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Abstract

Motivation: The complexes formed by binding of proteins to RNAs play key roles in many biologic-

al processes, such as splicing, gene expression regulation, translation and viral replication.

Understanding protein-RNA binding may thus provide important insights to the functionality and

dynamics of many cellular processes. This has sparked substantial interest in exploring protein-

RNA binding experimentally, and predicting it computationally. The key computational challenge is

to efficiently and accurately infer protein-RNA binding models that will enable prediction of novel

protein-RNA interactions to additional transcripts of interest.

Results: We developed DLPRB (Deep Learning for Protein-RNA Binding), a new deep neural net-

work (DNN) approach for learning intrinsic protein-RNA binding preferences and predicting novel

interactions. We present two different network architectures: a convolutional neural network

(CNN), and a recurrent neural network (RNN). The novelty of our network hinges upon two key

aspects: (i) the joint analysis of both RNA sequence and structure, which is represented as a

probability vector of different RNA structural contexts; (ii) novel features in the architecture of the

networks, such as the application of RNNs to RNA-binding prediction, and the combination of hun-

dreds of variable-length filters in the CNN. Our results in inferring accurate RNA-binding models

from high-throughput in vitro data exhibit substantial improvements, compared to all previous

approaches for protein-RNA binding prediction (both DNN and non-DNN based). A more modest,

yet statistically significant, improvement is achieved for in vivo binding prediction. When incorpo-

rating experimentally-measured RNA structure, compared to predicted one, the improvement on

in vivo data increases. By visualizing the binding specificities, we can gain biological insights

underlying the mechanism of protein RNA-binding.

Availability and implementation: The source code is publicly available at https://github.com/

ilanbb/dlprb.

Contact: yaronore@bgu.ac.il

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The application of neural networks for machine learning (ML) pur-

poses dates back to Rosenblatt’s perceptron (Rosenblatt, 1958) and to

Minsky and Papert’s celebrated book on the topic (Minsky and Papert,

2017). Classical learning methods often face difficulties in processing

raw data due to the need for manually designed features. In contrast,

deep learning approaches can discover effective features directly from

the data, and circumvent the labor-intensive phase of feature

engineering. However, for over five decades, neural networks were not

the method of choice in ML, as they were outperformed by a number

of alternative approaches. The availability of powerful computer hard-

ware with a large number of fast processors (such as GPUs),

combined with abundant training data, has recently made deep neural

networks (DNNs) the top performer in numerous ML applications.

Notable areas of success include computer vision (Karayev et al.,

2013; Krizhevsky et al., 2012; Szegedy et al., 2015), natural language
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processing (Bowman et al., 2015; Sutskever et al., 2014), complex

board games, such as GO (Silver et al., 2016) and more.

In most areas mentioned above, hundreds of research projects

utilizing DNNs were carried out and published. In computational

biology the numbers are lower, yet are catching up (Angermueller

et al., 2016). Known applications include gene and splicing regula-

tion (Kelley et al., 2016; Leung et al., 2014; Zhou and Troyanskaya,

2015), DNA methylation (Vidaki et al., 2017), protein classification

(Asgari and Mofrad, 2015), and various tasks in biological image

analysis (Bar et al., 2015; de Brebisson and Montana, 2015). Of spe-

cific relavance to our work, applications to protein-RNA binding

prediction were also developed, e.g., DeepBind and iDeep

(Alipanahi et al., 2015; Pan and Shen, 2017).

The central role of protein-RNA binding in numerous biological

contexts (König et al., 2012) makes it an important area of study to

both experimentalists and machine learning researchers. On the ex-

perimental side, high-throughput measurement techniques were

developed, both for in vivo experiments, and for in vitro ones. The

CLIP method and its derivatives measure protein-RNA binding

in vivo, on a transcriptome-wide scale (Darnell, 2010; Hafner et al.,

2010; Konig et al., 2011; Van Nostrand et al., 2016). These meas-

urements are adversely effected by a variety of orthogonal cellular

events, resulting in a non-negligible noise-to-signal ratio. As a conse-

quence, these experiments are not accurate enough to produce reli-

able quantitative outcomes. Instead, they produce a binary outcome:

yes (existence of a binding) or no (lack thereof). In every CLIP ex-

periment, the bindings of one protein to each of its occupied tran-

scripts in vivo is determined at a resolution of around 100

nucleotides. The complexity of the in vivo environment in the con-

text of protein binding, as well as technological artifacts and experi-

mental noise, make the learning of intrinsic protein-RNA binding

preferences from such data a difficult challenge (Kishore et al.,

2011; Orenstein et al., 2016b).

