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Abstract—In this paper, we present a deep multi-task learning
framework able to couple semantic segmentation and change de-
tection using fully convolutional long short-term memory (LSTM)
networks. In particular, we present a UNet-like architecture (L-
UNet) which models the temporal relationship of spatial feature
representations using integrated fully convolutional LSTM blocks
on top of every encoding level. In this way, the network is able
to capture the temporal relationship of spatial feature vectors
in all encoding levels without the need to downsample or flatten
them, forming an end-to-end trainable framework. Moreover,
we further enrich the L-UNet architecture with an additional
decoding branch that performs semantic segmentation on the
available semantic categories that are presented in the different
input dates, forming a multi-task framework. Different loss quan-
tities are also defined and combined together in a circular way to
boost the overall performance. The developed methodology has
been evaluated on three different datasets, i.e, the challenging
bi-temporal high-resolution ONERA Satellite Change Detection
(OSCD) Sentinel-2 dataset, the very high-resolution multitem-
poral dataset of the East Prefecture of Attica, Greece, and
lastly, the multitemporal very high-resolution SpaceNet7 dataset.
Promising quantitative and qualitative results demonstrated that
the synergy among the tasks can boost up the achieved per-
formances. In particular, the proposed multi-task framework
contributed to a significant decrease of false positive detections,
with F1 rate outperforming other state of the art methods by
at least 2.1% and 4.9% in the Attica VHR and SpaceNet7
dataset case respectively. Our models and code can be found
at: https://github.com/mpapadomanolaki/multi-task-L-UNet

Index Terms—satellite, remote sensing, change detection, ur-
ban, deep learning, multi-temporal, lstms

I. INTRODUCTION

THE diversity, volume and frequency of accessible satel-

lite data has contributed decisively to numerous studies

focusing on monitoring our environment based on multi-

temporal remote observations. Man-made and natural phenom-

ena keep transforming the planet’s structure, thus creating the

need for effective monitoring methods. Urban growth is one

of the most critical categories as the world’s population keeps

expanding in extremely fast rates occupying more and more of
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CentraleSupélec, Université Paris-Saclay, Gif-sur-Yvette, France e-mail: (see
mar.papadomanolaki@gmail.com).

M. Vakalopoulou is with MICS Laboratory, CentraleSupélec, Université
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the earth’s surface. The continuous spread of both residential

and commercial areas has resulted in several problems such as

the diminishing of rural zones, the destruction of wildlife as

well as increased levels of land, water and air contamination.

For that reason, the systematic observation of urban sprawl,

at high and very high spatial resolutions, becomes essential in

order to fully comprehend future tendencies, take precautions

and design more appropriate city infrastructures.

Indeed, identifying changes between satellite image pairs

has been an active field of research for a very long time [1],

[2], [3], [4] and for a wide variety of applications [5], [6],

[7], [8]. At first, differences among remote sensing data were

recognized mainly with manual, time-consuming approaches.

Today, a diverse range of supervised and unsupervised change

detection methods exist in the literature, like Markov Random

Fields [9], [10], kernels [11], graphical models [12], [13]

and Principal Component Analysis [14], [15]. Determining

the exact timing of the change based on time-series data

has also been an active field of research [16], [17], [18].

In addition, with the advances of machine learning during

the last years, more and more techniques based on neural

networks are emerging [19], [20], [21], [22], [23], [24], [25]

aiming to create robust systems that can successfully tackle

the change detection problem. Among the machine learning

approaches, deep learning architectures are the ones that have

captured most of the attention owing to state of the art on

numerous computer vision applications [26], [27], [28], [29]

including remote sensing [30], [31], [32], [33], [34], [35], [36],

[37]. Even though successful results have been achieved on

the remote sensing domain, the further development of deep

neural networks is still hindered owing to insufficient datasets

lacking multi-modal diverse information. Several supervised

and unsupervised frameworks have been proposed, however

the construction of robust networks is still an active research

area especially for models that fully exploit multi-temporal

information. Considering these, one can realize that much

progress remains to be made until deep networks can account

for fully operational and reliable tools for the remote sensing

applications [38]. Despite these obstacles, research can still

be conducted with the available resources, enriching the exist-

ing knowledge on several topics like semantic segmentation,

change detection etc.

Change detection is in most cases associated to sequential

data, making it necessary to evaluate temporal dynamics.

Modeling the temporal relationship among features has been

largely addressed by the computer vision community using
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Recurrent Neural Networks [39], [40] which have proven to

be very powerful for a wide range of applications like tracking

[41], action recognition [42], etc. Long Short-Term Memory

Networks (LSTMs) [43] are also really effective for such

problems [44], [45] since they moderate the vanishing gradient

problem [46] when dealing with long-term dependencies. The

combination of recurrent networks and deep learning architec-

tures has also been adopted for time series tasks [47], [48], [49]

in an attempt to produce more fruitful feature representations

by extracting both spatial and temporal information during the

learning process.

Recent remote sensing studies have considerably integrated

deep learning techniques towards more effective change de-

tection approaches. In [50], the authors propose a patch-based

framework examining two different architectures (Siamese

and Early Fusion) based on the ONERA Satellite Change

Detection bi-temporal dataset. In the Siamese case, the two

bi-temporal patches are processed by two distinct but identical

branches of convolutional layers with shared weights. Then,

the produced feature vectors are concatenated and fed to a

series of fully connected layers. Regarding the Early Fusion

case, the bi-temporal patch pairs are concatenated along the

channel dimension before being passed as a single input to

several convolutional and fully-connected layers.

In [51] the aformentioned network designs evolve into fully

convolutional versions according to a U-Net like framework.

More specifically, the fully convolutional Early Fusion (FC-

EF) structure downsamples the concatenated bi-temporal patch

pair through the encoder, while the decoder upsamples it back

to its original dimensions using also skip connections to enrich

the feature attributes. For the fully convolutional siamese

concatenation case (FC-Siam-Conc), the network is comprised

of two separate encoding branches with shared weights that

receive as input the bi-temporal pairs. In this approach, skip

connections link the decoding steps with the concatenation of

the two encoding parts’ outputs. Lastly, the third proposed

architecture also consists of two encoding branches only this

time skip connections associate the decoding parts with the

absolute difference of feature vectors that result from the

corresponding encoding parts (FC-Siam-Diff).

In [52], a recurrent network (ReCNN) is integrated into

a convolutional architecture taking advantage of both spatial

and temporal features under an end-to-end framework. Giving

some more details, 5x5 patch pairs taken from corresponding

pixels of bi-temporal images are processed by a succession

of parallel but identical dilated convolutional layers. Next, the

produced pair of feature vectors is passed through a recurrent

neural network which calculates the temporal dependency

between them. In the end, fully connected layers collect the

temporal volume and decide if a change has occurred. Apart

from change detection purposes, sequential satellite images

have also been exploited for land cover classification as in

[53], where multi-temporal Sentinel-2 agricultural parcels are

transformed to unordered sets of pixels. Each set is passed

through a pixel-set encoder resulting in a feature descriptor

which is then processed by a temporal attention network [54].

Land cover classification purposes are also handled in [55]

using convolutional recurrent layers which also mitigate the

problem of cloud coverage [56].

Multi-task learning schemes [57], [58] have also been

adopted when dealing with the change detection problem,

since complementary assignments can provide the models with

useful information during the training process, enhancing in

this way the performances. In [59], urban change detection is

coupled with the task of semantic segmentation on buildings

using a fully convolutional siamese network, while a focal

loss [60] is also utilized in order to ease the class imbalance

problem. [61] also employs the multi-task learning approach,

enhancing the architecture’s ability to identify changes by

performing simultaneously the task of land cover mapping.

