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together representing roughly 60% of pneumonia deaths in 
kids younger than five years. In India, it is assessed that in 
2013 pneumococcus caused more than 60,000 pneumonia 
deaths, and Hib caused more than 35,000 pneumonia deaths. 
In addition to this high mortality burden, these two bacteria 
are responsible for a large number of instances of pneumonia 
and a considerable number of cases of crippling meningitis 
in kids each year (Walker et al. 2013; O’brien, K. L., Wolf-
son, L. J., Watt, J. P., Henkle, E., Deloria-Knoll, M., McCall, 
N. & Cherian, T. 2009; Watt et al. 2009). Arising microbes 
like Burkholderiapseudomallei are progressively perceived 
as a significant reason for Community-Acquired Pneumonia 
(CAP) in Southeast Asian countries (Currie et al. 2001).

Pneumonia continued to be the primary source of fatal-
ity in children worldwide, with India representing 20% of 
deaths and a higher possibility of childhood pneumonia as 
compared to other countries (McAllister et al. 2019; Simon-
yan and Zisserman 2014). India adds to roughly 23% of 
worldwide and 36 percent of World Health Organisation’s 
pneumonia patients under five years (Sharma et al. 2013). 
Reliable evaluations of the illness burden are not accessible, 
especially for the adult populace. The meagre information 
for grown-ups comes from tertiary consideration showing 
medical clinics utilizing cross-sectional studies (Guan et al. 
2018). A study from Mumbai discovered that Streptococ-
cus pneumonia and Gram-negative bacteria were more com-
mon in serious pneumonia, and that 19% of all patients had 
extreme CAP (SCAP) (Dagaonkar et al. 2012). A new study 
highlights the significance of pneumococci in the obtrusive 
pneumococcal infections in India.

Hib antibodies are currently being utilized in more than 
185 nations worldwide (Loharikar et al. 2016). The illness 
has been practically disposed of in industrialized nations, 
where immunization has been for more than 20 years 
(Toğaçar et al. 2020; Akter, et al. 2021). In non-industrial 

Abstract Pneumonia among children is a leading cause 
of death in India, and it gains a lot of researchers’ attention 
to develop early detection tools. Due to a lack of the num-
ber of radiologists, especially in rural India, the traditional 
method of diagnosing pneumonia does not address the real-
time issues related to early stages. This paper presents a 
deep learning model, NASNet (Neural Architecture Search 
Network), pre-trained on ImageNet to predict pneumonia 
very early stage through chest x-rays of patients. With 2.6 
million trainable parameters, the proposed model can run 
even on a mobile phone with good precision, recall, and an 
F1 score to detect pneumonia. This approach thus proves 
to be significantly better than the current state-of-the-art 
models. It can also help trained radiologists to get a second 
opinion/ validation of pneumonia diagnosis.
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1 Introduction

Pneumonia is an intense respiratory infection that causes 
irritation or liquid in the lungs. It is caused by various infec-
tious agents, including viruses, fungi, and bacteria. Two of 
the most widely recognized reasons for severe bacterial 
pneumonia are Haemophilus influenzae type b and Strep-
tococcus pneumonia. Pneumococcus and Hib are the pri-
mary sources of severe bacterial pneumonia in youngsters, 
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countries that have brought the antibody into their public 
inoculation programs, Hib pneumonia and meningitis have 
been radically reduced (Watt et al. 2009). Pneumococcal 
antibodies are being utilized in more than 115 countries 
(Record 2006). There has been a practically complete end 
of pneumococcal infection in nations where pneumococ-
cal immunizations have been presented. Immunization has 
also been displayed to diminish the sickness among unvac-
cinated children and adults in a populace – an impact of 
"herd immunity" (Feikin, D. R., Kagucia, E. W., Loo, J. 
D., Link-Gelles, R., Puhan, M. A., Cherian, T., … & Sero-
type Replacement Study Group 2013; Davis et al. 2013).
In 2011, the Government of India presented the Hib-con-
taining pentavalent antibody in a staged way. The pentava-
lent immunization gives assurance against five infections: 
diphtheria, lockjaw, pertussis, hepatitis B, and Hib. Some-
where in the range of 2011 and 2013, the antibody was 
presented in 14 states and association regions. In 2013, 
the National Technical Advisory Group on Immunization 
suggested the public scale-up of the vaccine.

