied principal component

analysis. Actual data from a Chinese industrial park were

used to assess the quality of the proposal, showing

remarkable performance when compared with other

methods.

The use of convolutional neural networks (CNN) can be

also found in [2, 10] as a useful method to predict power

load. In [10], the authors defined new loss functions as

main novelty and outperformed results by LSTM, ANN

and SVR. In [2], the CNN used a two-dimensional input

with historical load data and exogenous variables for both

one-step-ahead (15 min) and 96-step-ahead (24 h). Li et al.

[9] had previously proposed a CNN-based approach for

short-term load forecasting, using data from a large city in

China. Some weather time series were also considered to

improve the model and the performance was compared

with SVM. However, results achieved did not show sig-

nificant improvement when considering such exogenous

variables. The COVID-19 pandemic has changed the con-

sumption patterns and new studies, in this context, are

being published. Thus, CNN were also used for short-term

load forecasting in [36]. The authors analyzed data from

Romania and compared its efficacy with multiple linear

regression and the forecasting results by the Romanian

transmission system operator. Wu et al. [39] hybridized a

CNN by combining it with a GRU. In particular, the GRU

module extracted the time sequence data and the CNN

module the high-dimensional data. Data from China were

used to validate their approach, which outperformed the

results of individual GRU, CNN and ANN models. A wide

study and comparison of different deep neural networks

were made using photovoltaic data from Italy in [14].

Moreover, the performance was evaluated over four dif-

ferent prediction horizons (1 min, 5 min, 30 min and 60

min) and for one-step and multi-step ahead.

Although other exogenous variables such as meteoro-

logical variables are included in other studies for the

analysis of electricity consumption, as Taylor explained in

[29], for very short-term prediction, as is the case of our

work, the electricity forecasting is not highly influenced by

weather conditions. Hence, the use of a single variable is

sufficient, unless abrupt variations appear which should be
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considered as a special situation and be treated with ad hoc

methods.

3 Methodology

This section presents the description of the methodology

carried out for electricity consumption forecasting. For this

purpose, the problem to be solved will be described in Sect.

3.1. Then, the chosen network architecture will be detailed

in Sect. 3.2, and finally, the approach used to optimize the

different network hyper-parameters will be discussed in

Sect. 3.3.

3.1 Problem formulation

This work is framed in a supervised learning problem. In

particular, it is a multi-step regression, where the main goal

is: given a times series, which can be expressed as

½x1; x2; . . .; xt�, to find a model f based on a historical data

window that allows to forecast future values. Formally, this

formulation is shown in Equation 1:

½xtþ1; xtþ2; . . .; xtþh� ¼ f ðxt; xt�1; . . .; xt�ðw�1ÞÞ ð1Þ

where w is the number of past values used as historical

window and h is the number of future values to forecast,

also called prediction horizon.

3.2 LSTM architecture

The evolution of deep learning has grown exponentially in

recent years. There are several types of architectures,

which are used depending on the characteristics of the

problem to be solved. Convolutional neural networks

(CNN) are often used in image processing while recurrent

neural networks (RNN) for sequential data, such as time

series analysis and forecasting. However, some studies as

the review of deep learning architectures for time series

forecasting conducted by the authors in [32] have shown

the efficiency of several network architectures to solve

problems for which they were not initially designed.

In this work, a LSTM architecture is used to forecast

electricity consumption time series. This architecture is

framed within recurrent networks, whose main character-

istic is the capacity to model temporal dependencies of the

data. This makes them highly recommended for sequential

data problems such as text transcription, audio or time

series, due to a certain memory being provided to the

network.

A LSTM network can be structured in different ways

depending on the number of results to be obtained. It can

be structured with one input and one output (one to one),

many inputs and one output (many to one), one input and

many outputs (one to many) or many inputs and many

outputs (many to many). Since the fundamental objective

of this work is to predict the next h values based on a

historical dataset, we are faced with a ‘‘many to many’’

problem, as is depicted in Fig. 1.

Each of the LSTM cells receives the information mod-

eled from the previous cells (Ct�1 and ht�1), as well as the

data at the current time instant (xt). Depending on a set of

logic gates, it is determined the degree of influence that the

data at previous time instants has on data at the time instant

to be predicted, thus modeling the behavior of the network.

The scheme of a LSTM cell can be seen in the Fig. 2,

where ft is the forget gate, it is the input gate and ot the

output gate. ft decides what information should be thrown

away or saved. A value close to 0 means that the past

information is forgotten while a value close to 1 means that

it remains. it decides what new information ot to use to

update the ct memory state. Thus, ct is updated using both

ft and it. Finally, ot decides which is the output value that

will be the input of the next hidden unit.