Here the optimal results are derived when the network is

optimized in 2 phases; firstly the training process is focused

on the identification of the different land cover semantic

categories and secondly, the network is trained again for

change detection using the land cover semantic segmentation

weights as initialization. Finally, [62] combines multi-task

learning with transfer learning to balance the distributions of

labeled and non-labeled data. Specifically, an encoder-decoder

network performs change detection on the bitemporal labeled

input images, while the difference of unlabeled data is con-

currently reconstructed by the network enriching the extracted

features during the training procedure. After pretraining, fine-

tuning methods are exploited for unsupervised training on the

unlabeled data according to region-based and boundary-based

strategies. Although fully convolutional models have resulted

in very promising results regarding the semantic segmentation

task [63], [64], [65], little effort has been made to adjust such

frameworks for change detection related topics. Especially for

LSTMs, the processing of multi-dimensional matrices remains

a very challenging problem since in most cases satellite images

need to be flattened in order to be imported to such networks.

In order to tackle the aforementioned challenges, we have

designed, implemented and validated a deep multi-task learn-

ing framework able to couple semantic segmentation with fully

convolutional long short-term memory (LSTM) networks for

urban change detection applications. Regarding the fully con-

volutional LSTM structure, it has been designed by replacing

the gating mechanisms with convolutional layers. Our main

goal here was to combine spectral and spatial information,

while taking advantage of the temporal relationship among

the feature matrices avoiding the computationally expensive

task of multiplying high dimensional feature vectors. The

fully convolutional LSTM blocks are placed on top of each

encoding level of a UNet-like deep architecture, capturing in

this way temporal information for all the different resolution

levels. This current study is an extension of our previous

work [66] in which fully convolutional LSTMs were utilized

to semantically segment the OSCD dataset. Here, the novel

framework is further enriched by adding dropout layers to

the hidden states of the LSTM blocks. In addition, an extra

decoding branch is explored for the semantic segmentation of

the available categories, providing the network with fruitful

supplementary feature attributes during the training procedure.

An ensemble of losses combined in a circular way is also

employed for the optimization process. To sum up, this paper

makes the following contributions:
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• A UNet-like architecture (L-UNet) is proposed which

models the temporal relationship of spatial feature

representations using integrated fully convolutional

LSTM blocks on top of every encoding level. Each

LSTM block operates on the given sequential input by

defining the weights and biases of the gating mechanisms

as convolutional layers, thus avoiding the multiplication

of high dimensional matrices. In this way, the network

is able to capture the temporal relationship of spatial

feature vectors in all encoding levels without the need

to downsample or flatten them, creating an end-to-end

trainable framework.

• The L-UNet architecture has been further enriched

with an additional decoding branch that performs

semantic segmentation on the semantic categories that

are presented in the different available input dates

(multi-task L-UNet). Under this multi-task framework,

different loss quantities are also defined and combined

together in a circular way to boost the reported accuracy

of the change detection task.

The rest of this paper is outlined as follows. Section II

introduces the methodology along with the implementation

details, the benchmark datasets and the employed quantitative

metrics. Section III presents the experimental results and the

qualitative and quantitative assessment, the comparison with

the state of the art as well as the performance of the different

components. Finally, section IV concludes this paper.

II. MATERIALS AND METHODS

A. Recurrent Neural Networks

Recurrent neural networks are commonly employed for

problems which include time-dependent data as they are able

to capture the temporal relationship among sequential features.

In their simplest structure, such networks process data which

come in the form of X = [X1, X2, ..., XT ], where X ∈ R
N is

a list containing information related to t ∈ [1, ..., T ] different

time steps. In every time step t, the respective list element

Xt is multiplied element-wise with an associated weight

matrix Wx. At the same time, a representation of previous list

elements, also known as the ‘hidden state’, is multiplied with a

weight matrix Wh. The sum of these quantities is then passed

to a hyperbolic tangent function to produce the hidden state

Ht of the current time step. This chain process is described

as

Ht = tanh(Wx ·Xt +Wh ·Ht−1),

with Wx and Wh being shared across all time steps. It

should be noted here that biases are omitted for convenience

reasons. Since the weights are shared across all time steps, the

structures of such a network are very much likely to suffer

from the vanishing gradient problem [46]. More specifically,

during backpropagation the contributions of each time step

are summed up to the gradient, according to the chain rule

of differentiation for composite functions. This results in a

recursive derivative based on multiplicative dynamics that

tends to zero if the gradients become very small or if there are

several time steps [67]. Long Short-Term Memory Networks

(LSTMs), firstly proposed by Hochreiter and Schmidhuber

[43], mitigate this problem by introducing a memory cell,

most commonly known as the ‘cell state’, which exploits

gating functions in order to filter the flowing information more

efficiently. Unlike conventional RNNs which employ a single

hyperbolic tangent layer at each time step, LSTMs refine the

input volumes by introducing four interrelated layers known

also as gates. In particular, the additional operations involve

the forget (f ) and input (i) gates as follows

ft = σ(Wf · (Xt, Ht−1)),

it = σ(Wi · (Xt, Ht−1)),

where σ is the sigmoid function while Wf and Wi are

weight matrices employed for each gating unit. The forget gate

employs a sigmoid function in order to throw away ineffectual

feature representations while the input gate determines which

information part is going to be utilized for the update of the

cell state. Apart from f and i gates, every LSTM cell consists

also of the cell gate (ct) and the output gate (ot) defined as

ct = tanh(Wc · (Xt, Ht−1)),

ot = σ(Wo · (Xt, Ht−1)),

where tanh is the hyperbolic tangent function while Wc and

Wo are the corresponding weight matrices. The cell gate

utilizes the hyperbolic tangent function to regulate the data and

produce possible candidate cell state values, while the output

gate further filters the information determining the outcome of

the network. After that, the network is ready to create the new

cell state by forgetting irrelevant features from the previous

cell state and keeping valuable ones for the current cell state.

Ct = ft · Ct−1 + it · ct, (1)

Finally, the cell state is given to a hyperbolic tangent function

and it is also multiplied by the output gate result to produce

the hidden state of current time step t.

Ht = ot · tanh(Ct), (2)

By meticulously filtering the flowing information through the

gates, dependencies are maintained while the memory state is

more properly conserved. Apart from that, back propagation

Fig. (1) The process based on which the temporal relationship
among the spatial features is calculated. Cell state Ct

k, hidden state
Ht

k and input Xt
k are given as input to the LSTM at each time step

t until the final hidden state HT
k is produced, where T stands for the

number of employed dates and k for the encoding level.
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through time becomes more efficient since additive dynamics

are integrated into the recursive multiplicative derivatives that

take place when calculating the error gradients with regard

to the recurrent weights. In this way, the vanishing gradient

problem is less likely to appear.

B. L-UNet

Even if the previous formulations capture successfully

temporal relations on sequential datasets, they become a bit

inefficient, augmenting significant the number of parameters,

in the case of high dimensional data such as remote sensing

images I = [I1, I2, .., IT ], where It ∈ R
Ch×Hh×Wd with Ch

denoting the number of spectral channels and Hh,Wd the

spatial dimensions of image It. In such a case we would end up

with multiplications of immense multi-dimensional matrices,

making the training process computationally expensive and

hindering the model’s convergence.

To deal with this predicament, weight matrices Wf , Wi, Wc

and Wo have been replaced with single strided convolutional

layers comprised of 3x3 kernels and padding equal to one. In

the proposed UNet-like framework, temporal image volumes

of T different dates, each one in the form of (Bs × Ch ×
Hh × Wd), with Bs denoting the batchsize, are passed to

the model. Each of the It images is processed separately by

the encoding layers using shared convolutional weights, with

one LSTM network being placed on top of every encoding

level. Figure 1 provides a graphical description on how the

temporal relationship among spatial features is computed after

each encoding level k, with cell state and hidden state being

initialized as zero matrices of shape (Bs × Ch × Hh ×
Wd). Every illustrated box represents all the interior gating

operations that take place inside the LSTM cell. By replacing

the weight matrices with convolutional layers, each gating

mechanism can now be defined as

Gt
k = Φ(WGt

k

∗ (Xt
k, H

t−1
k )), (3)

where Gt
k is the forget, input, output or cell gate at time step

t of encoding level k, Φ is an activation function and WGt

k

is a convolutional layer applied on the concatenation of the

current input Xt
k and the previous hidden state Ht−1

k along

the channel dimension. The filtered information outcome is

then utilized for calculating the current cell state and hidden

state using equations 1 and 2. The final hidden state of every

encoding level k is collected in order to be later concatenated

with the output of the respective decoding part. In this way

the LSTM block acts as a skip connection for the L-UNet.