A different experimental technique, RNAcompete, works

in vitro (Cook et al., 2017; Lambert et al., 2014; Ray et al., 2017).

In each RNAcompete experiment, the bindings of one protein to

around 240 000 short synthetic RNAs (30-40 nucleotides long) are

measured. Lacking interfering cellular processes, these experiments

exhibit a low noise-to-signal ratio, and are accurate enough to pro-

duce good measurements of the bindings specificities, or strengths.

The most comprehensive in vitro dataset measured using the

RNAcompete technology (Ray et al., 2013) contains 244 such

experiments (each one on a single protein).

The computational challenge that arises from these experimental

data is to infer protein-specific RNA-binding models that will enable

prediction of the binding between the given protein and a new RNA

transcript. Several methods have been developed to tackle this chal-

lenge. All the computational methods receive as input the RNA se-

quence. Some also receive the secondary structure of the RNA. We

remark that the secondary structure is typically predicted by compu-

tational means, based on the sequence itself. For short RNA sequen-

ces, computational structure prediction is known to be quite

accurate (Doshi et al., 2004). Datasets that include both RNA-

binding and RNA structure measurements on the same cells are cur-

rently available for only two proteins (Spitale et al., 2015).

The first computational method, MEMERIS, used expectation-

maximization algorithm to look for sequence motifs in RNA regions

that are more likely to be unpaired, and thus available for binding

(Hiller et al., 2006). RNAcontext, developed with the RNAcompete

technology, learns a simple model for sequence and structure bind-

ing preferences (Kazan et al., 2010). The sequence preferences are

represented as a position weight matrix, namely how each position

in the binding site contributes to the binding, independently of

others. The structure preferences are represented as a vector of the

preferences to each structural context. A more recent approach,

GraphProt, uses a graph representation of RNA structure to find

enriched local sub-graphs to model the sequence and structure bind-

ing preferences (Maticzka et al., 2014). However, GraphProt takes

more than seven days to run on a single RNAcompete experiment

(Orenstein et al., 2016a). DeepBind, a new method based on deep

learning, uses a convolutional neural network (CNN) to learn and

predict protein-DNA and protein-RNA binding from many datasets,

including RNAcompete and CLIP. It is based on the RNA sequence

alone, i.e., without considering RNA structure (Alipanahi et al.,

2015). The most recent development and the state of the art, RCK,

extends RNAcontext by using a k-mer based model, on both the se-

quence- and the structure-level (Orenstein et al., 2016a). It assigns a

binding score to each RNA word of length k under each structural

context, and thus can capture position-dependence inside a binding

site. iDeep tackles the problem of predicting in vivo binding based

on several data sources representing the complexity of the cellular

environment. It receives protein binding preferences as part of the

input (Pan and Shen, 2017), and thus solves a different problem.

Deepnet-RBP learns RNA-binding preferences based on deep learn-

ing and using both RNA secondary and tertiary structures, but was

designed to learn it from in vivo data only (Zhang et al., 2016). The

latest method based on deep learning, pysster, considers only one

RNA structure per sequence (Budach and Marsico, 2018).

Moreover, it solves the sequence classification problem, and does

not predict binding intensities when possible. Today, no study

exploited the most advanced machine learning technique to learn in-

trinsic protein-RNA sequence and structure binding preferences

from quantitative high-throughput in vitro data.

In this work, we introduce DLPRB, a Deep neural network ap-

proach for Learning Protein-RNA Binding preferences. DLPRB

employs two DNN architectures: a convolutional neural network,

and a recurrent neural network (RNN). CNNs (LeCun et al., 1998)

are known to have good performance in analyzing spatial informa-

tion. RNNs process input data in a sequential manner. They exploit

temporal dependencies in the data, mostly by using either long

short-term memory (LSTM) units (Hochreiter and Schmidhuber,

1997), or gated recurrent units (GRU) (Cho et al., 2014). For both

the in vitro case (predicting binding intensity) and the in vivo one

(classification), our results exhibit a significant improvement over

all previous predictors on the same set of benchmark experiments.

