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ABSTRACT This article proposes a deep neural network (DNN) model to predict the electric field induced 

by a transcranial magnetic stimulation (TMS) coil under high-amplitude and low-frequency current pulse 

conditions. The DNN model is comprised of an input layer with 6 neurons, three non-linear hidden layers 

with a total of 1088 neurons, and a linear single output layer. The model is developed in Google Colaboratory 

environment with TensorFlow framework using six features including coil turns of single wing, coil 

thickness, coil diameter, distance between two wings, distance between head and coil position, and angle 

between two wings of coil as the inputs and electric field as the output. The model performance is evaluated 

based on four verification statistic metrics such as coefficient of determination (R2), mean squared error 

(MSE), mean absolute error (MAE), and root mean squared error (RMSE) between the simulated and 

predicted values. The proposed model provides an adequate performance with R2 = 0.766, MSE = 0.184, 

MAE = 0.262, and RMSE = 0.429 in the testing stage. Therefore, the model can successfully predict the 

electric field in an assembly TMS coil without the aid of electromagnetic simulation software that suffers 

from an extensive computational cost.  

INDEX TERMS Deep Neural Network, Deep Learning, Electric Field, Magnetic Coil, Transcranial 

Magnetic Stimulation. 

I. INTRODUCTION 

Transcranial magnetic stimulation (TMS) has shown an 

effective therapeutic outcome for some neural disorders such 

as major depressive disorder, traumatic brain injury, 

parkinson's disease, post-traumatic stress disorder, etc. [1-4]. 

The TMS technique requires a magnetic coil normally placed 

on the subject’s head that is fed with a high-valued short-

duration current pulse [5]. The electric current conveyed in the 

coil produces a magnetic field that results in an induced 

electric field inside the brain tissues [6]. Then a localized axial 

depolarization is formed by the induced electrical field in the 

underlying cortical tissue which has a therapeutic 

effectiveness of neural disorders [7]. To ensure a greater 

therapeutic effect, the induced electric field should have to be 

strong enough so that it can depolarize the target neurons that 

are responsible for the neural disorders [8, 9]. Moreover, some 

other factors including focality (area of stimulation) and depth 

(distance from vertex) of the induced electric field are 

associated with the effectiveness of TMS treatment. The 

commercially available single coils named as figure-eight, 

halo, circular, double cone, H, etc. are suffering from the trade-

off between stimulation focality and depth. For instance, the 

figure-eight coil aims to generate a concentrated electric field 

within a smaller region rather than stimulating the deeper brain 

structure. Alternatively, the H-coil increases the stimulation 

depth by maintaining a moderate focality. The Halo coil also 

stimulates the deep brain structure but it degrades the focality. 

Thus, in the recent research the development of an assembly 

coil (combination of single coils) is emphasized to maintain a 

trade-off between stimulation depth and focality [10]. 

As the electric field intensity is highly sensitive to numerous 

factors such as subject head anatomy, coil positioning, coil 

configuration, etc., iterative computer simulation is required to 

determine the desired electric field intensity inside the brain 
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tissues. However, the problem associated with the electric 

field enumeration is that the computational time is generally 

high for the commercial electromagnetic (EM) simulation 

software [11, 12]. Moreover, the computational time is related 

to the development of a human head model and the estimation 

of the electric field with the aid of a volume conductor model 

[13, 14]. The important bottleneck is that it takes few hours to 

half a day to design a TMS coil on a human head model as 

well as to compute the electric field.  

Therefore, the application of the deep learning (DL) approach 

could effectively resolve the computational cost issue [15].  

Generally, the DL approach uses a layered structure of 

algorithm called artificial neural network (ANN) to solve 

several problems such as classification [16-19], regression 

[20-22], clustering [23, 24], and prediction [25-27]. Another 

advanced technique over shallow ANN called deep neural 

network (DNN) can develop a complex non-linear 

relationship with higher generalization capability by 

employing multiple hidden layers between the input and 

output [28] to compute optimum induced electric field.  