Community-Acquired Pneumonia, CAP, is the pri-
mary source of mortality and dreariness with consider-
able clinical and financial effects. Albeit a few pathogens 
are believed to cause the infection, information on the 
pathogen circulation is not consistently addressed across 
the nations. A few factors like topographical locale, age, 
and study period impact the frequency of CAP in adults. 
Nonetheless, solid and reliable information over a long 
period is accessible from a few nations. Reports suggest 
that almost 2.4 million deaths happen among all ages 
because of Lower Respiratory Tract Infections (LRTIs) 
(Walker et al. 2013). Sub-Saharan Africa, Southeast Asia, 
and South Asia have recorded higher casualties. In 2016, 
197.05 million cases of pneumococcal pneumonia were 
accounted for worldwide, resulting in the primary source 
of LRTI related morbidity and mortality.

Universally, mortality because of LRTI remained 
unchanged from 2005 to 2015, even though age-normal-
ized death rates fell by 19.5 percent (Walker et al. 2013). 
Consistent expansion in the hospitalization rates, includ-
ing Intensive Care Units (ICU) because of Community-
Acquired Pneumonia, particularly in aged people, is 
observed (http:, , www. who. int, maternal_child_adoles-
cent, epidemiology, gappd-monitoring, en, . xxxx; Nal-
luri and Sasikala 2020). The case casualty rate goes from 
2 to 20 percent, up to 50 percent in patients admitted to 
ICUs, and differs between medical care settings, geologi-
cal area, patient classes, and age (Rajpurkar et al. 2017). 
This account survey centers around the bacterial CAP in 
immune-competent adults with particular importance on 
existing modalities and holes in diagnostics, ideal usage 
of testing systems, and individualized treatment choices 
with attention to Indian situations.

1.1   Background

Researchers have been working on predicting a patient’s 
pneumonia using machine learning and deep learning tech-
niques on CT scans, X-Rays, and Vocal data. Some stud-
ies have approached the solution with a machine learning 
model, whereas others have trained deep learning models 
on massive datasets. As a result of this extensive research, 
significant progress has been made in predicting pneu-
monia. In this paper, we continue the research to predict 
pneumonia more efficiently and reliably.

M. Jamshidi et al. (Xu et al. 2015) present AI-based 
techniques to detect COVID-19 using various approaches 
such as Extreme Machine Learning (ELM), Long/Short 
Term Memory (LSTM), including Generative Adversarial 
Networks (GANs). Research has been done to compare 
various approaches to predict COVID-19 infection (Anthi-
mopoulos et al. 2016). The models presented by Alakus, 
T. B., & Turkoglu (Anthimopoulos et al. 2016) achieve a 
precision of 86.75% and an accuracy of 86.66% to predict 
the likelihood of COVID-19 in a patient. The models were 
tested on 18 laboratory findings from 600 patients.

Yujin Oh, Sangjoon Park, and Jong Chul Ye (He et al. 
2016) presents an interesting approach to predict COVID-
19 with CXR using limited training datasets. Their pro-
posed method is influenced by analyzing potential imaging 
biological markers of CXR radiographs. (He et al. 2016) 
It uses segmented mask for data pre-processing with the 
pre-trained model on ResNet-18, achieving an of 93.2%. 
Daniel G. Pankratz et  al. (Pankratz et  al. 2017) use a 
Logistic Regression model to identify Usual Interstitial 
Pneumonia by training the model with parameters such as 
age, smoking history, etc. Exome-enriched RNA sequenc-
ing was performed on 233 TBBs. The model is trained to 
classify a given record as UIP or Non-UIP (Pankratz et al. 
2017). This study was done on only 84 subjects and tested 
on 31 test subjects and achieved an AUC of 0.86 with 
a specificity of 86% and sensitivity of 63%. Alakus and 
Turkoglu 2020 utilized scan of the multinational dataset 
to predict COVID-19 pneumonia using 3D models and 
hybrid 3D models on 1387 scans achieving an accuracy 
of 90% with a specificity of 84%. Devulapalli, et al. 2021; 
Oh et al. Aug. 2020 presents a custom deep learning model 
to differentiate between CAP and other lung ailments. The 
model, COVNet, trained on 4352 CT scans from 3322 
patients and achieves a specificity of 90%.