As far as optimization is concerned, we use a standard cross

entropy loss.

LossCE = −
n∑

l=0

ys,llog(ps,l) (4)

In the above expression, n is the number of classes, ys,l is a

binary indicator that shows if class l is the correct answer for

observation s, while ps,l holds the probability that observation

s belongs to class l. For the L-UNet case, the total loss for the

optimization of the change detection task can be described as
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additional segmentation branch

for multi-task L-UNet

2 x (Conv-BN-ReLU) MaxPool 2x2 Upsample + (Conv-BN-ReLU) Conv 1x1

Fig. (2) The proposed multi-task L-UNet architecture consisting of 5 encoding levels. The upper decoding branch is responsible for the
change detection task, concatenating the final hidden states of the corresponding LSTM blocks. The lower decoding branch performs semantic
segmentation on the available semantic labels which for our experiments include the building footprints for the first and the last employed
dates (t = 1 and t = T ), each time concatenating the corresponding spatial feature vector. If the lower decoding branch is removed, then
the architecture is considered a plain L-UNet as in [66].

.
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Lossch = −

n∑

l=0

ys,llog(pch(s,l)) (5)

pch(s,l) denotes the probability that observation s belongs to

class l, with l indicating each of the available change semantic

categories. Also, the variable n here indicates the different

types of change that may be available.

C. Multi-task L-UNet

Apart from calculating the temporal relationship among the

data, features related to the semantic segmentation of the

available categories can be also utilized by further customizing

the proposed scheme with an auxiliary decoding branch. This

branch performs semantic segmentation for the various input

dates, with skip connections concatenating the spatial feature

vectors of each encoding level. For our investigation, we chose

to perform the training process using only the semantic maps

of the first and the last date. This selection was based on

the fact that the available change ground truth of the datasets

describes the changes that have occured between the first and

the last date. However, it is possible to use more dates or

semantic categories depending on the application and the avail-

able computational resources. An overview of the proposed

architecture is presented in Figure 2, summarizing the multi-

task learning framework. It should be noted here that in our

experiments the semantic segmentation task is performed on

two different categories (buildings / non-buildings) since these

are the only available annotations that we have for the available

dates. However, our method is modular and it can be adjusted

to any number of available semantic and change categories, as

our formulation is based on multiclass cross entropy loss for

both segmentation and change detection tasks.

For the optimization of the proposed scheme we utilize an

ensemble of loss quantities based on cross entropy, however

any other kind of loss function can be employed. Five different

loss entities are used in total during the training process, which

are also combined together in a circular way in an attempt

to reduce false positive detections. In particular, we use cross

entropy loss Lossch as described in section II-B for the change

detection task, as well as two more loss quantities for the

building semantic maps of the first and the last available dates

Losstseg = −

m∑

l=0

ys,llog(p
t
seg(s,l)) (6)

In the above equation, t = {1, ..., T} and pt
seg(s,l) holds

the probability that observation s belongs to the l semantic

category for time t. In addition, cross entropy is employed

for the definition of one more loss, Lossch2, that focuses on

change detection by exploiting the features produced by the

last convolutional layer of the semantic segmentation decoding

branch. If we denote with F 1
seg and FT

seg these features for

the first and last date accordingly, then the features for the

change detection can be defined as Fch2 = FT
seg − F 1

seg . In

particular, we subtract the features of the first date from the

features of the last date. This way, Lossch2 corresponds to

a cross entropy loss similar to equation 5 using the resulting

Fch2 features. In the same manner, we calculate LossTseg2 by

combining the final features from the semantic segmentation

and change detection branches as FT
seg2 = F 1

seg+Fch. That is,

we add the features resulting from the semantic segmentation

of the first date (F 1
seg) with the features resulting from the

last convolutional layer of the change detection decoding

branch (Fch). As all these features are produced by the

different branches, they fully exploit the representations that

are produced by the multi-task L-UNet in a circular way. For

the final optimization of the network we use the weighted sum

of all these losses as

Total Loss = w1Lossch + w2Loss
1
seg + w3Loss

T
seg

+w4Lossch2 + w5Loss
T
seg2

(7)

where the sum of the weights (w1, w2, w3, w4, w5) is 1.

D. Datasets and Implementation Details

The conducted experiments were based on three multispec-

tral datasets; the high-resolution ONERA Satellite Change

Detection (OSCD), the very high-resolution Attica VHR and

the very high resolution SpaceNet7 dataset. We should high-

light here that for all datasets, the change detection task is

performed using 2 classes, namely change and no change.

As a result, in equation 5, n is equal to 2. For the Attica VHR

and the SpaceNet7 datasets, the semantic segmentation task

is performed for the first and the last available date using 2

classes, namely building and non-building. Hence, in equation

6, m = 2 and t = {1, T}. Further details for each of the

datasets are provided in the next paragraphs.

1) ONERA Satellite Change Detection (OSCD): The

OSCD dataset [50] consists of bitemporal Sentinel-2 satellite

images depicting 24 different cities around the world. 13 spec-

tral channels are available for each image pair while ground

truth information is related to urban change and provided for

14 cities. Our setup follows the submission system guidelines 1

1http://dase.grss-ieee.org

Abudhabi Beirut Chongqing Dubai Hong Kong Milano Paris Rio

2016/01/20 2015/08/20 2017/04/14 2015/12/11 2016/09/27 2016/12/28 2016/11/30 2016/04/24
2016/09/29 2015/12/08 2017/07/23 2016/06/08 2017/01/25 2017/05/27 2017/02/15 2017/02/18
2017/03/18 2016/04/26 2017/09/16 2016/11/05 2017/04/02 2017/08/15 2017/04/09 2017/05/09
2017/09/09 2017/04/21 2018/01/14 2017/06/03 2017/10/22 2017/11/18 2017/08/29 2017/07/28
2018/03/28 2017/10/03 2018/04/02 2018/03/30 2018/03/23 2018/01/22 2017/11/07 2017/10/11

TABLE (I) To augment the bi-temporal information of the publicly available ONERA Satellite Change Detection (OSCD) dataset and go
beyond image pairs, we collected and integrated three additional intermediate dates. In this Table the obtained dates are illustrated for some
of the dataset’s cities. From top to bottom, the first and last dates are the already provided ones by the OSCD dataset.
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(a) 20/01/2016 (b) 18/03/2017 (c) 28/03/2018 (d) Ground truth

(e) 16/09/2015 (f) 18/01/2017 (g) 15/10/2017 (h) Ground truth

(i) 09/02/2016 (j) 19/12/2017 (k) 09/03/2018 (l) Ground truth

Fig. (3) Indicative images from the OSCD training dataset for three different dates (in the form of dd/mm/yyyy) along with the
corresponding change ground truth. From top to bottom, the illustrated cities are: Abu Dhabi, Aguasclaras, Beihai.

where the 14 image pairs are used for training and the rest for

testing. We further enriched the OSCD dataset with additional

Sentinel-2 images depicting the provided cities in different

times. The additional dates include Sentinel-2 images captured

between the provided bitemporal dates, adapting them as much

as possible to cover different periods of the season. In Table I

we present the timestamps of Sentinel-2 images used for 8
different cities. It should be mentioned here that all extra

images were coregistered according to the provided OSCD

bi-temporal dataset. In Figure 3 a part of the training images

is illustrated for three different cities. The percentage of the

change pixels for the OSCD collection constitute only the

2.3% of the training dataset.

As far as the training process is concerned, patches of

size 32×32 were extracted with a stride of either 6 in case

change pixels were included, or 32 in case no change pixels

were contained exclusively. This strategy was applied as a

stratified sampling approach to enrich the training samples that

involve change features. In addition, more data augmentation

techniques mainly used by the computer vision community,

namely flipping in all possible angles proportional to 90
degrees, were implemented for patches whose number of

change pixels exceeded the threshold of 5% for the entire

patch. A total of approximately 32000 patches containing both

change and no change pixels resulted from the 14 training

cities while 8000 were intended for validation purposes. It

should be mentioned here that for the experiments we utilized

the 4 high resolution channels of Sentinel-2 satellite; Red,

Green, Blue and Near-InfraRed. Finally, this dataset was used

to evaluate the L-UNet architecture alone, since semantic

annotations are available only for the change samples. Thus,

with no semantic annotations for the different available dates,

the multi-task L-UNet can not be implemented.