Recently, very few researches have been reported to compute 

induced electric field of TMS coil in head model through DNN 

model. For example, Yokota et al. [11] proposed a DNN 

model to estimate the electric field of TMS coil in head MR 

images at different coil positions. They created datasets with 

the help of SimNIBS and FreeSurfer segmentation softwares 

to train and test the U-Net DNN model. The FreeSurfer 

software converted the MR image into a 3D head model and 

the SimNIBS software calculated the electric fields by the 

finite element method at varying positions of the figure-eight 

coil. Thereafter, the DNN model was trained with created 

datasets for mapping the electric field to the MR images. In 

another work, Afuwape et al. [12] utilized a deep learning 

method to predict electric field into T1-weighted MR images 

with varying coil configuration. The 3D head model was 

generated from the MR image and the finite element analysis 

was performed in Sim4Life software for sixteen different coil 

configurations. Then the deep convolutional neural network 

was trained using the generated dataset to predict the electric 

field of TMS coils in 3D head model.  

Both of the models could estimate the electric field accurately 

within a short time.  However, the segmentation process (3D 

head model generation) is time-consuming as well as 

complicated due to the generation of both brain and skull parts. 

It is also quite challenging to develop an accurate head 

structure from low contrast MR images. Besides segmentation 

time, both models take a longer training time to process the 

data with the deep network architecture. Moreover, the 

estimation of the electric field is done based on the single coil 

and single design parameter of coil positioning.  Since, the 

induced electric field value is dependent on different coil 

designing parameters such as the coil turns, coil thickness, coil 

angle, coil diameter, etc. [29], the optimum field calculation 

based on these parameters is essential for a safe and effective 

TMS treatment. Moreover, the advantages associated with the 

tradeoff between focality and depth of induced electric field 

cannot be achieved by the single stimulation coil but can be 

achieved by assembly coil.  Thereby, in this work a simple 

DNN approach is proposed for the prediction of electric field 

induced by TMS assembly coil, which directly regresses 

FIGURE 1. System architecture of proposed DNN based model for electric field prediction.  
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electric field from six different coil designing parameters. This 

is a numerical data-driven method for predicting electric fields 

where the mapping of coil modeling parameters to the electric 

fields is achieved using a training dataset consisting of pairs of 

design parameters and the relative electric fields. The mapping 

is characterized by the model that consist of three non-linear 

hidden layers between the input and output layers. For the 

regression task, the model is trained with 100 data samples of 

six coil design parameters and electric field pairs. After 

training the deep neural network, the electric field induced by 

the transcranial magnetic stimulation coil is predicted directly 

from any TMS coil design parameter. The advantage related 

to the computation time is that the proposed DNN model 

requires only 0.04 s of time for computation using a graphics 

processing unit (GPU). This time is significantly lower 

compared to the conventional simulation software for the 

determination of the electric field induced by the TMS coil.  

The primary contributions of this work are outlined as follows:  

• A DNN approach as a nonlinear regression model to predict 

the induced electric field value from assembly TMS coil 

under high-valued and low-frequency current pulse 

conditions is proposed. 

• The data normalization process is used for the input dataset 

before feeding to the proposed DNN model to arrange 

different valued input features into a similar format.  

• The (6-512-512-64-1) DNN is modeled with a total of 1095 

neurons for learning the complex behaviors of coil designing 

parameters and corresponding induced electric field from the 

input and output datasets. 

• The performance of the proposed model is evaluated by 

analyzing the four regression matrices to predict the electric 

field from the assembly TMS coil.  

      The residual part of the paper is organized as follows: 

Section II presents the detailed explanation of the proposed 

methodology. The result is described in detail with some 

performance measures in Section III. Discussion and 

comparison with the existing works are done in Section IV. 

The conclusion and future directions of the paper are drawn 

in Section V. 