SARS-Net, a new model with convolutional layers and 
inception blocks with one of its variations utilizing a con-
volutional graph network, has been introduced in Panwar, 
et al. (2020). SARS-Net aims to detect COVID-19 and is 
trained on the COVIDx dataset consisting of only 13,975 
CXR images. They utilized 90% of the dataset for training 
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and the rest for testing, achieving an accuracy of 97.6% 
and sensitivity of 92.9%.

Pranav Rajpurkar et al. designed a convolutional neu-
ral network that can detect pneumonia and 14 other lungs 
related diseases called CheXNet. It is a 121-layer convolu-
tional neural network trained on the ChestX-ray14 dataset. 
This dataset contains little more than 100,000 images of 
Chest X-Ray frontal-view with 14 different types of lung 
diseases, four Stanford radiologists annotated a test set 
with which the performance of CheXNet was evaluated, 
and this exceeded the average radiologist performance of 
the F1-score metric. This model performed better than the 
models proposed respectively by Wahl et al. (2020); Zhao 
et al. 2020).

A group of researchers from India (Loharikar et al. 2016) 
used various combinations of CNNs for feature extrac-
tion and machine learning models for classification on a 
set of 112,000 Chest X-Rays. The images were resized to 
224 × 224, and the combination of DenseNet169 with the 
Support Vector Machine for classification turned out to be 
the best within the scope of their research. They achieved 
an AUC of 80%.

Reviewing many research papers on pneumonia detection 
methods (Record 2006) with artificial intelligence revealed 
that Chest X-Rays are subjected to highly complex process-
ing using edge detection, Gaussian filters, and morphologi-
cal operations to detect meaningful features. Such features 
are used in various classification models, such as Support 
Vector Machines, ResNet, and Random Forest. Many have 
tried modern deep learning models like DenseNet to achieve 
decent results. But due to the high complexity of models 
because of the large number of parameters, training such 
models on massive datasets may be impractical. Perfor-
mance metrics such as precision and recall are critical com-
pared to the model’s accuracy due to the dire consequences 
of false negatives (http:, , www. who. int, maternal_child_
adolescent, epidemiology, gappd-monitoring, en, . xxxx).

With a risk factor-based modeling approach, The Lancet 
Child and Adolescent Health (Wahl et al. 2020) introduces 
a detailed assessment of state-explicit pneumonia rates in 
kids in India. The authors assessed the change in pneumonia 
over the long run by figuring the impact of fleeting changes 
in the pervasiveness of notable pneumonia hazard factors 
like hunger, deficient vaccination, and openness to indoor 
air contamination on the rate.

A model to detect thorax diseases with lateral and fron-
tal chest X-rays was modelled by Rubin et al. (Rubin et al. 
2018). For the recognition of images on a large scale, 
MIMIC-CXR data is used. The dataset was split into train-
ing, testing, and validation sets as 70%, 20%, and 10%, 
respectively. To improve the overall performance of model, 
data augmentation was used, which made the model robust. 
Their DualNetConvNet model achieved average AUC 

(Area Under Curve) of 0.721 and 0.6882 for PA and AP, 
respectively.

To classify pulmonary tuberculosis, a deep CNN model 
was developed by Lakhani et al. (Kaushik et al. 2020). To 
classify chest X-rays, they used transfer learning models of 
AlexNet and GoogleNet. The dataset was split into training, 
testing, and validation sets as 70%, 15%, and 15%, respec-
tively. With pre-processing and data Augmentation, they 
achieved an AUC of 0.99. The model achieved a precision 
of 100% and a recall of 97.3%.