In order to take advantage of the entire dataset, our final

predictions were produced by an ensemble of different trained

models following a cross-validation scheme. Giving some

more details, the training patches were divided into five equal

parts and the same model was optimized five times using all

possible combinations of the training dataset partitions. Then,

predictions for the testing images were produced from all five

models, with the final result being formulated by averaging

the five model outcomes. It should be mentioned here that

since the testing ground truth is not publicly available for this

dataset, the quantitative results are obtained by submitting our

predictions online 1.

2) Attica VHR: This dataset includes 5 multispectral very

high-resolution (VHR) images illustrating a 9 km2 region

in the East Prefecture of Attica, Greece. All images were

acquired by Quickbird and WorldView-2 between the years

of 2006 and 2011. Specifically, the images of 2006 and 2007

were captured by Quickbird, while images of 2009, 2010, and

2011 were captured by WorldView2 satellite. Every sample is

pansharpened and atmospherically corrected, while the ground

truth has been manually annotated by remote sensing experts

after an attentive and time-demanding photo-interpretation.

For this dataset, ground truth is provided for the building
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(a) 2006 (b) 2009 (c) 2011 (d) Ground truth

Fig. (4) Training data from the Attica VHR dataset for three different years along with the corresponding change ground truth.

changes as well as for the building footprints of every single

available date. It should be mentioned here that since we have

two different sensors, Quickbird images were resized to the

WorldView2 resolution which is approximately 8000 by 7000

pixels. In Figure 4 a training area for three different years

along with the corresponding change ground truth is presented.

The whole region was divided into 36 equal non-

overlapping subregions of approximate size 1100 by 1300

pixels; 28 of them were used for training, 4 for validation

and 4 for testing. For the training process, patches of size

64×64 were produced with a stride of either 32 in case change

pixels were included, or 64 in case the patch did not include

any change pixels at all. This strategy was applied as a data

augmentation approach to enrich the change semantic category

since it is extremely scarce compared to the no change one.

Specifically, the percentage of change pixels in relation to

the whole dataset is only 1.2%. In addition, patches whose

number of change pixels exceeded the threshold of 3% were

randomly flipped in all possible angles proportional to 90

degrees while their brightness, contrast and saturation levels

were also randomly altered. Approximately 20200 patches

containing both change and no change pixels were back

propagated through the models for training, while 4000 were

employed for validation.

3) SpaceNet7: This dataset was recently released for mul-

titemporal building detection in one of NeurIPS 2020 chal-

lenges. It consists of multi-temporal satellite image cubes at

4 meter resolution, illustrating regions from all six continents

of the earth. Red, Green, Blue and Near-Infra-Red are the

available spectral channels, while each image is approximately

1024 by 1024 pixels. Each region is depicted at different

months spanning across the years of 2018, 2019 and 2020,

with the largest data cube containing 24 dates. 60 image cubes

are intended for training, while 20 of them are used as test

and they are evaluated through an online submission process.

The ground truth for this dataset includes building footprints

for each of the available dates, with an aim to monitor urban

development. Competition participants are supposed to track

the building locations for all the different dates, showing in

this way the urban extension for each region.

In order to provide an additional evaluation benchmark for

this work, we employed the 60 available training image cubes

splitting them in 40 items for training, 10 items for validation

and 10 items for testing. We produced the change ground truth

by subtracting the building footprints of the first date from

the building footprints of the last date. In Figure 5 one can

observe a training sample from the SpaceNet7 dataset for four

different dates. It should be mentioned here that SpaceNet7

contains additional preprocessed versions of the available

RGB-NIR images where the clouds have been masked. For

our investigation however we used the raw images so that the

explored models can be evaluated on real conditions. In our

experiments, the time-series related methods were examined

using 10 dates. Patches of size 32×32 were produced with a

stride of either 16 in case change pixels were included, or 32

in case the patch did not include any change pixels at all.

Approximately 56000 patches were produced and intended

for training purposes while 10000 were used for validation.

Similarly to the previous datasets, change and no change

samples are again extremely uneven, with change samples

making up only 0.94% of the whole dataset.

(a) 01/2018 (b) 04/2018 (c) 04/2019 (d) 01/2020 (e) Ground truth

Fig. (5) Training data from the SpaceNet7 dataset for four different dates along with the corresponding change ground truth.
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E. Optimization

Hyperparameters were similar for both datasets, picking

Adam optimizer with a learning rate of 10−4. Batchsize was 32

for the OSCD dataset, 10 for the Attica VHR dataset and 2 for

the SpaceNet7 dataset. Early stopping criteria were employed

for every adopted approach in order to cease the training

process and pick the optimal network weights. All applied

methods needed less than 60 epochs to converge, while all ex-

periments were implemented using the PyTorch deep learning

library [68] on a single NVIDIA GeForce GTX TITAN with 12

GB of GPU memory. Each class was associated with a weight

inversely proportional to the total pixel number included in it

for the cross entropy loss. Furthermore, for the evaluation of

multi-task L-UNet, a grid search was employed to determine

the weight values for equation 7. Specifically, regarding the

Attica VHR dataset w1 was equal to 0.6 and the rest of the

weights equal to 0.1. In the SpaceNet7 case, w1 was equal to

0.8 while the rest of the weights were equal to 0.05. For the

OSCD dataset, as we have already mentioned we evaluated

only L-UNet since there is no available ground truth for the

semantic categories of the different dates. Hence, w1 was equal

to 1 while the rest of the weights were equal to 0. Lastly, it

should be clarified here that the employed ground truth in

each dataset case is related to the changes that have occured

between the first and the last date.

F. Quantitative Evaluation Metrics

To assess the quality of the results we employed five

different evaluation metrics: Precision, Recall, F1 score and

Balanced Accuracy. They can be derived from the calculated

TP (True Positives), FP (False Positives), TN (True Negatives)

and FN (False Negatives) values. If we have observations

belonging in l different categories, then TP is the number of

observations that have been correctly classified as l. FP is the

number of observations that have been wrongly classified as

l. TN is the number of observations that have been rightly

recognized as not belonging to l. Finally, FN represents the

observations that belong to l but the model has associated them

to another category.

Precision =
TP

TP + FP
Recall =

TP

TP + FN

F1 =
2 · Precision ·Recall

Precision+Recall

Balanced Accuracy =
TP

TP+FN
+ TN

TN+FP

2

III. EXPERIMENTAL RESULTS AND DISCUSSION

In this section we evaluate each of the components of

the proposed formulation benchmarking their performance.

Moreover, we provide comparison with state of the art deep

learning-based methods for change detection.

A. Comparison with state-of-the-art methods

Experiments were conducted using various number of dates,

while the results were compared with fully convolutional

networks [51], multi-task learning methods described in [59]

and [61] as well as methods proposed for time-series datasets

[55], [69]. All these literature methods were adjusted, using

the same backbone U-Net-like architecture to ensure reliable

comparison. In the following subsections, details are given for

every investigated framework.

1) Method in [59]: Based on a UNet-like architecture,

change detection and building semantic segmentation were

performed simultaneously on the input dates, using two differ-

ent decoding branches. In addition, two separate loss quantities

were employed; cross entropy for the building semantic maps

of the first and last date as well as the focal loss [60] for the

change detection task.

2) Method in [61]: For the method in [61], we firstly

trained the plain UNet-like model on the building semantic

segmentation task using the first and last available dates.

Then, using these weights as initialization, we trained the

network once again on the change detection task, using as skip

connections the absolute difference of the produced encoding

feature vectors.

3) FC-Siam-Conc: In the FC Siamese Concatenation case

[51] (FC-Siam-Conc), the encoder was comprised of several

encoding streams depending on the number of processed dates.