 
II. PROPOSED APPROACH   

The system architecture of the proposed DNN based 

prediction model is shown in FIGURE 1. The input and 

output of the proposed DNN model are the coil design 

parameters and the induced electric field respectively. The 

inner configuration of the DNN model with three non-linear 

hidden layers build a complex relationship between input 

parameters and output electric field. FIGURE 2 illustrates 

the workflow diagram of the overall process of the electric 

field prediction induced by the HVA TMS coil. In which the 

prediction process starts with the collection of data samples 

(h, [𝒙1; 𝒙2; … . ; 𝒙6], 𝑬) ∈ D from the mathematical model 

consisting of head anatomy, h, coil design parameters [𝒙1; 𝒙2; … . ; 𝒙6] and its corresponding induced electric 

fields, E. Then the preprocessing technique is performed just 

before splitting the dataset into a train, 𝐷𝑡𝑟𝑎𝑖𝑛  and test, 𝐷𝑡𝑒𝑠𝑡 

sets. After that, the proposed DNN based regression model 

with the setting of optimal hyperparameters values is 

introduced for supervised learning using the training dataset. 

Finally, the electric field prediction, 𝐸𝑝𝑟𝑒𝑑 is performed 

using the test data on the trained DNN model with the 

evaluation of reasonable values of performance matrices. 

The details of the electric field prediction steps are described 

in the subsections below.  

 

 
 
FIGURE 2. Flow diagram of DNN based electric field prediction process. 

A. GEOMETRIC STRUCTURE OF HVA COIL WITH TWO 

SHELL HUMAN HEAD MODEL 

FIGURE 3 illustrates the cross-section of the two-shell 

human head model with a halo-V assembly (HVA) coil 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3112612, IEEE Access

 

VOLUME XX, 2017 3 

configuration. The head model is comprised of two different 

anatomical layers including the skull and tissue fluid. Both 

layers are indicated in the inset of the three-dimensional head 

model in the Cartesian coordinates system. The outer and 

inner radius of the skull structure are 85 mm and 80 mm 

respectively, while the inner part of the skull i.e., the fluid 

tissue region is modeled with a radius of 80 mm. The HVA 

stimulation coil consists of two coils including halo coil and 

V coil. These two coils have a different number of turns such 

as: 9 for both wings of the V coil and 5 for the halo coil which 

makes a total of 23 turns. The V coil part of the HVA coil is 

placed at a distance of 5 mm from the vertex of the head 

model. Similarly, the halo coil part is placed at 90mm from 

the vertex of the head model. The design parameters of the 

HVA coil are summarized in Table 1. Each of the coils is 

modeled by considering the torus shape of copper material 

with an electrical conductivity of 5.8 × 107 S/m. The 

electromagnetic properties of materials implicated in this 

model are listed in Table 2 [30, 31]. For coil excitation, a 

current pulse with the high amplitude of 5000A and low-

frequency of 2500 Hz are applied in the coil domain. 

 

 
FIGURE 3. Configuration of HVA coil. The red and green arrow lines 
indicate the clockwise and anti-clockwise current direction respectively.  

 

TABLE 1.  Geometrical parameters of the HVA coil. 

 

Coil name Inner 

radius 𝒓𝒊𝒏 (mm) 

Outer 

radius 𝒓𝒐𝒖𝒕 (mm) 

Total 

coil 

turns 

Angle 

between 

two wings 𝜽 (degree) 

HVA 
V 27.5 47.5 18 450 

Halo 87.5 97.5 5 - 

The electric field generation by the HVA coil follows 

Maxwell’s fourth equation of ampere’s laws. The 

distribution of the charge carrier in the closed-loop coil 

generates a magnetic field in the direction perpendicular to 

the coil surface. As a result, the changing magnetic field 

induces an electric field in the conductive head tissue 

medium. Equations (1) to (4) presented in differential form 

are used to represent the generated magnetic field and 

induced electric field [32]. Here, 𝐽 and 𝐽𝑒 represent the 

current density vector and the externally generated current 

density respectively. The magnetic potential and intensity 

vector are indicated by A and B. Moreover, the induced 

electric field intensity and displacement vector are denoted 

as E and D respectively.   