Xu et al. (Devulapalli, et al. 2021) developed a deep 
learning CNN model for classifying and dividing cerebrum 
tumor MRIs. They employed various approaches such as 
feature selection and data augmentation and achieved a clas-
sification accuracy of 89.7%—Guan et al. (Guan et al. 2018) 
designed an AG-CNN model to recognize thorax ailments. 
The chest X-ray14 dataset was used to detect thorax disease 
from chest X-ray images. Attention-guided global and local 
branch CNN was used for classification purposes. An AUC 
of 0.868 was achieved by them and was better than other 
models.

Anthimopoulos et al. (Devulapalli and Krishnan 2021) 
developed a convolution neural network with five convolu-
tion layers to detect lung disease patterns in a dataset with 
15,000 images belonging to 7 different types of diseases. 
Contracting many models, they used average pooling, 
leaky ReLU, and three fully connected layers. This model 
accomplished a classification-accuracy of nearly 85.1%. 
Another approach has been presented by Panwar, Harsh, 
et al. (Zhao et al. 2020) which detects COVID-19 using 
nConvNet(Krizhevsky et al. 2012). They use the data aug-
mentation techniques such as rotation range and vertical flip 
along with RGB re-ordering to generate augmented data. 
With this approach, they achieved an error rate of 21.43% 
and an overall accuracy of 78.57%.

The above Related work discussed various deep learn-
ing architectures on different datasets. However, the best 
model with specific domain skills can be done by training 
optimized architecture search strategies. This paper proposes 
a novel approach to detect pneumonia using various deep 
learning models. We present that NASNet achieves state-
of-the-art results in terms of precision and recall and, at the 
same time, is also very efficient regarding computing power.

2  Methodology

Pneumonia is a complex problem to solve because many 
other diseases resemble pneumonia. A machine learning 
model needs a well-processed and quality dataset to learn 
and understand very minute details of data. To properly 
distinguish between pneumonia and non-pneumonia, this 
paper uses a publicly available dataset released by Wang 
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et al. (Nalluri and Sasikala 2020), which includes images of 
14 different diseases similar to pneumonia. As mentioned 
in the pre-processing data section, multiple pre-processing 
steps are performed before using it to train the model.

Figure 6 describes that the input image will be fed to the 
NASNET model for matching with the trained image data 
available in the search space. Further, the search strategy 
will be selected based on the precision of the deep architec-
ture utilized in the training process. The best result will be 
selected as the predicted outcome of the query image. Vari-
ous models trained for NASNET have been discussed below.

2.1  Dataset description

This dataset contains 112,200 Chest X Rays of 30,800 
patients. Each record in this dataset is labeled with 14 types 
of thoracic disease labels. For our specific task of identifying 
pneumonia, we’ve labeled all pneumonia-positive images as 
one and the rest as 0.

We split the dataset between training, testing, and vali-
dation data so that each contains an equal number of posi-
tive and negative pneumonia samples. This ensured that the 
model didn’t output wrong predictions because of skewed 
data. Since the dataset is skewed, we also used weights to 
output while training the model.

The training dataset contains data from 27,833 patients 
with 97,748 images, whereas validation data includes 7442 
images of 1763 patients and the test dataset contains 531 
images from 400 patients. We made sure that there was no 
overlap in training, testing, and validation datasets.

2.2  Data pre‑processing

We re-scaled the images (Figs. 1, 2) to have a dimension 
of 224 × 224x3. The data is normalized with min–max nor-
malization, as shown in Eq. (1)Mean and standard deviation 

data in ImageNet are used to standardize the data as shown 
in Eq. (2). To increase the data size of pneumonia cases, data 
augmentation, such as horizontal and vertical flip wear, was 
applied. Augmentation doubled the true positives of data and 
thus decreased the skewness of data.

where.
min: 0, the minimum value of pixel in a specific dimen-

sion of image in the entire dataset.
max: 255, the max value of a pixel in a specific dimension 

of image in the entire dataset.
� : mean of ImageNet.
σ: standard deviation of ImageNet.
� : Means[R,G,B]: [0.485, 0.456, 0.406].
σ: standard-deviations[R,G,B]: [0.229, 0.224, 0.225].
Figure 1 is the normal chest X-ray image and Fig. 2 is 

the Pneumonia chest X-ray. The Fig. 2 has more fluid in the 
image around the lungs.