The streams had shared weights and identical configuration,

with all the feature vectors produced after each encoding step

being concatenated with the feature vector of the respective

decoding step.

4) FC-EF: As far as the FC Early Fusion [51] (FC-EF)

approach is concerned, the different temporal input volumes

were concatenated along the channel dimension before being

passed through the network. Skip connections concatenated

the encoding outputs with the corresponding decoding ones.

5) FC-Siam-Diff: The FC Siamese Difference method [51]

(FC-Siam-Diff) followed the same principles as FC-Siam-

Conc, although this time the concatenation of skip connections

was performed using the absolute difference of the resulting

encoding feature volumes.

We should mention here that FC-Siam-Conc and FC-Siam-

Diff were also evaluated in a multi-task setting, by adding a

supplementary decoding branch for the semantic segmentation

task. In the FC-EF case, semantic segmentation could not

be performed simultaneously with change detection since

the different dates are fused along the channel dimension

before being passed through the model, preventing in this way

the construction of separate spatial feature vectors for each

individual date.

6) LSTM [55]: In this work, sequential recurrent encoders

were employed to perform the task of land cover classification

based on image time-series. Specifically, the multi-temporal

volume was given as input to a convolutional layer, the output

of which was split into four equal parts, representing the four

different gates of the LSTM structure. This forward pass was

implemented in a bidirectional way, namely the input dates

were passed to the encoder in sequential and reverse order. The
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final cell states were concatenated and transformed to softmax-

normalized activations so that the prediction map could be

produced.

7) Method in [69]: Finally, the authors here have proposed

a network for crop type classification from multi-temporal

data. Specifically, the sequential input was passed through

a succession of convolutional layers which downsample and

upsample it back using also skip connections. The produced

feature vector was then given to a convolutional LSTM so

that the temporal relationship between the dates could be

computed.

B. Evaluation of the L-UNet

In this section, we evaluate the use of fully convolutional

LSTMs, integrated as skip connections on the UNet-based

architecture. To benchmark their performance we report results

on the three outlined datasets and we compare them with

other change detection approaches and in particular methods

proposed in [51], [55] and [69].

Looking at the results on the OSCD dataset (Table II), one

can observe that L-UNet and FC-EF methods result in higher

precision rates as additional temporal information is integrated,

demonstrating their important contribution on the lessening of

false positives. On the other hand, recall rates increase only

in the FC-Siam-Diff case which means that even though in

most of the methods the number of false positive detections

is ameliorated, false negative pixels continue to exist in a

large quantity. L-UNet produces the best precision and F1

Models Dates Precision Recall F1 BA Time(sec)

FC-Siam-Conc [51]

2 59.32 54.73 56.93 76.34 ≈ 4

3 62.51 50.12 55.63 74.24 ≈ 4

5 60.45 50.46 55.01 74.33 ≈ 5

FC-EF [51]

2 45.46 71.42 55.56 83.37 ≈ 3

3 53.05 59.74 56.20 78.43 ≈ 4

5 59.09 55.56 57.27 76.73 ≈ 5

FC-Siam-Diff [51]

2 60.86 54.07 57.26 76.09 ≈ 3

3 57.13 50.63 53.68 74.28 ≈ 4

5 55.04 57.92 56.44 77.67 ≈ 5

LSTM [55] 5 45.05 54.24 49.22 75.32 ≈ 5

Method in [69] 5 62.62 49.35 55.20 73.87 ≈ 7

Ours (L-UNet)

2 54.29 63.05 58.34 80.08 ≈ 4

3 63.49 55.01 58.94 76.64 ≈ 4

5 64.42 53.09 58.21 75.75 ≈ 5

TABLE (II) Quantitative evaluation of the proposed L-UNet on
the testing part of the OSCD dataset. Precision, recall and F1 rates
are associated to the change class, while Balanced Accuracy (BA) is
also provided. All the rows demonstate results using the RGB-NIR
bands with the last column indicating the time needed by each method
to produce annotations for a testing image of dimensions 550×550.

scores, meaning that the total number of false negative and

false positive change pixels is smaller compared to the rest

of the methods. The FC-EF bitemporal approach attains the

highest recall and balanced accuracy metrics when employing

2 dates. However, in this case the precision rate is lower than

50% indicating a high number of false positive values, which

is one of the main problems in change detection. In addition,

the highest F1 score for FC-EF is attained in the case of 5

dates and it is approximately 1.7% lower than L-UNet. As far

as time-series approaches are concerned, the method proposed

in [69] produces a higher F1 score compared to the LSTM

case [55]. Both approaches however result in lower accuracy

metrics compared to the rest of the methods, except the method

presented in [69] which attains the second best precision score,

after L-UNet.

Moreover, training and validation curves are presented in

Figure 6 for some of the investigated approaches using 5 dates.

All the evaluated methods converge, however, the training

of the proposed model seems to be smoother and more

stable without very high variations between the training and

validation performances.

We should mention here that since the ground truth for the

testing images is not publicly available, we could not provide a

thorough qualitative evaluation with proper illustration of TP,

FP and FN regions. Nevertheless, in Figure 7 some advantages

of the proposed L-UNet can be observed for the methods

that attained the highest F1 scores according to Table II.

In the first row there is an example where no change has

taken place between the different dates, however all compared

methods get disorientated by the existing cloud. In the case

of L-UNet we can see that even though false positive pixels

exist, they are less than the rest of the approaches. The

proposed method also seems to be robust on changes that are

not related to urbanization, reducing false positive detections.

Specifically, in the second row our formulation is the only

one that does not highlight agricultural changes as changed

areas. Finally, in the third row we can observe that L-UNet

has detected successfully urban changes, reporting less false

positives (regions indicated with red circles).

Additional experiments on the Attica VHR dataset for

the change detection task are presented in Table III. One

can observe that the highest recall and balanced accuracy

rates have been achieved by the LSTM [55] while the best

precision and F1 scores have been attained by the L-UNet

approach. In the LSTM [55] case however, the precision rate is

Fig. (6) Training and validation loss curves for different models trained with 5 dates on the OSCD dataset. From left to right: FC-Siam-
Conc, FC-EF, FC-Siam-Diff, proposed L-UNet.
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First Date Last Date

FC-Siam-Conc

2 dates

FC-Siam-Diff

2 dates

FC-EF

5 dates

L-UNet

3 dates

Method in [69]

5 dates

Fig. (7) Qualitative evaluation of the proposed L-UNet on zoomed testing regions of the OSCD dataset. 1st column: RGB images of the
first available date, 2nd column: RGB images of the last available date, 3rd column: FC-Siam-Conc with 2 dates, 4th column: FC-Siam-Diff
with 2 dates, 5th column: FC-EF with 5 dates, 6th column: L-UNet with 3 dates, 7th column: Method in [69] with 5 dates.

Models Dates Precision Recall F1 BA Time(sec)

FC-Siam-Conc [51]

2 42.47 56.52 48.49 78.00 ≈ 13

3 43.24 56.94 49.15 78.21 ≈ 14

5 46.62 59.03 52.09 79.28 ≈ 16

FC-EF [51]

2 41.10 55.53 47.24 77.49 ≈ 13

3 45.50 52.32 48.67 75.94 ≈ 14

5 43.85 52.95 47.97 76.24 ≈ 15

FC-Siam-Diff [51]

2 45.67 56.80 50.63 78.17 ≈ 13

3 46.90 54.18 50.28 76.88 ≈ 14

5 41.45 40.59 41.02 70.10 ≈ 15

LSTM [55] 5 31.42 68.04 42.98 83.51 ≈ 19

Method in [69] 5 40.63 61.22 48.84 80.31 ≈ 20

Ours (L-UNet)
2 47.25 55.21 50.92 77.39 ≈ 14

3 43.15 61.08 50.57 80.26 ≈ 15

5 47.96 60.19 53.38 79.87 ≈ 17

TABLE (III) Quantitative evaluation of the proposed L-UNet on
the testing part of Attica VHR dataset. Precision, recall and F1 rates
are associated to the change class, while Balanced Accuracy (BA)
is also provided. All the rows demonstrate results using the RGB-
NIR bands with the last column indicating the time needed by each
method to produce annotations for a testing image of dimensions
1200×1300.

exceptionally low, which means that false positive predictions

have dramatically rized. The much higher F1 score in the L-

UNet case demonstrates the finer balance of false positive and

false negative predictions, especially with the integration of

more temporal information. The FC-Siam-Conc model is also

boosted when additional dates are employed. FC-EF reports

poor results, especially if we consider that precision rates

remain always below 46% revealing the existence of many

false positive detections. Lastly, in the FC-Siam-Diff case,

even though F1 score reaches approximately the rate of 50%,

low precision levels reveal the large number of false positives.