The information of the ht�1 previous hidden unit and the

information of the xt current input is passed through the r
sigmoid activation function to compute all the gate values

and through the tanh activation function to compute the ot
new information, which will be used to update. The

equations defining a LSTM unit can be summarized as

follows:

ect ¼ tanhðWc½at�1; xt� þ bcÞ ð2Þ

it ¼ rðWu½at�1; xt� þ buÞ ð3Þ

ft ¼ rðWf ½at�1; xt� þ bf Þ ð4Þ

ot ¼ rðWo½at�1; xt� þ boÞ ð5Þ

ct ¼ it � ect þ ft � ct�1 ð6Þ

at ¼ ot � tanhðctÞ ð7Þ

where Wu, Wf and Wo and bu, bf and bo are the weights and

biases that govern the behavior of the it, ft and ot gates,

respectively, and Wc and bc are the weights and bias of the

ot memory cell candidate. An exhaustive description of

each of the logic gates, as well as the detailed operation of

the LSTM networks can be found in [5].

3.3 Hyperparameter optimization

It is well known that the performance of deep learning

models is highly influenced by the choice of the hyper-

parameters. This makes a fine-tuning is a determining

factor in the training phase to obtain a competitive model.

There are several hyper-parameter optimization methods,

such as hand-made, grid, random, pseudo-random or

probabilistic search, as described in [32]. In this work a
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hyper-parameter optimization using a random search

strategy has been developed using Keras-Tuner framework

under Python language [16]. Keras-Tuner is a library

developed by the Keras team that contains several hyper-

parameters optimization strategies for models developed

with Keras and Tensorflow 2.0.

Depending on a maximum number of trials and the

number of models to be trained for each trial, random

combinations of all available hyperparameters forming the

search space are generated. With each one of these com-

binations, a model is trained, storing the one with the

highest performance as the best model. A complete

workflow of the proposed methodology can be seen in

Fig. 3.

Additionally, the same deep learning architecture has

been optimized using a different hyperparameter opti-

mization strategy. In this case, the heuristic-based model

CVOA has been chosen [13]. This algorithm is based on

the COVID-19 propagation model and starts with a first

infected individual (patient zero), who keeps infecting

other individuals, creating large infected populations that

will either spread the infection or die. Initially, the infected

population grows exponentially, but with factors such as

isolation, mortality rate and recoveries, the infected pop-

ulation decreases over time.

4 Results

This section reports the results obtained by the proposed

LSTM model when optimizing by the two optimization

approaches described in Sect. 3.3. First, Sect. 4.1 describes

the data set used in this study. Later, the error metrics used

to measure the effectiveness of the LSTM model are pre-

sented in Sect. 4.2. Finally, Sect. 4.3 analyzes the results

obtained, comparing them with other methods published in

the literature.

4.1 Dataset description

The time series used in this work is the electricity con-

sumption in Spain from January 2007 to June 2016. It is

composed of 9 years and 6 months with a 10-min fre-

quency, resulting in a total of 497832 samples. Based on

the results published in previous works [31], the value of

w has been set to 168, that is, the past values of one whole

day and 4 h are used to predict the next 24 values which

correspond to the next 4 h. Then, the time series has been

transformed into a supervised data set composed of

instances and features using the values of the historical

window w and the prediction horizon h, as depicted in

Fig. 3. Thus, each instance is made of 192 features, past

168 values and next 24 values. Once this data set has been

generated, it has been normalized to the [0,1] range and

divided into 70% as training set and 30% as test set. In

addition, the training subset has been further divided into

70–30% as a training and validation set to find the optimal

values of the hyperparameters of the deep learning model

in the model optimization phase. Once the model has been

trained and optimized using the training and validation

subsets, the test set will be used to check its performance.

The training, validation and test sets are composed of

11612, 2903 and 6221 instances, respectively, covering the

time periods described in Table 1.