This comparison includes DeepBind, which employed a CNN as

well, but with substantially fewer filters and without taking RNA

secondary structure into account. For in vitro data, our RNN

achieved an average Pearson correlation of 0.628 (predicted vs. ac-

tual intensities), as compared to 0.46 by the state of the art RCK,

and the runner up DeepBind with 0.41. For two different in vivo

datasets, our CNN achieved a median AUC of 0.657 and 0.809.

These results are better than the top performer DeepBind, with

0.648 and 0.803, respectively, and the improvement is statistically

significant since our approach performs better in almost all the

experiments. When using experimentally-measured RNA structure

as opposed to predicted one, in vivo binding prediction improves

even further.

The remainder of this paper is organized as follows: Section 2

describes the datasets used and the methods employed, including a

description of the new RNN and CNN architectures we constructed.

Section 3 presents the results of running our DNNs, and of visualiz-

ing specificities of binding sites. Finally, Section 4 contains conclud-

ing remarks and open problems.
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2 Materials and methods

2.1 RNA secondary structure prediction
RNA secondary structural context profiles were predicted using a

variant of RNAplfold (Lorenz et al., 2011). In this variant, probabil-

ities for four structural contexts are calculated per position: hairpin

loop, inner loop, multi loop and external region (Kazan et al.,

2010). The probability for a position being paired is assigned, so

that the total sum is 1. The probabilities were represented as vectors

of length five, one for each position in the sequence. They were pro-

vided with the sequences as input to RCK, RNAcontext and our

DNNs (DeepBind does not have such optional input).

2.2 In vitro binding prediction evaluation
To evaluate the performance of the algorithms for in vitro binding

prediction, we used the RNAcompete dataset (Ray et al., 2013). The

dataset includes 244 experiments, each containing the binding inten-

sities between a single protein and more than 240 000 RNA sequen-

ces. The set of sequences was designed as a union of two sets, A and

B, such that each has similar 9-mer coverage. For each experiment,

we trained a model on sequences from set A and predicted the inten-

sities on set B. Performance was determined by the Pearson correl-

ation of predicted and measured intensities of set B. Outlier

intensities were clamped as done in the DeepBind study (Alipanahi

et al., 2015): all intensities above the 0.5 percentile were clamped to

the value of the 0.5 percentile. Three methods were compared in this

evaluation: RNAcontext, RCK and DeepBind, using results taken

from (Orenstein et al., 2016a).

To test how well DLPRB approach performs, we computed the

Pearson correlation for all pairs of replicate experiments. For every

pair of experiments measuring the binding of the same protein, i.e,

identical amino acid sequence, the Pearson correlation of the results

is an upper bound for any binding prediction algorithm. In the

RNAcompete dataset there are 46 such pairs. We then compared

these correlation scores with the results achieved by our algorithm.

2.3 In vivo binding prediction evaluation
For in vivo binding prediction, we used eCLIP experiments (Van

Nostrand et al., 2016), whose proteins overlap the RNAcompete

dataset. There are 21 proteins in the overlap between these two

datasets. These proteins were covered by 36 RNAcompete experi-

ments and by 54 eCLIP experiments, forming a set of 94 experimen-

tal pairs covering 21 different proteins. For each eCLIP experiment,

the bound peaks were used as positive sequences, and regions 300 nt

downstream were used as controls, resulting in an equal-sized con-

trol set. The nearby regions were selected to test how well the bind-

ing model distinguishes between different regions on the same RNA

transcript that are available for binding, while only one of them is

bound. Structure prediction was performed using RNAplfold, to-

gether with 150 nucleotides flanking regions (as in previous studies,

Maticzka et al., 2014; Orenstein et al., 2016a), and only the original

sequence peaks were used for prediction. Performance was gauged

by area under the ROC curve, which is appropriate for balanced

positive and negative sets, as in our case. Each binding model is

trained on a complete RNAcompete experiment, and tested on its

paired eCLIP experiment.

Similarly, we gauged the performance of our networks in pre-

dicting in vivo binding using an older dataset taken from the

GraphProt study (Maticzka et al., 2014). This dataset includes 23

CLIP experiments, where the intersection with RNAcompete data

covers 10 proteins.