In Figure 8, some qualitative outcomes are illustrated on

zoomed regions from the Attica VHR testing areas. Identifying

changes on buildings without additional information for the

building class is quite challenging and can be sensitive to

illumination changes. In the first row, one can notice that only

L-UNet with 5 dates identifies that the depicting images do

not contain any change related to the building class. Rooftop

alterations in the second row have disoriented FC-Siam-Diff

with 2 dates, FC-EF with 5 dates and the method in [69],

whereas FC-Siam-Conc with 5 dates and L-UNet with 5 dates

have addressed them successfully. Continuing with the third

row, we can observe that the proposed approach has correctly

identified that the swimming pool does not correspond to a

building change category, in contrast to the rest of the methods.

The total number of false negative and false positive pixels

seems to be lower for L-UNet in the fourth row, while in the

fifth row, the most successful detections have been attained

by FC-Siam-Conc with 5 dates and L-UNet with 5 dates.

In general, L-UNet and the addition of the LSTMs on the

different encoding levels, seem to capture semantic changes

in a better way.

As far as inference time is concerned, we can observe that

L-UNet does not require more time to produce annotations,

compared with the rest of the methods.

C. Evaluation of the multi-task L-UNet

In Table IV, we provide a comparison of the proposed multi-

task L-UNet with state of the art change detection methods.

In particular, we compare our architecture with the models in

[51] transformed into a multi-task setting, as well as the multi-

task methods in [61] and [59]. On the left part of Table IV, the

evaluation of the change detection task is demonstrated, while

on the right part, different metrics for the building semantic

segmentation are provided.

Starting with the methods described in [51], compared to

Table III one can observe that in the FC-Siam-Conc approach,

the integration of building semantic segmentation ameliorates
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2006 2011

FC-Siam-Conc

5 dates

FC-Siam-Diff

2 dates

FC-EF

5 dates

L-UNet

5 dates

Method in [69]

5 dates

Fig. (8) Qualitative evaluation of the proposed L-UNet on zoomed regions of the Attica VHR testing areas for the change detection task.
1st column: RGB images of 2006, 2nd column: RGB images of 2011, 3rd column: FC-Siam-Conc with 5 dates, 4th column: FC-Siam Diff
with 2 dates, 5th column: FC-EF with 5 dates, 6th column: L-UNet with 5 dates, 7th column: Method in [69] with 5 dates [Green: True
Positives, Black: True Negatives, Red: False Positives, Yellow: False Negatives]

the F1 score especially in the case of 5 dates where the

precision rate also rises above 50%. Regarding FC-Siam-Diff,

although recall rate and balanced accuracy reach their peak

value, precision rates remain very low which means that even

Building Change Detection Building Semantic Segmentation for 2006 -

Models Dates Precision Recall F1 BA Precision Recall F1 BA Time(sec)

multi-task

FC-Siam-Conc [51]

2 44.70 59.07 50.89 79.28 74.41 65.92 69.91 82.36 ≈ 14

3 46.96 57.74 51.79 78.65 75.15 63.14 68.63 81.02 ≈ 14

5 50.23 57.68 53.70 78.65 78.78 57.12 66.22 78.15 ≈ 15

multi-task

FC-Siam-Diff [51]

2 44.09 62.11 51.57 80.79 75.90 63.50 69.15 81.21 ≈ 14

3 45.18 59.72 51.44 79.61 75.39 64.00 69.23 81.44 ≈ 14

5 41.87 48.92 45.12 74.23 73.79 66.81 70.13 82.78 ≈ 15

Method in [59]
2 47.02 56.83 51.46 78.20 76.34 63.38 69.25 81.17 ≈ 14

5 40.67 58.96 48.14 79.19 75.11 63.77 68.98 81.32 ≈ 15

Method in [61]
2 51.97 49.61 50.76 74.65 74.41 66.07 70.00 82.43 ≈ 14

5 42.46 42.82 42.64 71.21 74.41 66.07 70.00 82.43 ≈ 15

Ours

multi-task L-UNet

2 44.53 61.39 51.62 80.44 67.38 75.54 71.23 86.80 ≈ 15

3 46.89 61.07 53.05 80.30 75.48 61.48 67.77 80.21 ≈ 15

5 52.42 59.68 55.82 79.65 76.08 61.52 68.03 80.24 ≈ 18

TABLE (IV) Quantitative evaluation of the proposed multi-task L-UNet on the testing part of Attica VHR dataset. On the left part, the
evaluation of the change detection task is presented, while on the right part, metrics for the building semantic segmentation are provided.
Precision, recall and F1 rates are associated to the change class as well as the building class for 2006, while Balanced Accuracy (BA) is
also provided. All the rows demonstrate results using the RGB-NIR bands with the last column indicating the time needed by each method
to produce annotations for a testing image of dimensions 1200×1300.
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2006 2011

multi-task

FC-Siam-Conc

5 dates

multi-task

FC-Siam-Diff

2 dates

Method in [59]

2 dates

multi-task

L-UNet

5 dates

Fig. (9) Qualitative evaluation of the proposed multi-task L-UNet on zoomed regions of the Attica VHR testing areas for the change
detection task. 1st column: RGB images of 2006, 2nd column: RGB images of 2011, 3rd column: multi-task FC-Siam-Conc with 5 dates,
4th column: multi-task FC-Siam Diff with 2 dates, 5th column: Method in [59] with 2 dates, 6th column: multi-task L-UNet with 5 dates
[Green: True Positives, Black: True Negatives, Red: False Positives, Yellow: False Negatives]

Fig. (10) Qualitative results of multi-task L-UNet with 5 dates, for a region of Attica VHR testing part. From left to right: RGB image
of 2006, RGB image of 2011, building predictions of 2006, building predictions of 2011, change predictions. [Green: True Positives, Black:
True Negatives, Red: False Positives, Yellow: False Negatives]

though false negative pixels are more limited, many false

positive pixels continue to exist.

Continuing with the bi-temporal multi-task learning ap-

proaches in [59], [61], it seems that they report higher preci-

sion rates compared with the corresponding bi-temporal cases

of [51], with [59] achieving a higher F1 score than [61]. As the

dates rise however, these methods result in lower performance,

as shown in the 5 dates case. The best performance concerning
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false positive rates is attained by the proposed multi-task

L-UNet. Specifically, the precision rate reaches 52.42% in

the case of 5 dates, exceeding the second highest precision

score of multi-task FC-Siam-Conc by approximately 2.2%.

In addition, the F1 score becomes equal to 55.82% which is

also 2.2% higher than the corresponding F1 rate in the multi-

task FC-Siam-Conc case. In the proposed approach the F1

score remains always above 50% which means that temporal

attributes in combination with the additional features of the

semantic segmentation task, boost greatly the performance of

the network attaining a more balanced total number of false

positive and false negative pixels. Looking back at Table III,

we can further realize the great benefits of the multi-task

setting for the L-UNet, since in Table IV precision and F1

rates have rised by 4.5% and 2.4% respectively.

Regarding semantic segmentation on buildings, the provided

accuracy metrics are related to the year of 2006. The highest

precision rate is achieved by multi-task FC-Siam-Conc with

5 dates, while the rest of the accuracy scores are better

in the case of multi-task L-UNet with 2 dates. In order to

assess the performance of multi-task L-UNet on the semantic

segmentation task and in particular on the building footprint

detection, we compare it with the performance of a standard

U-Net architecture that is commonly used for this problem.

The evaluation of the standard U-Net on the testing images

of 2006 resulted in 80.15%, 60.91%, 69.22% and 80.05%
for precision, recall, F1 and balanced accuracy respectively.