Fig. 1 Many to many LSTM

network

x +

x

tanh

x

tanh

Fig. 2 LSTM cell
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4.2 Error metrics

To evaluate the model’s performance, several measures

that are widely used in the literature have been used. In

particular, the mean absolute error (MAE), mean absolute

percentage error (MAPE), the root mean squared error

(RMSE) and the mean squared error (MSE) have been

chosen as error metrics in this work. The equations defining

these metrics are shown below:

MAE ¼ 1

n

X

n

i¼1

jpi � aij ð8Þ

MAPE ¼ 100 � 1
n

X

n

i¼1

jpi � aij
ai

ð9Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

n

i¼1

ðpi � aiÞ2
s

ð10Þ

MSE ¼ 1

n

X

n

i¼1

ðpi � aiÞ2 ð11Þ

where n is the number of samples to be predicted and, pi
and ai are the predicted and actual values of the i-th

sample, respectively.

4.3 Experimental setup and analysis

This section reports the results of the training of the pro-

posed LSTM model and the process of searching for the

best values of the hyperparameters using a random search

and the CVOA heuristic search strategy along with fore-

casts obtained for the test set. Furthermore, it is compared

with a TFT model, as well as with other models recently

published in the literature.

The experiments have been run in a Intel Core i7-5820K

at 3.3 GHz with 15 Mb of cache, 6 cores with 12 threads,

64 GB of RAM memory and a Nvidia Titan V GPU,

working under Ubuntu 18.04 operating system.

One of the main questions is whether it is feasible to

optimize all the hyperparameters of the network. For

example, several ad-hoc estimation methods are known in

3. MODEL SELECTION AND FORECASTING 2. MODEL TRAINING

1. PREPROCESSING STEP

START
POINT

Test set

Validation set

Training set

Get best model

Random hyper-
parameter selection

Yes

No

#model < max?

Training model

Forecast

Metrics

Original dataset Supervised dataset Splitting phase

X1
X2
X3
X4
.
.
.
Xt-3
Xt-2
Xt-1
Xt

X1  
X1+h  
X1+2h  
X1+3h

X1+(t-4)h
X1+(t-3)h
X1+(t-2)h
X1+(t-1)h

X2  
X2+h  
X2+2h  
X2+3h

X2+(t-4)h
X2+(t-3)h
X2+(t-2)h
X2+(t-1)h

. . . 

Xw  
Xw+h  
Xw+2h  
Xw+3h

Xw+(t-4)h
Xw+(t-3)h
Xw+(t-2)h
Xw+(t-1)h

. . . 

. . . 

. . . 

Xw+1  
Xw+h+1  
Xw+2h+1  
Xw+3h+1

Xw+(t-4)h+1
Xw+(t-3)h+1
Xw+(t-2)h+1
Xw+(t-1)h+1

Xw+h  
Xw+2h  
Xw+3h  
Xw+4h

Xw+(t-3)h
Xw+(t-2)h
Xw+(t-1)h
Xw+th

. . . 

. . . 

. . . 

Historical value window (w) Prediction horizon (h)

Fig. 3 A general overview of the proposed methodology

Table 1 Distribution of data in training, validation and test sets

Subset From To

Training 2007-01-01 00:00 2012-04-23 02:30

Validation 2012-04-23 02:40 2013-08-19 22:40

Test 2013-08-19 22:50 2016-06-21 19:40
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the literature for some hyperparameters such as the learn-

ing rate, thus avoiding their optimization in the training

phase. In this work, a first approach based on callbacks is

proposed, such that the learning rate is dynamically

adjusted after several iterations without a significant mar-

gin of improvement, a value that must be established in

advance. A LSTM architecture was trained with a total of

500 epochs applying variable learning rate. This network

obtained a MAPE of more than 10%. The same network

was tested optimizing the learning rate in the training

phase. The results were better, and for this reason, it was

decided to add the learning rate as a further hyperparameter

to be optimized.

Table 2 presents the hyper-parameters that have been

optimized in this work. In addition, it shows the minimum

and maximum values and the step of increase established

for each of the parameters. Dropout and learning rates do

not include steps because they do not follow any criteria,

but they are randomly generated numbers between the

minimum and maximum value for the dropout rate and

among the discrete values f0:1; 0:01; 0:001; 0:0001; 0g for

the learning rate.

In Keras-Tuner, the maximum number of trials has been

set to 10 and a maximum of 20 models for each trial. Thus,

a total of 200 models are trained in order to obtain the best

hyperparameters, and therefore the optimal network

architecture for the proposed deep LSTM. To reduce the

training time, a total of 30 periods and a lot size of 256 are

used in the optimization phase. Once the best of all models

has been obtained, the model is retrained with a total of 500

epochs. The model has been trained using the MAE metric

as the loss function.