2.4 Data representation
Our deep learning networks receive two types of data as input,

instead of a single one (Fig. 1A). An RNA sequence of length ‘

is a string of ‘ nucleotides over the alphabet R ¼ fA;G;C;Ug.
We encode every nucleotide as a one-hot vector of dimension

d1 ¼ 4. RNA structural information is encoded in a matrix

S 2 R
d2�‘, where d2 denotes the number of possible structural con-

texts. In this paper we consider d2 ¼ 5 possible structural contexts.

The information on each position in the sequence is encoded in

one vector of dimension d ¼ d1 þ d2 (Fig. 1B). Namely, every pos-

ition is encoded by a concatenation of the one-hot encoding vector

of the current nucleotide, and the vector of structural contexts prob-

abilities. The method handles variable-length sequences by encoding

every sequence using L vectors, where L denotes the maximum pos-

sible length of a sequence. Shorter sequences are zero-padded so that

all sequences have the same length.

2.5 DLPRB: convolutional and recurrent neural

networks for RNA-binding prediction
The proposed CNN for predicting binding intensities receives L vec-

tors for each RNA sequence, as described in Section 2.4. It con-

structs an input matrix, M 2 R
L�d, whose rows are the vectors

representing the nucleotides and structure probabilities. The input

matrix, M, is then fed into the convolutional neural network.

Figure 2 illustrates the architecture of our CNN. The first layer

of the network is a convolutional layer, which applies a series of fil-

ters on the input matrices. A filter is a weight matrix F 2 R
m�d,

where d is the dimension of the vectors representing the nucleotides

and structure probabilities, and m is the filter length. As it is sliding,

or convolving, over the input, the network computes an element-

wise multiplication of the filter with all possible consecutive subma-

trices W 2 R
m�d of the input data, with an addition of a bias b. We

use a rectifier f ðxÞ ¼ maxð0; xÞ as a non-linear activation function

on the convolution output. The network utilizes multiple filters, with

several possible values of m. The max-pooling layer scans the output

vector of each filter and chooses the maximum value in it. A fully-

connected layer computes a weighted sum of the maximum values

found in the previous layer. Its output is a hidden layer of size 128. A

second fully connected layer computes the final outcome of the net-

work. The filters, which capture local patterns on the sequence- and

structure-level, are equivalent to position weight matrices, which are

very popular in modeling protein binding preferences (Stormo, 2000).

We use 256 filters, 128 of length 5 and 128 of length 11. The number

of filters and their lengths are different than the ones used in DeepBind.

Given the actual binding intensities from an RNAcompete experi-

ment, the network is trained with a mini-batch Adam optimization al-

gorithm (Kingma and Ba, 2014), using 128 samples in each batch, a

Fig. 1. Data representation. (A) The raw input data. Each sample is an RNA se-

quence and a structure probabilities matrix. (B) Data transformation. Each

position in the sample is represented as a concatenation of a one-hot encod-

ing vector representing the nucleotide, and a structure probabilities vector
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constant learning rate of 0.0001, and a mean squared error (MSE) as a

loss function. The filters were initialized with small random weights.

L2-regularization term is added to the loss function as well, by adding

the sum of the squares of all the weights in the network.

Some of the hyper-parameters of the network were chosen via a

grid search on a small subset of the data. We randomly chose 10 out

of the 244 RNAcompete experiments, and used them for hyper-

parameter tuning. For each of these training sets we marked one

third of the samples as a validation set, and trained several models

on the rest. We performed a grid search for every experiment, and

chose the model which performed best on the corresponding valid-

ation set. The value of every hyper-parameter was then determined

using a majority voting. The hyper-parameters that were optimized

during the grid search process were the number of filters (16, 64,

128 and 256), the filter lengths (combinations of the lengths 5, 8, 11

and 16), the initial learning rate (0.01, 0.001 and 0.0001), and the

learning decay rate (0.96, 0.98 and 1).

To reduce overfitting, the number of times the training data is

processed during training (also known as the number of epochs) was

tuned specifically for every dataset. This was done by splitting each

training set into three parts. A three-fold cross validation and an

early-stopping procedure were used to derive three candidate values

for the number of epochs. The number of epochs for every dataset

was then set to be the average of the three candidate values, and the

final model was trained using the entire training set.

In order to assess the impact of using structure information in

addition to sequence data, we predicted binding intensities with a

modified CNN architecture that takes as input the one-hot encoding

of the nucleotides without concatenating structure probabilities to

it. This modified network was trained and tested on data that con-

tained no structure information at all.