 

                                        𝐽 =  𝜎𝐸 + 𝑗𝜔𝐷 + 𝐽𝑒                   (1)                

                                         𝐸 = −∇𝑉 − 𝑗𝜔𝐴                     (2) 

                                            B = ∇ × 𝐴        (3) 

                  D = 𝜖0𝜖𝑟𝐸                    (4) 

 

Based on the above equations the electric field intensity 

value is evaluated in COMSOL Multiphysics 5.0a software. 

In the simulation, the total model domain including head and 

coil geometries are divided into several sub-domains for 

solving the governing equations [33]. The free tetrahedral 

meshing elements are considered for simulation that ensures 

an effective numerical accuracy in a low computational time.  
 
TABLE 2.  Electromagnetic properties of coil material and anatomical layers 
at an operating frequency of 2500Hz. 
 

Material 
Conductivity  

[S/m] 

Relative  

permittivity 

Relative  

permeability 

Skull 0.02 30380 1 

Tissue fluid 4 80 0.99 

Copper 5.8 × 107  1 0.99 

TABLE 3.  Interpretation of input and output features. 

Inputs and outputs Features to form model 

(unit) 

Range 

 Coil turns of single wing 1-15 

 Coil thickness (mm) 0.1-0.9 

 Coil diameter (mm) 60-110 

Input Distance between two wings 

(mm) 

0.5-10 

 Distance between head  

and coil 

 position (mm) 

1-15 

 Angle between two wings 

(degree) 

5-90 

Output Electric field (v/m) 130-300 

B. DATASET CREATION 

For two shell head model (h), the electric fields, 𝐸𝑛 are 

computed for six different parameters of HVA coil including 

coil turns of single wing (𝑥1), coil thickness (𝑥2), coil 

diameter (𝑥3), distance between two wings (𝑥4), distance 

between head and coil position (𝑥5), and angle between two 

wings (𝑥6). The variation of the values of each input 

parameter are summarized in Table 3. The dataset is obtained  

Z 

X 

Y 

𝜃 

Tissue fluid 

Skull 

𝒓𝒊𝒏 

V coil 

𝒓𝒐𝒖𝒕 
Halo coil 80 mm 

85 mm 
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FIGURE 4. Histogram for original feature visualization. 
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FIGURE 5. Correlation matrix heatmap of attributes.  

 

by setting D: = {ℎ, [𝑥1; 𝑥2; … . ; 𝑥6]𝑛, 𝐸𝑛}𝑛=1𝑁  with a total of 

N=100 samples. Here, {𝐸𝑛}𝑛=1𝑁  is found from {ℎ, [𝑥1; 𝑥2; … . ; 𝑥6]𝑛}𝑛=1𝑁  under the low frequency of 2500Hz 

and high amplitude of 5000A current pulse conditions. All 

the data samples are collected from COMSOL Multiphysics 

software in .csv format for the processing with the proposed 

DNN model. 
 

C. DATA PRE-PROCESSING 

Data preprocessing is an important part to increase the model 

prediction accuracy. This section gives a technical 

specification of the data preprocessing steps for our proposed 

prediction model. Moreover, the statistical analysis is 

conducted for a better understanding of the dataset, cleaning 

unwanted data, normalizing the features, and spliting the 

dataset. The histogram plots of features are shown in 

FIGURE 4 to understand the distribution of each attribute  

 

 

 

 

 

independently. Among all input features, the coil thickness 

and coil diameter are negatively skewed and they have a  

 

TABLE 4.  Statistical values of input and output features. 

Features  Mean Standard 

Deviation 

Min Max 

Coil turns of single 

wing 

9.02 2.16 1.00 15.00 

Coil thickness  0.93 0.19 0.20 1.00 

Coil diameter 94.18 5.93 60.00 110.00 

Distance between 

two wings 

4.99 1.32 0.50 9.50 

Distance between 

head and coil 

 position 

5.81 2.32 2.00 15.00 

Angle between two 

wings  

45.94 11.08 5.00 90.00 

Electric field  229.87 31.26 138.00 329.00 
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FIGURE 6. Scatterplot matrix of features. 