In the CVOA approach, a total of 10 iterations have

been established. Due to the nature of the method, the

number of models tested for each iteration grows expo-

nentially. Thus, a total of 973 models have been tested. In

order to minimize the execution time, the optimization was

performed on a reduced subset with a total of 30 epochs.

Once the best model of this optimization was obtained, it

was re-trained with a total of 300 epochs and a batch size

of 256.

The network architectures of the two best models

obtained by the random and the CVOA search strategy are

summarized in Tables 3 and 4, respectively.

For the random search, the optimal deep learning model

is composed of a total of five layers: the input layer, three

hidden layers and the output layer. The input layer and the

three hidden layers are LSTM layers and the output layer is

one dense layer. The optimal dropout rates are applied on

hidden layers in order to avoid overfitting of the deep

LSTM network in its training. The optimal value of the

learning rate is 0.001. The input layer consists of 75

recurrent units and receives information from the training

set. A layer with 200 recurrent units is applied again on this

output. Once the first hidden layer has been applied, a

dropout rate of 0.4 is used, which implies randomly dis-

carding 40% of the recurrent cells. Once 40% of the neu-

rons have been discarded, the process is repeated with the

second and third LSTM hidden layers, where 275 recurrent

units with a dropout rate of 0.3 and 225 recurrent units with

a dropout rate of 0.2 are used, respectively. Finally, a dense

layer is applied to obtain the 24 values of the prediction

horizon (h ¼ 24) as output of the network.

For the CVOA method, the best model obtained is

composed of seven layers, all of them recurrent layers

except for the last one. The last layer corresponds to a

dense layer, used to provide the expected output. In this

model, no dropout rate is applied, so none of the neurons

computed throughout the network architecture are dis-

carded. The optimal value of the learning rate is 0.0001.

This model requires training more than two million

parameters, thus implying a high computational cost.

Table 5 shows the prediction errors in terms of MAE,

MAPE and RMSE obtained by the best LSTM model for

the test set using the two optimization strategies. It can be

seen that relative errors below 1.5% are reported, showing

the effectiveness of the LSTM to predict Spanish electricity

demand time series.

As can be seen in Table 5, the random strategy achieves

better results than the heuristic-based approach, so the

Table 2 Hyper-parameter search space for two optimization method

Parameter Random CVOA

Min. Max. Step Min. Max. Step

Hidden layers 1 10 1 1 12 1

Units per layer 50 300 25 25 300 25

Dropout rate 0 0.4 – 0 0.45 –

Learning rate 0.0001 0.1 – 0 0.1 –

Table 3 Architecture of the best LSTM model using random search

Layer (type) Number of units Number of parameters

LSTM 75 23,100

LSTM#1 200 220,800

Dropout#1 200 –

LSTM#2 275 523,600

Dropout#2 275 –

LSTM#3 225 450,900

Dropout#3 225 –

Dense 24 5424
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following analysis of results will focus on the random

hyperparameter optimization.

Figure 4 shows the evolution of the best model over 500

epochs in the training process. In particular, the MAE loss

function and the MSE metric for the training and validation

sets are presented. In the training phase, it can be observed

how the MAE and MSE decrease as the number of epochs

increases, thus showing the convergence of the model and

the absence of overfitting. A typical sign of overfitting is

shown when train loss is going down, but validation loss is

rising. However, Fig. 4a does not present this behavior,

since both train loss and validation loss decrease as the

epochs increase. Furthermore, it can be observed that the

loss function stabilizes in the validation set in the later

epochs, so it can be interpreted that the model will not

improve significantly if the number of epochs is further

increased.

From Figures 5 and 6, the uncertainty of the predictions

obtained by the best LSTM can be analyzed. Figure 5

presents the monthly average of the MAPE and standard

deviations of the predictions for months of the test set, that

is, from September 2013 to May 2016. The average of the

standard deviation for these months is 3.7%, reaching the

highest deviation of 5.8% in the month of August 2015.

Figure 6 presents the variability of MAPE values for the

months of the test set. It can be seen that there are very few

outliers errors and they do not represent a significant

number as 75% of all errors in every month are below 2%.

The months of greatest uncertainty correspond to the

months of April and May, which belong to the spring

season, which is a very unstable season from a meteoro-

logical point of view, and August, which is atypical due to

the fact that it is a common vacation month in Spain.

Figures 7 and 8 present the best and worst days pre-

dicted by the proposed LSTM model, achieving a MAE of

0.1990 MW and 730.5677 MW, respectively. The best day

corresponds to November 17, 2015, while the worst day

corresponds to December 24, 2014, which is a day marked

on the calendar as Christmas Eve. Moreover, the greatest

error is made at the end of the day, which corresponds to

the time slot where the celebration of that day is usual.