We also tested a bidirectional RNN, which is visually described

in Figure 2. RNNs can capture position dependencies, which are

known to occur in protein binding sites (Barash et al., 2003). The L

input vectors are fed into the network in a sequential manner, both

forward and backward. We used GRU cells to detect possible

long-term dependencies, and set the cell size to 64. The rest of the

network layers, as well as the loss function and hyper-parameters

tuning method are the same as in the CNN version.

2.6 Evaluating the weight of RNA structure in the

sequence and structure binding models
To evaluate the weight of RNA structural information in our

DNNs, we ran the prediction of binding while assigning uniform

structural probabilities to all positions of the test sequences. This

removes any structural information from the test data.

2.7 Comparing experimentally-measured and

computationally-predicted RNA structure
To evaluate the effect of using experimentally-measured RNA struc-

ture instead of predicted one, we used CLIP and icSHAPE data

(Spitale et al., 2015). Probability vectors of experimentally-

measured RNA structure and CLIP-seq data were downloaded from

the GEO database (accession numbers GSE60034 and GSE64168,

respectively). Binding site peaks were extracted as in the original

study (Spitale et al., 2015) using a 40 nt window size. We used the

same set of peaks and control sequences as in the RCK study

(Orenstein et al., 2016a), summing up to 4102 sequences in each

category. For computational structure prediction, we flanked bind-

ing sites and control sequences by 150 nt on each end, which were

only used for structure prediction by RNAplfold (Lorenz et al.,

2011). The flanking regions were discarded when testing the trained

models on CLIP data.

2.8 Visualizing RNA-binding sequence and structure

preferences
One of the main drawbacks of neural networks is their lack of inter-

pretability. However, in some cases we can still infer how the net-

work works, and what important features are extracted from the

raw data. Here, we can gain an understanding of how the CNN

works by analyzing its filters, similarly to what was done for

DeepBind (Alipanahi et al., 2015). A convolution filter works like a

motif detector, taking both RNA sequence and structure informa-

tion into account. After training the model, we ran it to predict bind-

ing over all the test data and analyzed the output of the max-pooling

layer. Given a filter F, we extracted from each test sample the subse-

quence to which F had assigned the highest activation value, along

with its structure information. We aligned all the subsequences that

passed a certain threshold, and computed a modified position fre-

quency matrix (PFM) that also captures the structure information

for every position in the sequence. From this matrix we then gener-

ated the sequence and structure logos (Wagih, 2017).

3 Results

3.1 Predicting in vitro binding
To gauge the performance of DLPRB, our deep neural networks,

compared to extant methods, we used the comprehensive dataset of

RNAcompete, which includes 244 experiments (Ray et al., 2013).

For each protein, we trained a model on half of the RNA sequences,

and tested it on the other half. Performance was gauged by Pearson

Fig. 2. Our deep neural network architectures. (A) Convolutional layer, includ-

ing a non-linear activation function. The filters are applied on a matrix whose

rows are the input vectors. The output vectors of two filters are shown: one

red of length three, and one blue of length two. Two specific applications of

the filters are marked using dotted lines. (B) Max-pooling layer. The colored

rectangles contain the max values in each vector. (C) Fully-connected layer

that computes an intensity prediction. A second fully-connected layer is used

in the actual implementation of the network. (D) Bidirectional recurrent neural

network, composed of LSTM or GRU cells (brown rectangles). In each time

stamp t, the network receives a d-dimensional vector representing the nu-

cleotide at position t in the sequence. (E) Fully-connected layer that computes

an intensity score. A second fully-connected layer is used in the actual imple-

mentation of the network
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correlation of predicted and measured intensities. For complete

details see Section 2.2.

Both our deep neural networks significantly outperformed all

methods in in vitro binding prediction (Fig. 3A). When comparing

them to extant methods, they both outperformed the state of the art

RCK, which achieved an average Pearson correlation of 0.46

as compared to 0.606 for our CNN (P-value ¼ 9:16� 10�42,

Wilcoxon rank-sum test). Our RNN outperformed the CNN

architecture, achieving an average Pearson correlation of 0.628

(P-value ¼ 9:53� 10�26). The average Pearson correlation com-

puted on 46 pairs of RNAcompete replicate experiments was 0.581.