 

great impact on the prediction model. The correlation 

between two quantitative attributes is visualized based on the 

correlation matrix heatmap as shown in FIGURE 5. Analysis 

of correlation matrix provides six important unique input 

features such as coil turns of single wing, coil thickness, coil 

diameter, distance between two wings, distance between 

head and coil position, and angle between two wings of coil 

that are more correlated with the outputs feature of electric 

field. FIGURE 5 indicates that the strong relationship 

between the attributes gives a high correlation value whereas  

 

 

 

hardly related attributes provide low correlation value. 

Moreover, the scatterplot matrix shown in FIGURE 6 

provides information about the structured relationship 

between the attributes. From the first row of the scatter plot 

matrix, it is obvious that the scatter plot of the output electric 

field is the function of all input features. Similarly, each input 

feature is the function of the output electric field as presented 

in other rows. The join distributions of three input features 

(i.e., coil turns of the single wing, coil thickness, coil 

diameter) and output feature (i.e., electric field) are shown 

diagonally in the scatterplot matrix. The statistical analyzes  
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FIGURE 7. Numeric input feature and its normalization. 
 

based on mean, standard deviation, minimum, and maximum 

values are conducted to examine the feature-wise values that 

are summarized in Table 4. From this table, it is seen that the 

range of each feature is different from others. The minimum 

and maximum ranges of all features are set to a considerable 

value to remove bad working points. All the input and output 

features in the dataset are in numeric forms as continuous 

measurement data. Consequently, the normalization 

technique is applied for numeric features prior to training the 

proposed DNN model. The normalization technique coerces 

the values of all features into a distribution centered around 

0 with a standard deviation of 1 by precomputing the mean 

and variance of the features as shown in Table 4. The 

numeric original feature and the corresponding normalized 

features are depicted in FIGURE 7.  
 

D. PROPOSED DNN MODEL 

In a DNN model, the number of nodes in hidden input and 

output layers are identical to the numbers of input and output 

features [34]. However, the number of nodes and hidden layers 

can be varied depending on the complexity of the problem and 

the data set. The proposed DNN model architecture as shown 

in FIGURE 8 comprises of an input layer with six nodes, three 

fully connected (dense) hidden layers with 512-512-64 nodes 

for the first, second, and third layers respectively, and an 

output dense layer with one node for the prediction of electric 

field, 𝐸𝑝𝑟𝑒𝑑. The electric field value can be calculated by using 

equation (5) as:  

    𝐸𝑝𝑟𝑒𝑑 = Linear [𝑅𝑒𝐿𝑈1,2,3∈ℎ ([𝑥1𝑥2⋮𝑥6] • 𝑊𝑖,𝑗(𝑘) + 𝑏𝑖(𝑘))]   (5) 

where 𝑊𝑖,𝑗(𝑘)
 is the weight connecting to the ith unit in kth 

hidden layer and jth unit of previous layer, and  𝑏𝑖(𝑘)
 is the 

bias connecting the ith unit in the kth hidden layer. A non-

linear transfer function called rectified linear unit (ReLU) is  

 

 

 

selected for the hidden layers that provides a non-linearity to 

the DNN regression model. ReLU is defined as: 

 

                              ReLU (𝑃ℎ) = max (0, 𝑃ℎ)                            (6) 

Where,                         𝑃ℎ = [𝑥1𝑥2⋮𝑥6] • 𝑊𝑖,𝑗(𝑘) + 𝑏𝑖(𝑘)
                 (7) 

A linear transfer function is also assigned for the output layer 

to predict the single electric field value. The mean absolute 

error loss function is chosen for the model to determine the 

optimum values of trainable parameters such as weight, 𝑊𝑖,𝑗(𝑘)
 

and bias, 𝑏𝑖(𝑘)
. Then, the Adam optimizer is selected with a 

default learning rate of 0.001 to minimize the loss function 

[35]. The optimizer minimizes the loss function by updating 

the trainable parameters with its gradients that are found by 

the backpropagation method. The entire dataset used for the 

model is divided into two sets with an amount of 80% for the 

training, and the residual 20% for testing. 