Figure 9 shows the hourly average of the forecasts

obtained by the LSTM when predicting the test set. It can

be seen that the model fits extremely well at all times of the

day.

Figure 10 presents the average of the absolute errors for

all months of the test set. It can be seen that the worst

predicted months correspond to June 2016 and September

2015 with a MAE of 561.8191 MW and 498.1631 MW,

respectively.

Table 4 Architecture of the best LSTM model using random search

Layer (type) Number of units Number of parameters

LSTM 175 123,900

LSTM#1 200 300,800

LSTM#2 25 22,600

LSTM#3 225 225,900

LSTM#4 175 280,700

LSTM#5 125 150,500

LSTM#6 225 315,900

LSTM#7 300 631,200

Dense 24 7224

Table 5 Prediction errors obtained by the LSTM for the test set

Metric LSTM?Random LSTM?CVOA

MAE (MW) 398.7652 435.9883

MAPE (%) 1.4472 1.5898

RMSE (MW) 545.8998 585.1958

(a) Loss

(b) MSE

Fig. 4 Evolution of the model training through 500 epochs
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In order to evaluate the performance of the LSTM, the

errors have been compared with those of other forecasting

methods published in [31]. In particular, a linear regression

(LR) as the state-of-art reference model, a regression tree

(DT) based on a greedy algorithm, two well-known

ensembles of trees such as gradient-boosted trees (GBT)

and random forest (RF) and a single-output deep feed-

forward neural network (DFFNN) for each value of the

prediction horizon. The optimal values of the hyperpa-

rameters obtained by a grid search in [15] have been used

Fig. 5 MAPE along with the standard deviation for each month of the test set

Fig. 6 Distribution of the MAPE values for each month of the test set
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for each of these methods. Specifically, a learning rate of

1E � 10 and 100 iterations for the gradient descent method

in the LR, one tree of depth 8 for DT, 5 and 100 trees of

depth 8 for GBT and RF, respectively, and layers ranging

from 2 to 5, and neurons between 40 and 100 for each

DFFNN. In the case of the TFT network, the learning rate

was set at 0.0794 and the hidden size and the hidden

continuous size were set to 32 and 8, respectively. Other

parameters that were also optimized are the attention head

size and the number of lstm layers, which were set to 2 and

1, correspondingly.

Table 6 shows the MAPE obtained by the LSTM, and

the above benchmark methods when predicting the test set.

It can be seen that the proposed LSTM using the random

search significantly improves the MAPE obtained by the

other forecasting models.

Fig. 7 Best daily prediction

Fig. 8 Worst daily prediction
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5 Conclusions

In this work, a deep neural network has been designed

specifically to predict electricity demand time series.

A LSTM network architecture has been proposed due to its

ability to deal with sequential data as its main characteristic

is memory for retaining temporal relationships in the long

term. A random search and the CVOA metaheuristic to find

the best values of the hyperparameters such as number of

layers, number of LSTM cells for layer, learning and

Fig. 9 Hourly average of the

predictions for test set

Fig. 10 Monthly average of the

absolute errors for the test set

Table 6 MAPE obtained by the

proposed LSTM, TFT, DFFN

and other machine learning

methods

MAPE (%)

LR 7.3395

DT 2.8783

GBT 2.7190

RF 2.2005

DFFN 1.6769

LSTM?CVOA 1.5898

TFT 1.5148

LSTM?Random 1.4472
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dropout rates have been carried out. Once these optimal

values are determined, the best LSTM network is applied

to the Spanish electricity demand from 2007 to 2016 with a

10-min frequency to obtain forecasts for the next 24 values.

Results report very accurate predictions reaching errors of

less than 1.5%. In addition, the proposed LSTM network

has obtained the smallest errors when compared with a

linear regression, a decision tree, two ensembles of trees

and two deep neural networks such as a deep feed-forward

neural network optimized using a random search and a TFT

optimized using a sampling algorithm.

Future work will be directed towards the fusion of dif-

ferent deep learning models to exploit the different

advantages of each model in order to obtain predictions for

different real-world problems.
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Troncoso A, Martinez-Álvarez F (2016) A Nearest Neighbours-

Based Algorithm for Big Time Series Data Forecasting. In:

Proceedings of the 11th International Conference on Hybrid

Artificial Intelligence Systems, pp. 174–185
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