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Abstract. For the High Luminosity LHC, the CMS collaboration made the

ambitious choice of a high granularity design to replace the existing endcap

calorimeters. Thousands of particles coming from the multiple interactions cre-

ate showers in the calorimeters, depositing energy simultaneously in adjacent

cells. The data are similar to 3D gray-scale image that should be properly recon-

structed. In this paper, we investigate how to localize and identify the thousands

of showers in such events with a Deep Neural Network model. This problem is

well-known in the “Vision” domain, it belongs to the challenging class: “Ob-

ject Detection”. Our project shares a lot of similarities with the ones treated in

Industry but faces several technological challenges like the 3D treatment. We

present the Mask R-CNN model which has already proven its efficiency in In-

dustry (for 2D images). We also present the first results and our plans to extend

it to tackle 3D HGCAL data.

1 Introduction

The High-Luminosity LHC is a major evolution of the accelerator and LHC detectors planned

to start in 2027. Among the significant enhancements of the CMS Detector, the High Granu-

larity Calorimeter (HGCAL) sub-detector (see Fig. 1) is designed to provide better resolution

in the high pseudo-rapidity regions where the particle flux is dense. With HGCAL [1], the

CMS collaboration [2] faces to several new challenges:

• The increasing pile-up which will reach about 200 simultaneous collisions,

• The high occupancy (hit energy deposits) of the 6 millions of channels,

• The optimal use of the timing information.

All these factors will involve significant changes in the event reconstruction.

The aim of this work is to explore the capability of modern Deep Neural Network (DNN)

technologies to identify the thousands of particles coming from multiple interactions. Each

particle produces a cluster of energy deposits in neighboring cells in the calorimeter.

The first task which we will assign to our DNN model is to reconstruct simultaneously

the thousands of clusters present in an HGCAL event and to classify them in two categories:

dense clusters for the Electromagnetic (EM) particles (e±, γ, . . . ) and sparse clusters (or
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Figure 1. Scheme of the HGCAL subdetector used for this

study [1] (not the last design version). Three main kinds of

sensors distributed on layers are shown here: the

electromagnetic section (CE-E-Si - 28 layers) and the two

hadronic sections, one with silicon based sensors (CE-H-Si -

24 layers), the other with scintillator sensors (CE-H-Sc 16

layers).

showers) for hadronic particles (like π+/−, κ0
L
, n, . . . ). This problem is well-known in the

vision domain and falls in the Object Detection class. This class of problems is significantly

harder than “only” an image classification/regression because of the mixed goals: the clus-

ter/pattern identification (cluster type in our case), its localization (bounding box), and the

object segmentation (mask) in the image.

In the following, we present one of the most famous models in Object detection: the Mask

R-CNN model, with which we perform a preliminary study on 2D HGCAL images and give

inputs to how we will tackle the 3D HGCAL challenge. Other DNN approaches are studied

for HGCAL reconstruction, one of the most advanced uses Graph Neural Networks to deal

with the complex and irregular detector geometry [3].

2 Mask-RCNN model

The industrial challenges in artificial intelligence are organized on web platforms, like Kaggle

[4] where the different models compete. The COCO platform [5] is one of them, dedicated to

Object Detection, in which the Mask-RCNN model [6] won fame in the last years. It benefits

from approximately five years of development from a simple Convolutional Neural Network

(CNN) with a sliding window (R-CNN, Fast R-CNN, Faster R-CNN [7–10]) to a more com-

plex model which mixes several neural network components. Today, for Industrial Vision

or Object Detection challenges, other models are in competition in terms of accuracy and

processing time : Single Shot MultiBox Detector (SSD) [11], You Only Look Once (YOLO)

[12]. The first implementation of Mask-RCNN can be found here [13].