Looking at Table IV which summarises the evaluation for

the building footprints of 2006 using the multi-task networks,

Fig. (11) Qualitative evaluation on building predictions of 2006.
From top to bottom: RGB image of 2006, building semantic segmen-
tation with standard U-Net, multi-task L-UNet with 5 dates [Green:
True Positives, Black: True Negatives, Red: False Positives, Yellow:
False Negatives]

one can notice that all evaluation metrics except precision

can achieve higher values when combined with the change

detection task. This indicates that our formulation boosts the

performance of each individual task by fusing together useful

features from each problem. From a qualitative perspective, the

building predictions resulting from the multi-task framework

are quite similar with those resulting from the semantic

segmentation task alone. In Figure 11 we can observe building

predictions of 2006 using the multi-task L-UNet with 5 dates

as well as the standard U-Net.

As a whole, precision values never exceed the rate of 53%
for the change detection task, indicating the more challenging

nature of the complex very high resolution images compared

to the high resolution ones. Two are the principal reasons

that constitute this problem; registration and parallax errors

that perplex the learning procedure as well as the different

types of change that are included in the satellite images. The

variety of changes (e.g land use diversification, alterations

in vegetation) results in a wide range of spectral values for

certain areas where urban change does not take place. Another

fundamental problem which hinders the successful learning

process is that change and no change categories are greatly

disproportionate. For the Attica VHR dataset, the total number

of no change pixels for the training dataset is almost 85 times

larger than the number of change ones. Notwithstanding these

difficulties, the L-UNet method seems to fully exploit the

available information.

Continuing with the qualitative evaluation, in the first row

of Figure 9 one can notice that the proposed approach has

detected more accurately the additional building compared to

the rest of the methods. Continuing with the second row, we

can observe that even though all methods are confused by

certain rooftop illumination changes, the approaches employ-

ing 5 dates have resulted in less false positive values. The

third row demonstrates a case where the total number of false

positive and false negative pixels is lower for multi-task L-

UNet with 5 dates. Finally, the last two rows display instances

where methods utilizing additional dates deal with rooftop and

vegetation alterations in a more constructive way.

One problem that is evident from the qualitative evaluation

is that of inconsistent building boundaries. All employed

methods regardless of their level of success in identifying

the urban changes usually fail to provide accurate boundaries

resulting in many false positive pixels along the perimeter of

buildings. This issue can also be noticed in Figure 10 where

the building predictions of multi-task L-UNet for both 2006

and 2011 are provided along with the corresponding change

for a larger testing region of the Attica VHR dataset.

As far as the SpaceNet7 dataset is concerned, numerical

results of the conducted experiments are outlined in Table V.

Starting with the methods presented in [51], FC-Siam-Conc

has achieved the highest F1 score when employing 2 dates,

while FC-EF attained the best balanced accuracy in the case

of 10 dates. The corresponding multi-task results seem to be

better only for the FC-Siam-Conc case since F1 score has

raised from 44.80% to 45.16%. On the contrary, accuracy

metrics for FC-Siam-Diff did not benefit much neither from

the additional dates, nor from the multi-task setting. In the FC-
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Models Dates Precision Recall F1 BA Time(sec)

FC-Siam-Conc [51]
2 39.07 52.50 44.80 75.84 ≈ 8

10 42.22 38.97 40.53 69.22 ≈ 10

multi-task

FC-Siam-Conc [51]

2 34.41 55.78 42.56 77.36 ≈ 8

10 38.70 54.20 45.16 76.67 ≈ 10

FC-Siam-Diff [51]
2 29.74 48.00 36.73 73.43 ≈ 8

10 31.84 53.11 39.81 75.99 ≈ 10

multi-task

FC-Siam-Diff [51]

2 29.78 46.79 36.40 72.84 ≈ 8

10 22.66 24.59 23.59 61.88 ≈ 10

FC-EF [51]
2 42.96 42.68 42.82 71.06 ≈ 8

10 34.29 57.71 43.02 78.30 ≈ 10

Method in [59]
2 21.19 60.72 31.41 79.23 ≈ 8

10 26.15 60.99 36.61 79.63 ≈ 10

Method in [61]
2 24.19 61.84 34.77 79.95 ≈ 8

10 31.97 55.85 40.66 77.33 ≈ 10

LSTM [55] 10 38.75 48.76 43.18 74.00 ≈ 13

Method in [69] 10 34.87 54.72 42.59 76.85 ≈ 13

L-UNet
2 36.42 56.46 44.28 77.74 ≈ 9

10 44.83 53.82 48.92 76.58 ≈ 12

multi-task L-UNet
2 32.92 62.41 43.11 80.57 ≈ 9

10 47.71 52.75 50.11 76.09 ≈ 12

TABLE (V) Quantitative evaluation of L-UNet and multi-task L-
UNet on the testing part of SpaceNet7 dataset. Precision, recall and
F1 rates are associated to the change class, while Balanced Accuracy
(BA) is also provided. All the rows demonstrate results using the
RGB-NIR bands with the last column indicating the time needed by
each method to produce annotations for a testing image of dimensions
1024×1024.

EF case, all accuracy metrics except precision are ameliorated

when more dates are used. Continuing with the multi-task

approaches proposed in [59] and [61], one can notice that they

have produced many false positive values since the precision

rates are very low. The highest F1 score has resulted from

the method in [61] when utilizing 10 dates. Regarding the

LSTM [55] and the method in [69] which have been proposed

for time-series datasets, we can observe that accuracy rates

are quite similar between the two approaches. Compared with

the rest of the approaches, the time-series methods provide

better results than the multi-task ones [59], [61], but similar

results with the methods in [51]. Finally, L-UNet boosts the

precision and F1 rates when we take advantage of more dates.

In the mulit-task L-UNet framework, recall rate and balanced

accuracy reach the highest level in the case of 2 dates, while

precision and F1 scores become optimal in the case of 10

dates. As a whole, in this dataset the proposed multi-task L-

UNet outperforms all other methods for all accuracy metrics.

Especially, when more temporal information is integrated,

precision and F1 scores benefit the most by the suggested

method, exceeding the rest of the approaches by at least 4.9%.

As far as the results on building semantic segmentation are

concerned, we evaluated the multi-task models on the first date

of SpaceNet7. The highest F1 score and balanced accuracy

resulted from the [59] and were equal to 47.14% and 77.30%

respectively. The F1 score attained by the multi-task L-UNet

was similar and equal to 46.79% while the balanced accuracy

was 73.24%.

First Date Last Date

multi-task

FC-Siam-Conc

10 dates

FC-EF

10 dates

LSTM [55]

10 dates

multi-task

L-UNet

10 dates

Fig. (12) Qualitative evaluation of the proposed multi-task L-UNet on zoomed regions of the SpaceNet7 testing areas for the change
detection task. 1st column: RGB images of the first date, 2nd column: RGB images of the last date, 3rd column: multi-task FC-Siam-Conc
with 10 dates, 4th column: FC-EF with 10 dates, 5th column: LSTM [55] with 10 dates, 6th column: multi-task L-UNet with 10 dates
[Green: True Positives, Black: True Negatives, Red: False Positives, Yellow: False Negatives]
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Qualitative samples from the testing part of SpaceNet7

dataset are delineated in Figure 12 for some of the investigated

approaches. In the first row, we can see that even though all

methods produce false positive pixels between the building

boundaries, multi-task L-UNet has resulted in a more clear

separation of the buildings. In the second row, the LSTM

network [55] as well as the proposed multi-task L-UNet have

identified better the main building footprint of the image.

Regarding the third row, here the multi-task L-UNet has

managed to detect the construction of some small buildings.

Finally, the last row shows an example where the proposed

approach includes the less false positive pixels caused by

building shadows and illumination differences.

Regarding inference time, similarly to L-UNet, we can

notice that multi-task L-UNet does not need much more time

to produce annotations, compared with the rest of the methods.

D. Evaluation of the different segmentation and change de-

tection loss components

In this subsection, we conduct an ablation study and we

discuss the importance of each of the loss components for the

coupling of semantic segmentation and change detection tasks.