3  CNN architecture

Convolutional Neural Networks are feedforward neural net-
works with multiple convolutional, activation, pooling, flat-
tening, and fully-connected layers. In CNN, the input is read 
as a matrix or an array. A Convolutional filter is applied on 
the matrix, which slides over the input, performs element-
wise multiplication, and stores the sum in another array 
called feature-map. Usually, A 3xN filter is applied over the 

(1)x =
x − min

max − min

(2)x =
(x − �)

�

Fig. 1  Normal chest X-ray

Fig. 2  Pneumonia chest X-Ray
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input of shape AxBxN, resulting in a 2D feature map. N 
represents the number of channels in the input; for example, 
RGB image has three channels. Similarly, multiple feature 
maps are created by applying different filters. All of them are 
stacked together, resulting in a K-dimensional feature map 
where K is the number of filters involved.

3.1  Convolution layer

The first ever convolutional neural network was used by 
Yann LeCunn, the inventor of CNNs, on images to detect 
zip codes. In 2012, in the ImageNet competition ILSVRC, 
Krizhevsky et al. (Toğaçar et al. 2020) used a five-layered 
CNN model followed by max-pooling and fully connected 
layers. This architecture had 60 million parameters and used 
dropout to prevent overfitting and make the model robust. 
This model achieved a top-five error rate of 17% in 2014. 
This paper also uses convolutional layers with multiple filter 
sizes to detect minute data details. A highly accurate model 
with minimal filter size acquiring accuracy of 92.6% was 
developed by Simoyan et al. (Akter, et al. 2021).

3.2  4.2 Activation function

Activation functions are used to make the model learn non-
linear patterns in the data and hence become very important 
in deep learning. In this paper, we make the use of ReLU 
(Rectified.

Linear Unit (Rubin et al. 2018) and softmax activation 
function. Mathematically, ReLU function is stated as below 
Eq. (3).

3.3  Rectified liner unit (ReLU)

In the last dense layer of the models, activation function 
“sigmoid” Eq. (4) is used as presented in this paper. A prob-
ability distribution function is created by normalizing this 
activation function. Sigmoid is used in two-class classifica-
tion models, in our case Pneumonia and Non-Pneumonia.

3.4  Sigmoid

3.5  Pooling layer

In much famous modern deep learning architecture, a 
convolutional layer is followed by a pooling layer. This 
layer ensures that the model can remember the essential 

(3)f (x) = max(0, x)

(4)Sigmoidfunctionequation�(x) =
1

1 + e−x

information from the input. It does that by picking up the 
pixel with the highest value in a subset of the matrix, usually 
2 × 2. This layer also helps reduce the model’s complexity 
and allows the model to train faster. The models presented 
in this paper use max-pooling (Fig. 3) techniques it helps 
recognize essential features of the input. We have also used 
max pooling to prevent the model from over-fitting.

3.6  Flattening layer and fully connected layers

This layer, shown in (Fig. 4) usually comes at the end of 
convolution and pooling layers and transforms the input of 
size AxBxC into a column vector of size A*B*C. Each fully 
connected layer is followed by either another fully connected 
layer with fewer parameters or an activation function such 
as sigmoid or softmax. Each node of a fully connected layer 
is connected to all the nodes of the next layer. Hence most 
of the convolutional neural network parameters are found 
in fully connected layers. Feature extraction is done by lay-
ers which means that they extract useful information from 
data, and based on that data, a prediction is made by the 
network (Devulapalli, et al. 2021; Devulapalli and Krishnan 
2021). After forward propagation, a cost function is cal-
culated, which essentially estimates how well one model 
performs. After assessing the cost, backpropagation is initi-
ated, which corrects the weights and biases introduced in 
the model based on the cost. This interaction is repeated 
until the network accomplishes optimum performance. An 

Fig. 3  Max pooling

Fig. 4  Flattening to fully connected layer
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optimizer such as SGD (Stochastic Gradient Descent) and 
ADAM uses the backpropagation process.