 
III. RESULTS 

In this work, the 6-512-512-64-1 DNN model with 299,150 

trainable parameters achieve the best performance for the 

purpose of electric field prediction. Table 5 summarizes the 

results of four verification matrices such as coefficient of 

determination (R2), mean squared error (MSE), mean 

absolute error (MAE), and root mean squared error (RMSE), 

which are commonly used to analyze the model prediction. 

Equations (8) to (12) are employed to define the four above-

mentioned metrics. Here,  𝑦𝑡𝑟𝑢𝑒 indicates the true output, 𝑦𝑝𝑟𝑒𝑑  indicates the predicted output, and the mean of the 

ground truth output is represented as 𝑦𝑚𝑒𝑎𝑛. The total 

number of data is denoted as n.  

               

              𝑦𝑚𝑒𝑎𝑛 = 1𝑛 ∑ 𝑦𝑡𝑟𝑢𝑒𝑛𝑘=1                     (8) 

 

   (a) Original input features with numeric value.                     (b) Input features after normalization. 
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                𝑅2 = 1 − ∑ (𝑦𝑡𝑟𝑢𝑒−𝑦𝑝𝑟𝑒𝑑)2𝑛𝑘=1∑ (𝑦𝑡𝑟𝑢𝑒−𝑦𝑚𝑒𝑎𝑛)2𝑛𝑘=1 ∈ [0, 1]      (9) 

 

                        MSE = 
∑ (𝑦𝑡𝑟𝑢𝑒−𝑦𝑝𝑟𝑒𝑑)2𝑛𝑘=1 𝑛       (10)        

 

               MAE = ∑ |𝑦𝑡𝑟𝑢𝑒−𝑦𝑝𝑟𝑒𝑑|𝑛𝑘=1 𝑛  ∈ [0, +∞]     (11) 

      

           RMSE = √∑ (𝑦𝑡𝑟𝑢𝑒−𝑦𝑝𝑟𝑒𝑑)2𝑛𝑘=1 𝑛 ∈ [0, +∞]    (12) 

 
 

 

 
FIGURE 8. Proposed DNN model architecture. 

 

The 𝑅2 metric represents the quality of the proposed DNN 

regression model. It determines how well the model predicts 

the electric field value. To perfectly fit the data of the 

regression prediction model, the value of 𝑅2 is considered to 

be equal to 1. However, the regression loss function, MSE is 

calculated by summing the squared of distances between the 

true value and predicted value. The value of MSE=0 is 

preferable.  Another loss function called MAE is measured 

by averaging all absolute errors. RMSE is also calculated by 

the square root of the sum of square deviation of true and 

predicted values over the total number of data n. For 

perfectly fitting the predicted values to the true values, the 

RMSE=0 is desirable.  

 

 
 
FIGURE 9. Loss versus epoch plot for the DNN model. 

 

 

 
 
FIGURE 10. The predicted electric field values versus simulated data on 
test set. 
 
 

The training process of the proposed DNN model against 100 

iterations (epochs) is shown in FIGURE 9, in which the 

training and validation loss are found equal at 20 epochs. 

After 20 epochs, both errors are started to decrease at an 

optimum level and the finest result is achieved within the 

epochs of 90 to 100. 

 
 
TABLE 5.  Results of four verification matrices 

 
R2 MSE MAE RMSE 

0.766 0.184 0.262 0.429 
 
 

The predicted electric field values are plotted against true 

electric field values (simulated values) for the proposed 

model which is shown in FIGURE 10. The graph indicates 

that the prediction accuracy of the proposed DNN model is 

good enough as the predicted electric field values are quite 

similar to the simulated electric field values. Therefore, the 

proposed model has the capability to predict the electric field 

values ranging from 130 V/m to 300 V/m in an accurate 

manner. Moreover, the prediction accuracy of the model as 

a function of single input feature (i.e., coil turns of single 

wing) is shown in FIGURE 11. For a range of values of input 

feature, there is a considerable number of accurate 

predictions of the electric field values of the HVA TMS coil 

under high amplitude and low-frequency current conditions.  
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FIGURE 11. The predicted electric field values as a function of the single 
input feature of coil turns of single wing.  