2.1 Work overview

Our goal is to localize clusters, either EM or hadronic, in the 3D HGCAL data. Due to

the complexity of the Object Detection models, a preliminary study with HGCAL 2D images

resulting from the projection of the 3D data into 256x256 histograms is carried out. It allowed

expertise on the hyperparameters of the Mask RCNN models to be acquired. In the first step,

the Mask RCNN model should create clusters and:

• predict their localization in the form of bounding boxes,

• assess their class (EM or hadronic), and

• determine their mask.

Then, we can evaluate if this approach is well suited to localize and classify the numerous

HGCAL clusters. As will be explained later, it is necessary to build synthetic HGCAL events
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to perform this analysis. In the near future, it is foreseen to confirm the results on directly

simulated events.

2.2 Mask-RCNN Description

There are 4 main modules in Mask-RCNN architecture (see Fig. 2):

Figure 2. The Mask-RCNN architecture

Feature Pyramidal Network (FPN): It combines different stages of CNN (see [14] for more

on FPN) with features maps at different scales Ci. Each Ci is a cutting edge CNN, called

ResNet (see [15] for more information). The output feature maps Pi are a combination of low

resolution with more semantics coming from the last stage C5 and a higher resolution (with

lower semantic) coming from the Ci.

Anchor Generator: It tiles the image with boxes (called anchors) at different scales and

aspect ratios, thus playing the role of a sliding window. Anchors can be generated at the pixel

level.

Region Proposal Layer (RPL): Its main role is to find Regions Of Interest (ROI) and to

map them to the corresponding Pi feature maps to obtain output feature maps with a con-

stant tensor dimensions (these output feature maps will feed the Mask RCNN head). First,

given an anchor, the RPL predicts if the anchor is of interest or not (two classes: fore-

ground/background). In the same sub-module, the Region Proposal Network (RPN), a bound-

ing box prediction is performed. After these two predictions, anchors are filtered according

to their score and the ratio of their intersection area over union area (called IoU - Intersec-

tion Over Union) between the considered anchor and Ground Truth (GT) bounding boxes

provided by the training dataset (see [7, 16] for a more detailed description).

Mask-RCNN head: This module receives one by one the feature maps Pi interpolated on

the ROI bounding boxes given by the RPL. Then three neural networks predict the class, the

final bounding box and the mask of the feature maps of the ROI.

For our study, we defined two classes: one called EM class, for the dense cluster associ-

ated with electromagnetic particle and one called here Pion class, for the showers associated
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with hadronic particles. In this particular case of HGCAL study, the data regularization (or

data augmentations) available in the different implementations of Mask RCNN to keep the

model not sensitive to optical deformations (zoom, angles with the subject, rotations, . . . )

must be disabled.

2.3 Loss computation

The loss function which controls the whole learning process is composed of five terms, since

there are five neural networks in the model to train:

L = Lrpn + Lmrcnn, with















Lrpn = L
rpn

class
+ L

rpn

bbox
,

Lmrcnn = Lmrcnn
class

+ Lmrcnn
bbox

+ Lmrcnn
mask

(1)

The loss functions for classification are computed with the cross-entropy [17]:

Lclass = −
1

N

N
∑

i=1

NC
∑

c=1

Pth(ci = c) × log(Pmodel(ci = c)) (2)

where N is the number of predictions, Nc is the number of classes. For the RPN model the

number of class is 2 (foreground/background), whereas for the Mask RCNN heads Nc is the

number of classes of the model. Pth(ci = c) is the probability that the true class of the ith
element is c (i.e. the probability is 0 or 1), and Pmodel(ci = c) is the probability that the ith
predictions belongs to the class c.

For the bounding box regressions in RPN and MRCNN, the loss is expressed with a

Lsmooth
1

function which is a L2-norm for small values and L1-norm for high values to prevent

high weights in the neural networks.

Lbbox = −
1

N

N
∑

i=1

4
∑

k=1

Lsmooth
1 (xGT

k , x
i
k) (3)

xGT
k

, xi
k

are respectively the coordinates of the GT bounding boxes and the coordinates of the

ith predicted bounding box.