The result achieved by our RNN on the same set of experiments was

0.578 (P-value ¼ 0.84). This means that our RNN is almost optimal

on these experiments, since it captures all non-stochastic informa-

tion in them.

When training and testing our CNN on RNA sequence alone,

we saw a statistically significant difference in prediction accuracy,

compared to training and testing on both RNA sequence and struc-

ture (average Pearson correlation dropped from 0.606 to 0.592,

P-value ¼ 1:26� 10�24). As was the case in (Orenstein et al.,

2016a), this shows that structure information can improve binding

prediction. We speculate that the relatively small difference is due to

the fact that RNA structure was predicted from sequence, and

DNNs are capable of capturing long-range nucleotide interactions,

which are the basis of RNA secondary structure. Moreover, the li-

brary design of RNAcompete technology was designed to be un-

structured, and as a consequence, contains very few structures (Ray

et al., 2013, 2009). Thus, it is no surprise that the sequence features

alone can capture most of the structural information. Still, the statis-

tically significant difference shows the importance of RNA structure

in protein-RNA binding prediction.

As the gap between our CNN and the network used by

DeepBind was not fully explained by removing RNA structural in-

formation, we ran a variant of our approach with much fewer con-

volution filters. Instead of using 256 filters of variable lengths, we

used only 16 filters, each of length 16, imitating the configuration

used in (Alipanahi et al., 2015). The results dropped profoundly to

an average Pearson correlation of 0.523 compared to 0.592, just

by decreasing the number of filters and changing their lengths

(P-value¼4:69� 10�41). We deduce that our advantage over

DeepBind can be explained mainly by either the configuration of the

convolution filters, or by the RNN architecture. In addition, RNA

structural information also improves the accuracy of our prediction.

For complete results see Supplementary Table S1.

3.2 Predicting in vivo binding
To gauge the performance of DLPRB, our neural networks, compared

to extant methods on in vivo binding prediction, we used the eCLIP

dataset (Van Nostrand et al., 2016). The overlap with RNAcompete

dataset covers 21 proteins by 94 experimental pairs involving 36

RNAcompete and 54 eCLIP experiments (Ray et al., 2013). Each

binding model was trained on a complete RNAcompete experiment,

and tested on its paired eCLIP experiment. We report the performance

in predicting in vivo binding by AUC, an appropriate metric for bal-

anced bound and unbound sets as in our case. Similarly, we tested our

method on an older CLIP dataset taken from the GraphProt study

(Maticzka et al., 2014). The overlap with RNAcompete covers 10

proteins. For complete details see Section 2.3.

The results of predicting in vivo binding show that our CNN per-

forms the best, achieving a median AUC of 0.657, compared to

0.648 and 0.645 for DeepBind and RNN, respectively (Fig. 3B). In a

pairwise comparison CNN is significantly better than DeepBind and

RNN (P-values < 0.0001, Wilcoxon rank-sum test). When tested on

an older dataset, our CNN network outperformed all other methods

achieving a median AUC of 0.809, compared to 0.803 and 0.782 for

DeepBind and RNN, respectively (Fig. 4A). This improvement is not

statistically significant. However, there were only 10 proteins in the

overlap with RNAcompete for this dataset.

Two reasons may hamper the accuracy of in vitro models in predict-

ing in vivo binding. First, in vivo data is known to be noisy and suffer

from experimental biases (Kishore et al., 2011). Moreover, RNA

Fig. 3. Performance of RNAcompete-derived methods in binding predictions shown as boxplots for different methods. RNAcontext, RCK, CNN and RNN utilize

RNA secondary structure. (A) Performance in predicting in vitro binding. For each RNAcompete experiment, a model was trained on set A of sequences and

tested on set B. Results are based on 244 experiments. Performance gauged by Pearson correlation of predicted and measured intensities. (B) Performance in

predicting in vivo binding. For each RNAcompete experiment, a model was trained on the whole dataset and tested in predicting bound and unbound transcripts

as measured by eCLIP experiment on the same protein. Results are based on 94 experiment pairs. Performance gauged by area under the ROC curve
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structure prediction is less accurate in vivo than in vitro (Rouskin et al.,

2014), so learned structural preferences may not improve binding pre-

diction. At this stage, more datasets with higher quality are needed in

the overlap between CLIP and RNAcompete to derive more definitive

conclusions. For complete results see Supplementary Table S2.