 

IV. DISCUSSION 

The main advantage of the proposed DNN model is that it 

can estimate the induced electric field in a head model much 

faster way than the electric field determination process by an 

EM software. The electric field computational time for the 

proposed DNN model and simulation software are 

determined. Table 6 represents the computation time to 

estimate the induced electric field in a head model from a 

HVA TMS coil.  The expected values of computation time 

using GPU and CPU for the proposed DNN model are found 

0.04 s and 1.98 s respectively. On the other hand, the 

required computation time for COMSOL Multiphysics 

software is found 6 min 15 s even though this estimated time 

exclude the construction time of anatomical head and coil 

model. If the construction time of anatomical head and coil 

model is considered then it will be few hours.  

 

 
TABLE 6.  Computation time to estimate electric field for HVA TMS coil. 

 
Model Computation time  

DNN (GPU) 0.04 s 

DNN (CPU) 1.98 s 

Simulation software 

(Excluding coil and 

anatomical head modeling) 

 

6 min 15 s 

 

 

Moreover, the performance comparison of the proposed 

DNN based approach with the couple of similar state-of-the-

art approaches is presented in Table 7. The works reported in 

in [11-12] also used DNN model to estimate electric field but 

they used single coil and single coil parameter to determine 

electric field. Single coil is not suitable for the trade-off 

between stimulation focality and depth [10]. For getting 

optimal treatment efficacy and minimal side effect, focality 

and depth trade-off is essential. Thus, DNN based electric 

field estimation for assembly coil with multiple coil 

parameters is done in this work.   Table 7 indicate than that 

the proposed model can predict electric field for several coil 

parameters at a bit lower R2 value. However, the lower value 

of R2 in compare to the existing works is found because of 

the lower number of training datasets used. The value of R2 

can be improved by employing several data increment 

methods. Since, the use of an assembly coil rather than a 

single coil can provide optimum therapeutic support to the 

neural disorder patient, the optimum electric field 

determined from an assembly coil for varying coil 

parameters can provide an effective and safe stimulation 

during treatment against neurological disorders. 

 
 
TABLE 7.  Comparison between the proposed model and existing related 
works.  

 
Reference [11] [12] This work 

Prediction 

model 

U-Net Deep CNN DNN 

Data type Image Image Numerical 

value 

Total dataset 261,072 800 100 

Coil type single single assembly 

Coil 

parameter 

coil position - . coil position 

. coil turns 

. coil thickness  

. coil diameter 

. coil angle 

. coil wings     

  distance 

Performance 

evaluation 

matrix 

CC=0.93 

PSNR= 

29dB 

MAE=6 

RMAD=6% 

R2 = 0.92 

MAPE = 

6.2% 

R2 = 0.766 

MSE = 0.184 

MAE = 0.262 

RMSE = 0.429 

V. CONCLUSION 

This paper introduces a DNN based regression model for 

predicting electric field induced by HVA transcranial 

magnetic stimulation coil inside a head model. The database 

uses for training the DNN model consists of 100 simulated 

data. These 100 data are obtained for different coil 

parameters. The model exhibits reasonable prediction 

accuracy of R2 = 0.766 which ensures the ability of the model 

to predict electric field for HVA coil with varied parameters. 

Moreover, the model can efficiently estimate electric field in 

a very short time of 0.04 s without any requirement of the 

mathematical or three-dimensional model for human head 

phantom and TMS coil. Thus, the proposed DNN model can 

effectively reduce the electric field computation cost and 

help manufacturer to build an optimum coil for the treatment 

of the certain neurological disorder. In future, data 

augmentation process can be used to increase the number of 

datasets and to reduce the overfitting problems related to the 

model. Moreover, the critical stimulation parameters 

including focality and depth can also be considered as the 

predictive values to reduce the possibility of undesired side 

effect with the aid of other optimization algorithms including 

differential evolution, genetic algorithm, particle swarm 

optimization, etc. 
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