The Lmask expression is a binary cross-entropy which is similar to the Lclass (see [6] for

more).

In addition to this main expression of the loss, penalization terms can be added like L2-

normalization for model weights (also known as weight regularization) to prevent unstable

networks and overfitting.

2.4 Building the Dataset

Just like with standard DNN, we need to build a dataset (the training dataset) to learn and

another one (the validation dataset) to test the model with different images/events. The model

is fed with 256x256 images which represent the 2D projections of the hit energy deposits (3D

coordinates). The GT data (classes, bounding boxes and masks) are used iteratively in the

training part to compute the loss and to find the new weights of the five DNN until the loss

converges. For the validation part, the model is fed with the 256x256 images of the validation

dataset, to find clusters which are classified (EM or hadronic class), localized (bounding

boxes) and with predicted masks. The GT data are only used to assess the quality of the model

(architecture, model hyperparameters and learned weights), and to check possible overfitting.
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Figure 3. Illustration of a synthetic event (image) used for the training. The different particles coming

from different events of one simulation in which we can compute all GT information (used for the train-

ing process) are overlaid. The particle labels in the above figure have the following form: particle type,

source event ID, “b/f” for backward/forward detector, “s/n” with a mirroring symmetry or not, and the

particle total energy. The pixel colors represent the energy deposits in the HGCAL detector (projected

on 256x256-sized histograms). The pixel alignment shows the different detector layer positions. In

green, the masks (ellipses) obtain from a principal component analysis gathering 90 % of particle en-

ergy and in red, the bounding boxes extracted from the masks/ellipses. All these data: class, bounding

box and mask, establish the GT for the learning process.

In the following, a HGCAL design similar to that of [1] is considered and only the hits

in the 52 first layers are used (28 from the electromagnetic region and 24 from the hadronic

region of the previous version of the HGCAL design - see Fig. 1). These 52 layers are used

to build standard 256x256 input images for our Mask RCNN 2D-model.

In our HGCAL study, one of the major problems with Object Detection training is to build

a GT dataset. Even if we can easily generate HGCAL events with simulations, getting all the

GT data (particle classes, bounding boxes and masks) of all clusters/showers in an event

is hardly feasible. Indeed, the amount of information to preserve in simulations would be

prohibitive. To get around this problem, we decided to generate complex synthetic events by

overlapping simple ones. First, we performed simulations of single particles in the HGCAL

detector with the following requirements:

• the particle track must be unique in the forward or backward detector,

• the global particle energy must be greater than a cutoff value (here 20 GeV).

With these criteria, a primary dataset is built with the GT information required for the

training (class, bounding box and mask). The 3D deposit energy map is projected on two 2D

histograms (one on the x− z plane and one on the y− z plane) to feed the Mask RCNN model

with images. The mask of the object is computed by performing a Principal Component

Analysis (PCA) used to define a surface enclosing 90 % of the total energy deposit in the

detector. The bounding box is calculated from the obtained ellipse.

The final training dataset is produced by overlapping different simple events coming from

the primary dataset. The number of object/particles can be chosen as well as the maximal

overlapping area between single events. To prevent overfitting (especially on the layer po-

sitions) we introduce for data regularization (or data augmentation) two random processes:
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randomly drawing the object symmetry (x/y flip-flop image) and randomly shifting the object

by 0,±1 pixel (equivalent to a 2 cm shift in the detector) on the x or y axes (see Fig. 3).

3 Results

Two different primary datasets in which particles/objects are randomly drawn to build the

two independent datasets (training and validation datasets). The number of particles/objects

per event is randomly selected from a range of 12 to 20. Datasets containing 5000 and 50

synthetic events (built as explained in Sect. 2.4) have been used for the Mask RCNN training

and the validation respectively.