3.7  Reducing overfitting

Due to skewed data, that is, having many records with no 
pneumonia, the machine learning model may become better 
at just the training data and may not become robust to any 
other data. To prevent this possibility and make the model 
robust and prevent the vanishing gradient problem, We used 
the dropout layer in our model with a value of 0.3, randomly 
turning on and off a few neurons in the network. The value 
of 0.3 signifies that 30% of any random set of neurons will 
be off during a forward pass. This forces the model to learn 
a different path to reach the output and thereby increases the 
changes of the model to predict the outcome correctly. Data 
Augmentation techniques such as horizontal and vertical flip 
also helped us reduce the overfitting and generalizing better 
over test data. Visual representation of dropout as shown in 
(Fig. 5).

4  Transfer learning and fine‑tuning

As the name suggests, transfer learning is transferring learn-
ing from one model to another. With transfer learning, it 
is possible to take the learning from a model trained on 
an extensive dataset and then precisely tune it to another 
dataset. This approach is instrumental in training the model 
faster, and at the same time, it is also computationally less 
expensive. Transfer learning helps to train and analyze mul-
tiple models quickly.

In this paper, we use transfer learning to analyseVGG-
Net, DenseNet121, ResNet50 and NASNet. We specifically 
used the models trained on ImageNet and marked the last 
layers of these pre-trained models as trainable. The final 
few layers of the model contain dataset-specific information; 
hence, re-training them on another dataset makes the mod-
els compatible with new data. For NASNet, we add another 
fully connected layer with 256 parameters and another layer 

with one parameter stating pneumonia or not. This was fol-
lowed by a sigmoid function which provided the likelihood 
of pneumonia. As pre-trained models are fast to train, we use 
multiple pre-trained models with different hyperparameters 
to determine which combination of hyperparameters and 
models works best for Pneumonia Detection. For example, 
We experiment with pre-trained DenseNet121 with various 
combinations of batch size, activation function, loss func-
tion, etc., similarly for NASNet and ResNet50.

5  Architecture

We used 2 models, ResNet50 (Sudheer et al. 2019) and 
DenseNet121 (Huang et  al. 2017) with various hyper 
parameter configurations. This model aims to find a model 
with fewer parameters and high accuracy. In this section, 
we compare and contrast Simple CNN, ResNet50, and 
DenseNet121. (Fig. 6).

5.1   ResNet

ResNetsshown in (Fig. 7) extended the behavior of a simple 
CNN by including the skip connection with this Eq. (5) all 
the information learned by the n-1th convolution layer is 
present with the nth convolution layer; hence, the informa-
tion propagates better and stays longer.

5.2  DenseNet

DenseNets (Huang et al. 2017) make the first difference 
from ResNets (Sudheer et al. 2019) in the way information 
is passed. DenseNets concatenates feature maps of the out-
put layer with the incoming feature maps instead of adding 
them. Hence, the equation turns out to be: Eq. (6)

A similar issue we faced in our work on ResNets, (Fig. 8), 
the combining activity of feature maps is impossible when 
they are of different sizes regardless of the combining activ-
ity being an addition or a concatenation of feature maps. 
Therefore, and the same way we used for ResNets (Sudheer 
et al. 2019), Dense Nets (Huang et al. 2017) (Fig. 8) are 
divided into dense blocks. Within a partnership, the dimen-
sions of the feature maps remain the same, but the number 
of filters changes between them. These layers between the 
dense blocks are called Transition Layers. They are used 
for the down-sampling by applying batch normalization, 
a 1 × 1 convolution, and 2 × 2 pooling layers. The channel 

(5)xl = Hl

(
xl − 1

)
+ xl−1

(6)xl = Hl

([
x0 + x1 + .. + xl−1

])

Fig. 5  Dropout visual representation
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dimensions increase at every layer because of the concatena-
tion of feature maps. ‘k’ is the growth rate hyperparameter 
that maintains the amount of information stored in each layer 
of the network. If H_1 produces k feature maps, then the 
generalized equation for determining the number of feature 
maps by lthlayer is as shown in Eq. (6).

Feature maps act as the information or learning data of 
the network. Every layer has access to feature maps of previ-
ous layers, and hence they have collective knowledge. Each 
layer adds new information or feature map to this collective 

knowledge, in concrete k feature maps of data. Because of 
this, DenseNet can save and use the information from previ-
ous layers better than ResNets and conventional ConvNet.