3.3 Experimentally-measured structure may improve

in vivo binding prediction
Following the results in the previous subsection, we examined the

reason why RNA structural information did not improve in vivo

binding prediction. We speculated that RNA structure prediction

of long RNA transcripts in vivo is inaccurate. To test this hypoth-

esis, we compared computationally-predicted RNA structure

(Lorenz et al., 2011) with experimentally-measured one (Spitale

et al., 2015) in the task of binding prediction. To demonstrate

the effect of using experimental probabilities, we used available

CLIP and icSHAPE experiments, performed on the same cells

that also had an RNAcompete experiment on the same

protein. Unfortunately, only the HuR protein, which had five

RNAcompete experiments, was found to overlap. Since icSHAPE

reports only unpaired probabilities, we trained a model based on

two structural contexts: paired and unpaired. Performance was

measured by AUC in predicting HuR binding sites. For complete

details see Section 2.7.

Results show that our neural networks benefit from

experimentally-measured RNA structure in predicting in vivo bind-

ing (Fig. 4B). Predictions using icSHAPE measurements are more ac-

curate than predictions using predicted structure in four out of five

experiments. We note that additional experimental measurements of

RNA structure and protein-RNA binding on the same cells are

needed to evaluate the benefit of experimentally-measured RNA

structure for the task of in vivo binding prediction. For complete

results see Supplementary Table S4.

3.4 The weight of RNA structure in the sequence and

structure binding models
We gauged the weight of RNA structural preferences in binding

prediction using our CNN architecture. We employed a compre-

hensive dataset of both in vitro and in vivo data as in previous

sections. For each test set we used the same models, trained on

both RNA sequence and structure data, but we now predicted

binding using uniform structure probabilities, and compared

them to predictions using predicted structure probabilities. As

we already noted in Section 3.1, when training and testing on

RNA sequence alone, the prediction accuracy is slightly, albeit

significantly, lower compared to the one achieved by using

RNA structure on top of sequence. Despite the fact that

RNAcompete sequence set was designed to be unstructured, pre-

vious studies have shown that some structure exists and that

RNA structural binding preferences can still be inferred from the

data (Orenstein et al., 2016a; Ray et al., 2013). For complete

details see Section 2.6.

We found that the use of predicted structure probabilities in

test time significantly improves prediction performance in vitro,

but not in vivo. In terms of in vitro binding, the improvement is

across the board: for every single dataset, the performance

improved by using predicted structure probabilities as compared to

uniform ones (Fig. 5A). The improvement was striking, from an

average Pearson correlation of 0.54 for sequence-only mode, to

0.608 when using predicted structure probabilities (P-value ¼
4:53� 10�42, Wilcoxon rank-sum test). The results of the in vivo

data, on the other hand, did not show significant improvement

(P-value ¼ 0.96) (Fig. 5B). We can see several reasons for this di-

chotomy. The in vivo dataset is smaller. It contains only 94 pairs

Fig. 4. Improved in vivo binding prediction. (A) We used GraphProt dataset of in vivo binding to gauge prediction accuracy. For each pair of RNAcompete and

CLIP experiments on the same protein, a model was trained on the former and tested on the latter. Twenty-three pairs overlap with the GraphProt study and

RNAcompete dataset, covering 10 proteins in 21 RNAcompete and 12 CLIP experiments. Performance per protein is gauged by average AUC. (B) Comparison of

experimentally-measured and computationally-predicted RNA structure. We used available CLIP and iCSHAPE datasets that had an RNAcompete experiment

available for the same protein. The only protein tested was HuR, which had five corresponding RNAcompete experiments. A model trained on RNAcompete data

had better binding prediction with experimentally-measured RNA structure than with computationally-predicted structure
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compared to 244, covering only 21 proteins compared to 205. The

in vivo experiments are noisier and prone to technological artifacts

(Kishore et al., 2011). The in vivo environment contains many con-

founding factors, which are not part of the binding model, and

thus may decrease prediction accuracy. Lastly, RNA secondary

structure is less accurate for long sequences in vivo than for short

sequences and in vitro (Rouskin et al., 2014). For complete results

see Supplementary Table S3.