Figure 4. TensorBoard (monitoring tool for DL) plots of the loss for the training (top plots) and vali-

dation (bottom plots) dataset are displayed. In addition to the total loss (left), the most important loss

contributions are shown: LRPN
bbox

and Lrrcnn
bbox

. The learning rate is set to 10−3 with the 10 first epochs, then

set to 10−4 up to epoch 30.

The model has been trained on 30 epochs with a learning rate of 10−3 for the 10 first

epochs then decreased to 10−4. As can be seen in Fig. 4, the model is learning: the loss

decreases rapidly then seems to converge smoothly. High fluctuations can be observed in the

validation plots, caused most probably by the low value of the validation set (50 events). The

Figure 4 shows that the total loss is dominated by LRPN
bbox

loss, and demonstrates how the RPN

is important in the model and attention must be paid to its hyperparameters.

Once the Mask-RCNN model with its hyperparameters is trained, the model is run on

the validation dataset (this data was not used to train the model) then the predictions are

compared with the GT data to compute statistical metrics of the model quality. This mode

is called in ML literature detection or inference or test. One of these criteria computed by

the Matterport implementation [18] is the precision value with 0.5 IoU value, meaning that a

True Positive (TP) is found when the overlap area between a GT bounding box and a predicted

bounding box is greater than 50 % of the union of the two areas. With these considerations,

the precision is defined as the ratio:

Precision(IoU) =
T P(IoU)

T P(IoU) + FP(IoU)
(4)

In our case, the Precision(IoU = 0.5) = 0.73 which is a quite good result for these “out

of the box” first measurements . It is illustrated by the different kind of event prediction
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Figure 5. Two event predictions are shown here: (top) one among the best predictions, (bottom) one

among the worst predictions. These 2 predictions have been taken from the validation set. The Ground

Truth events (EM/Pion classes, cluster bounding box, and the ellipse mask of the cluster) are displayed

on the left whereas the predicted clusters (EM/Pion class, bounding box, and mask) are displayed

on the right. The probabilities/scores of the prediction are written above the clusters/showers in the

right images. Legend: (a) arrows shows the capability to predict dense regions of clusters; (b) the

model makes good prediction for hadronic showers which start in the Electromagnetic part of HGCAL

detector; (c) the model misses an EM cluster; (d) underestimation of the bounding box and mask of an

hadronic shower.

in the Fig. 5. We can notice that the model makes good predictions especially for dense

regions and for hadron predictions starting in the EM part of the detector ((a) and (b) arrows

in the Fig. 5). However, bad predictions can be observed, mainly particle misidentification

(especially for EM class), and for underestimated hadronic shower size ((c) and (d) arrows in

the Fig. 5). If the latter can be significantly improved by increasing the number of training

events in the dataset, reducing the number of misidentified particles (considered as False

Negative or FN) is more difficult. It will require a fine hyperparameter adjustment (especially

in the RPN module) for our particular HGCAL-2D model. Globally, the number of FN (or

misidentified particle number) is near 15 % of all particles of our data set.

4 Conclusion/perspectives

This preliminary 2D study has been performed in challenging conditions mainly for technical

reasons: the small datasets, the rough histogram extraction, with layers far from each other,

the hit energy converted in int8 (image pixel), etc. It however gives encouraging results: the

Mask-RCNN captures the scattered hits from hadronic showers, dense regions of clusters are

well discriminated, however about 15 % of the particles are undetected (or not predicted) by

the model. These first results are very promising if we solve the technical problems listed

previously. It implies that we have to adapt the Mask RCNN model to the HGCAL topology

(low number of layers, removing the energy deposit normalization for each “image”, adjust
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the hyperparameters of the model especially those relative to the filtering, modify if required

the loss function, etc.).

For all these future improvements and adjustments, we will continue to work with the 2D

Mask-RCNN model. Our ultimate goal is to implement 3D Mask RCNN. We expect to tackle

this new challenge with the evaluation of the 3D implementation Medical Detection Toolkit

[19].
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