5.3  Propose method: NASNET

Google Brain creates NASNet. Authors of NASNet (Jam-
shidi et al. 2020) presented to search for an architectural 
building block on a tiny data and afterward move the block 
to a bigger data. Mainly, the team searched for an excel-
lent convolutional layer on Canadian Institute for Advanced 
Research-10 data first and then applied it to ImageNet data 
by adding similar cells one upon the other. A regularization 
method called Scheduled Drop Path is also presented, which 
essentially increases the generalization of NASNet. Finally, 
the NASNet model accomplishes cutting-edge results with 
smaller model sizes and lower intricacy (FLOPs).

In this paper, we use pre-trained NASNet model and 
evaluate it on various hyper-parameters such as activation 
function, optimiser, batch size etc. which helped us achieve 
the highest accuracy among the current solutions with least 
computational cost.

5.4  NASNET architecture

• As presented by NASNet, (Fig. 9), authors, the best 
blocks are searched by the model using reinforcement 
learning.

• N is the number of motif repetitions which is a free 
parameter along with convolutional filters at starting 
step, which are used for scaling.

Fig.6  The architecture of the proposed method

Fig.7  ResNet

Fig. 8  Dense block
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• These cells are known as normal cells and reduction 
cell. A normal cell performs convolution operation and 
returns a feature map of same size as input. A reduction 
cellbasically performs an operation similar to max pool-
ing and returns a feature map which is half the size of 
input in all dimensions.

• The structures of normal and reduction cell are identified 
through a controller unit employing RNNs.

5.5  Controller model architecture

• The controller, (Fig. 10) is an RNN which predicts the 
remaining structure of normal and reduction cell given 
the first two hidden states as below.

• As a first step A hidden state(hj)is selected from 
current(hi), and previous (hi-1) hidden statues or from 
hidden states created in previous blocks.

• Second step includes selecting another hidden state 
(hj + 1) from the same options as in previous step.

• In step 3, we have to select an operation to be applied on 
hidden state (hj)

• In step 3, we have to select an operation to be applied on 
hidden state (hj + 1)

• Final step includes selecting a method to combine (hj + 1) 
and (hj).

There are certain only operations which are applied by the 
controller model to search for the convolution block.

Operations allowed in controller RNN.

– Identity 1 × 1 convolution
– 1 × 7 convolution followed by a 7 × 1 convolution filter.
– 1 × 3 convolution followed by a 3 × 1 convolution filter.
– 3 × 3 dilated convolution
– 3 × 3 average pooling
– Max pooling of 3 × 3, 5 × 5, 7 × 7 filter size.
– Depth wise-separable convolution of 3 × 3, 5 × 5. 7 × 7 

filter size

We trained the multiple machine learning models of 
NASNet, ResNet, DenseNet and evaluated the outcome of 
these models on various parameters. We used logistic loss 
function as mentioned in Eq. (12, 13)to evaluate the loss and 
used various optimisers such as ADAM, AdaGrad, SGD to 
optimise the model. Multiple models of NASNet A, NAS-
Net B and NASNet C are shown below in (Figs. 11, 12, 
13) respectively. All NASNets mentioned below uses same 
fundamental concept of convolution, pooling and activations 
but differs in the way their normal and reduction cells are 
designed.

Fig. 9  CIFAR 10 & imagenet architecture

Fig. 10  Controller RNN
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6  Model training

We trained our deep learning model on NVIDIA Super 
Computer Lab for Deep learning in Bennett University, 

Noida. (Fig. 14) shows the flow diagram of model.
NVIDIA DGX-1 V100 has NVIDIA Pascal, powered by 

Tesla V100 accelerators. As we had a massive dataset of 42 
gigabytes, we employed this supercomputer, experimented 

Fig. 11  NASNet A

Fig.12  NASNet B
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with, and trained on various hyperparameters. We trained the 
model parallelly on 6GPUs and used TensorFlow to main-
tain the consistency and connection among GPUs training 
model parallelly on different parts of training data. We used 
fourfold cross-validation to get the validation dataset while 
training.