The performance of these components is reported on the Attica

VHR and SpaceNet7 datasets, on which annotations for both

the building class and the urban change class are available. For

this evaluation, we chose the best performing model (multi-

task L-UNet with 5 dates for the Attica VHR dataset, and

multi-task L-UNet with 10 dates for the SpaceNet7 dataset)

and trained it using different loss compositions, as described in

the caption of Figure 13. Giving some more details, Ablation1

represents multi-task L-UNet with 5 dates using 3 losses;

one for the change detection task and two for the building

semantic segmentation of the first and last available dates. In

Ablation2 the additional Lossch2 is employed, while in Abla-

Ablation1 Ablation2 Ablation3 Ablation4

45

50

55

60

43

47

46

52

61 61

57
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51

53

51

56

Precision Recall F1

Fig. (13) Accuracy metrics for multi-task L-UNet with 5 dates
using different combinations of losses. The provided metrics have
resulted from the testing part of Attica VHR dataset. Ablation1
[Lossch, Loss

1

seg, Loss
T
seg], Ablation2 [Lossch, Loss

1

seg, Loss
T
seg,

Lossch2], Ablation3 [Lossch, Loss
1

seg, Loss
T
seg, Loss

T
seg2], Abla-

tion4 [Lossch, Loss
1

seg, Loss
T
seg, Lossch2, Loss

T
seg2].

Ablation1 Ablation2 Ablation3 Ablation4
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Fig. (14) Accuracy metrics for multi-task L-UNet with 10 dates
using different combinations of losses. The provided metrics have
resulted from the testing part of SpaceNet7 dataset. Ablation1
[Lossch, Loss

1

seg, Loss
T
seg], Ablation2 [Lossch, Loss

1

seg, Loss
T
seg,

Lossch2], Ablation3 [Lossch, Loss
1

seg, Loss
T
seg, Loss

T
seg2], Abla-

tion4 [Lossch, Loss
1

seg, Loss
T
seg, Lossch2, Loss

T
seg2].

tion3 LossTseg2 is used as the additional fourth loss component.

Finally, Ablation4 includes all five losses as described in sec-

tion II-C, resulting to our proposed framework. After training

each of the different frameworks, the evaluation metrics were

calculated on the test part of Attica VHR and SpaceNet7

datasets. Looking at Figure 13 for the Attica VHR dataset, we

can observe that recall rates are almost the same in Ablation 1,

2 and 4, while in Ablation3 a lower value is attained, meaning

that the integration of LossTseg2 alone produces a deteriorated

result regarding false negative detections. As far as precision

rates are concerned, they increase from 43% to 47% when

Lossch2 or LossTseg2 are incorporated to the training process,

indicating the contribution of the additional circular losses to

the lessening of false positive values. The amelioration of false

positive pixels is even more obvious when both circular losses

are integrated, with precision rate reaching the value of 52%.

In this case, F1 score also reaches the highest level, becoming

equal to 56%.

Regarding the SpaceNet7 dataset, the ablation study results

are shown in Figure 14. In this setting, we can observe that

Ablation1 has a lower precision rate than Ablation4, meaning

that Lossch2 and LossTseg2 contribute to the lessening of false

positive detections. In Ablation2, the recall rate has rized

but precision has become very low, leading also to a lower

F1 score. Finally, in Ablation3 the results are similar with

Ablation4 but with a wider difference between the precision

and recall rates. Once again in this case, we notice that Abla-

tion4 results in the lowest number of false positive detections,

benefiting from the combination of all the loss components.

E. Discussion

Taking into consideration all the conducted experiments on

all the different datasets, we can draw some conclusions about

the investigated methods. Overall, the integration of LSTM
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networks as skip connections provides efficient aggregation

strategies able to encode information presented on two or more

temporal time stamps. Results indicated that such an approach

can outperform other aggregation functions like concatenation

and early fusion. Subtraction was the least efficient when

more temporal information was incorporated. In the case of

concatenation and subtraction, the multi-task setting can boost

the performances, however without exceeding the results of

the proposed formulation. In fact, our method attains the

highest precision and F1 rates in all dataset cases, while in the

SpaceNet7 case, all accuracy metrics reach the highest scores.

Concerning the compared bi-temporal multi-task methods,

they seem to have difficulty in processing successfully the ad-

ditional temporal information, whereas the suggested method

benefits greatly not only from the supplementary temporal

features as well as from the multi-task setting, outperforming

at the same time the rest of the time-series methods. Our

method reports stable and higher performance on the precision

rate and F1 score, contributing a lot to the lessening of false

positive detections.

Change detection applications suffer greatly from the nu-

merous false positive detections that arise from registration

errors, illumination differences, or other types of change

unrelated to the problem of interest. Hence, the development

of proper formulas that overcome this obstacle becomes nec-

essary. In the L-UNet case, the multi-task setting contributes

greatly to the amelioration of the results compared with the

single-task change detection framework. Specifically, precision

and F1 scores are greatly improved, benefiting both from the

supplementary segmentation features and the circular losses.

The superiority of the method has been proven in three com-

pletely different datasets with different spatial and temporal

resolutions. In the future, we would like to investigate also the

impact of more than two semantic categories to the proposed

formulation both in terms of model complexity and evaluation

performance.

One interesting direction that could be further investigated

in the multi-temporal setting is the integration of the time

that the change has occurred in the time series. Determining

the time point that an urban change firstly emerges can be

very useful for tracking purposes, providing more thorough

information for the frequency of urbanization. For our exper-

iments, the change annotation of all the employed datasets

describes the changes that have occurred between the first

and the last date without exploiting additional information

about the exact time of the change. Such a setup may lead

to concerns as to whether a deep learning based architecture

can handle in a constructive way this irregular distribution of

the changes through the different timestamps. Our extensive

experiments indicated that the proposed approach boosts the

performance when more dates are employed. This encourages

us to draw the conclusion that the integration of LSTMs in

the different encoding parts can provide meaningful temporal

feature vectors independent of the specific time of change.

Given a time-series dataset, if we want to determine the ex-

act point of change using LSTMs, one solution can be to pass

the multi-temporal images to a convolutional LSTM encoder

as in [55], and produce detection scores for every LSTM cell

output ht [70]. That is, passing ht to a convolutional layer

for classification and then apply a softmax function to extract

the semantic probability map. If we can properly optimize

such an approach, we will end up with distinct semantic

maps for every single date, meaning that we can compose

a tracking map and determine when each object appears for

the first time. Another interesting approach is to concentrate

on the internal activations of the LSTM cell, namely the

operations of the internal gates as well as the information

stored in the cell state. According to [71], the cell state is

able to keep important information across consecutive time

steps, concerning the changed parts of the current sequential

image pair. Hence, with proper fine-tuning it may be able to

recognize the changes after every time step. For example, in

[55] the activations of the cell state as well as the internal

gates have helped the model to identify and discard the cloud

regions, operating as filter mechanisms.

IV. CONCLUSION

In this paper, a novel multi-task learning framework for

urban change detection is proposed where fully convolutional

LSTM blocks are integrated on top of every encoding level of

a U-Net like deep architecture, while an additional decoding

branch is utilized for the semantic segmentation of the first and

last employed dates. By using such a framework, temporal

relationships are calculated for feature vectors of various

resolutions without the need to downsample or flatten them.

At the same time, the extra decoder provides supplementary

information concerning semantic categories. Quantitative and

qualitative analyses indicated that even though the problem

of change detection can be very challenging due to illumi-

nation differences and registration errors, more constrained

formulations and multi-task deep learning frameworks based

on LSTMs can provide very good tools for it. In fact, the

proposed method contributed greatly to the lessening of false

positive values boosting significantly the precision and F1

rates in all dataset cases. In the future, we plan to further

evolve the proposed formula by performing simultaneously

image registration and change detection, in order to eliminate

parallax errors that tend to disorientate the learning process

during training. In addition, we will explore ways to determine

the change timestamps based on the operations of the LSTM

networks. Finally, we will try to ameliorate and preserve the

shape of the detected objects.
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