3.5 Visualizing RNA-binding specificities
Finally, we wanted to learn new biological insights on the RNA se-

quence and structure binding preferences of the proteins in the

RNAcompete dataset. Interpreting deep convolutional neural net-

works is a long-standing challenge which we do not solve in this

study. Instead, we developed a heuristic. We looked for hits of the

motif detector, i.e., binding sites that passed a certain threshold, and

used their alignment to generate a position frequency matrix for

both the RNA sequence and RNA structure probabilities. We drew

these as sequence logos (Wagih, 2017). For complete details see

Section 2.8.

Figure 6 shows a comparison of sequence logos generated by dif-

ferent methods on different datasets for three proteins: Pum2, Vts1

and HuR. Unfortunately, we could not use available motif data-

bases, such as CIS-BP (Weirauch et al., 2014), and comparison tools,

such as TOMTOM (Tanaka et al., 2011), since they hold and han-

dle sequence motifs only. In our comparison, we see a high concord-

ance in the sequence and structure preferences as discovered by

GraphProt (Maticzka et al., 2014) for Pum2 protein trained on an

independent PAR-CLIP dataset (Hafner et al., 2010), and for HuR

and Vts1 as discovered by RNAcontext (Kazan et al., 2010) trained

on an old version of RNAcompete (Ray et al., 2009). This demon-

strates the ability of our CNN to learn true RNA sequence and

structure binding preferences and to generate interpretable visualiza-

tion of them.

4 Discussion

We have shown that carefully designed deep neural networks are

capable of significantly improving the predictive power in protein-

RNA binding experiments. By using different network architectures,

and by incorporating structure information in the learning process,

we outperformed the state-of-the-art results for this task. In particu-

lar, we have demonstrated the power of recurrent neural networks

for the task of RNA-binding prediction. Regarding convolutional

neural networks, our architecture benefits from a higher number of

convolution filters, as well as from a mixture of different filter

lengths. While adding convolution filters improved the prediction

accuracy of the network, we did not experience such an improve-

ment when adding more convolutional layers. This coincides with

the results of (Zeng et al., 2016), who explored CNNs for predicting

protein-DNA binding.

The improvement was substantially noticeable for in vitro

experiments. This is possibly due to the fact that in vitro experi-

ments are designed to quantitatively measure protein-RNA binding

for hundreds of thousands of synthetic RNA sequences. We believe

these results demonstrate the usefulness of deep neural networks in

the area of protein-RNA binding, and more generally in the field of

computational biology, where they are starting to be used on a large

scale.

A long-standing goal in the field of protein-RNA interaction is

accurate prediction of in vivo binding. As demonstrated in this

study, current computational methods perform rather poorly in pre-

dicting bound and unbound RNA transcripts (average AUCs around

0.65, and some predictions are even below 0.5, which corresponds

to random guessing). We believe that learning the intrinsic binding

preferences of an RNA-binding protein would not suffice in this

case, as the in vivo environment is much more complex. Not only do

proteins compete over the same binding sites or co-bind together,

RNA structure also differs between in silico, in vitro and in vivo

environments. On top of that, RNAcompete and other in vitro

Fig. 5. The weight of RNA structure on top of sequence in binding prediction. (A) Predicted RNA structure probabilities improve in vitro binding prediction

compared to uniform ones. Correlation results over 244 paired experiments uncover that RNA structure plays a significant role in protein-RNA interactions.

(B) Predicted RNA structure probabilities do not improve in vivo binding prediction compared to uniform ones. AUC results of 96 paired eCLIP and RNAcompete

experiments over 21 joint proteins demonstrate that RNA structure is not accurately predicted for in vivo transcripts, and that protein-intrinsic binding preferen-

ces do not capture the full complexity of the cellular environment
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experiments measure binding to short RNA sequences (30–40 nt)

(Lambert et al., 2014; Ray et al., 2009), which cannot fold to com-

plex RNA structures that are found in vivo, where transcripts span

thousands of nucleotides. This alone already inhibits in vitro trained

models from learning binding preferences to complex structures.

There are a number of questions worth pursuing following our

work: Why were RNNs better than CNNs for in vitro data, but

worse than them for in vivo data? Our training and test data were

based on experiments where the binding between a single protein

and numerous RNAs was measured. Can we design a DNN (or an-

other ML mechanism) to train on many proteins and RNAs, and

then to predict the binding of different proteins and RNAs? Another

future line of research is to further improve the interpretability of

the suggested networks. In particular, a better understanding of how

the structure information is incorporated in the learning and predic-

tion processes, and what filters are more dominant and why, may

yield interesting biological insights.
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