Due to the massive size of the dataset, we employed 
Keras data generators, where the model read data from 
the SSD. We experimented with various optimizers such 
as Stochastic Gradient Descent (Figs.  15, 16), Adam, 

AdaGrad, and SGD with momentum. Stochastic Gradi-
ent Descent (SGD) persists only one learning rate, which 
does not change while training, whereas Adam, adjusts the 
learning rate dynamically during the training. To find the 
minima of the loss function, ResNet50 also implements 
Adam optimizer. Adam calculates the moving average of 
the gradient mt Eq. (7)/squared gradients vt Eq. (8) and the 
parameters to alter the learning rate during the training.

mtis the first moment of gradient.
vtis the second moment of gradient.

(7)mt = �1mt − 1 +
(
1 − �1

)
gt

(8)vt = �2vt − 1 +
(
1 − �2

)
g2
t

Fig. 13  NASNet C

Fig. 14  Flow diagram

Fig. 15  Comparison of various Models w.r.t error rate and param-
eters
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In the above Eq. (8) on the right, vt are set to zero’s. 
Biases are changed to correct value by  calculating1stand 
 2ndmoment estimates in Eq. (9) (Sudheer et al. 2019):

Following Adam update rule Eq. (10) is used to update 
the weights:

�: Eta is the learning rate hyperparameter. It is the rate 
at which model learns from the input. Very high learning 
rate could make the training unstable and very low learn-
ing rate could make the training process very slow.

�1 ∶ isexponential decay rate for the first moment 
estimates.

�2 ∶ isexponential decay rate for the second-moment 
estimates (e.g. 0.999).

� : It’sa small number to prevent division by zero excep-
tion (e.g. 10E-8).

We trained two variants of each model with differ-
ent input sizes and two different optimizers: Adam and 
SGD, for 28 epochs. Alongside, as we observed that 
DenseNet121 with SGD as optimizer performs better than 
others, we also trained a variation of DenseNet121 with 
SGD and batched size of 32.

Activation functions such as sigmoid and hyperbolic 
tangent experience saturation near their input’s middle 

(9)m̂t =
mt

1 − 𝛽 t
1

v̂t =
vt

1 − 𝛽 t
2

(10)(𝜃) ∶ 𝜃t+1 = 𝜃t − 𝜂
m̂t√
v̂t + 𝜀

point. Using these activation functions can result in inad-
equate training and problems such as vanishing gradient 
(Huang et al. 2017) and exploding gradient. To overcome 
these problems, we use the ReLU (Rectified Linear Unit) 
activation function, Eq. (11)

7  Evaluation metrics and analysis

7.1  Loss function: log loss

With above experiments as shown in Table  1, has 
described detailed comparison of the proposed and existing 
deep learning models accuracy by varying with number of 
parameters, batch size. It also shows the precision, accuracy 
and F1 score. (Table 2) We achieved F1-score significantly 
better than existing systems with 1/10th of the parameters 
as shown in (Fig. 15).

F1 score: CheXNet 0.435 (0.387, 0.481).
F1 score: NASNet 0.9749 (0.97, 0.98).

8  Precisionvs. computational demand

9  Conclusion and future work

In India, the number of lives lost due to Pneumonia has 
increased drastically. We proposed a novel approach using 
deep learning to detect Pneumonia in rural and urban areas. 
We experimented with various deep learning models and 
presented that NASNet not just achieves state-of-the-art 
results in terms of accuracy and loss. It is also efficient for 
computing power. It has minor trainable parameters, with 
2.6 M, with the highest precision and recall. Further, the 
proposed methodology can be used for prediction with as 
low compute power as in the mobile app. This will not only 
help in rural India, where there is a lack of radiologists but 
will also help radiologists have a quick and reliable second 
opinion on pneumonia detection (Figs. 16, 17, 18 19).

Funding None.

Declarations 

(11)g(x) = max(0, x)

(12)L(x, y) = −(y ∗ log(x) + (1 − y) ∗ (log(1 − x))

(13)Wherex = p(Y = 1|X)

Fig. 16  NASNET A accuracy graph
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