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A Deep Neural Network Model 
using Random Forest to Extract 
Feature Representation for Gene 
Expression Data Classification
Yunchuan Kong & Tianwei Yu

In predictive model development, gene expression data is associated with the unique challenge that 

the number of samples (n) is much smaller than the amount of features (p). This “n ≪ p” property has 

prevented classification of gene expression data from deep learning techniques, which have been 
proved powerful under “n > p” scenarios in other application fields, such as image classification. 
Further, the sparsity of effective features with unknown correlation structures in gene expression 
profiles brings more challenges for classification tasks. To tackle these problems, we propose a newly 
developed classifier named Forest Deep Neural Network (fDNN), to integrate the deep neural network 
architecture with a supervised forest feature detector. Using this built-in feature detector, the method 

is able to learn sparse feature representations and feed the representations into a neural network to 

mitigate the overfitting problem. Simulation experiments and real data analyses using two RNA-seq 
expression datasets are conducted to evaluate fDNN’s capability. The method is demonstrated a useful 

addition to current predictive models with better classification performance and more meaningful 
selected features compared to ordinary random forests and deep neural networks.

In the �eld of bioinformatics, the development of computational methods for predicting clinical outcomes using 
pro�ling datasets with a large amount of variables has drawn great interest. In such datasets, the sample sizes tend 
to be very small compared to the number of predictors (genes), hence resulting in the n p issue. Moreover, 
existence of complex unknown correlation structures among predictors has brought more di�culty in prediction 
and feature extraction. �erefore, the prediction task has been formulated as a classi�cation problem combined 
with feature representations, and related work tried to solve the problem by utilizing machine learning approaches 
such as random forests1,2, neural networks3, sparse linear models4,5 and support vector machines6. While the 
primary goal of these methods are to achieve high classi�cation accuracy, e�orts have also been put into learning 
e�ective feature representations. Literature shows that among the machine learning techniques, random forests7 
(RF) have been an excellent tool to learn feature representations8,9, given their robust classi�cation power and 
easily interpretable learning mechanism. �is can be useful in building robust predictive models especially when 
the underlying structures in the feature space are complex and unknown.

Classi�cation methods have been developed considering known functional links between features. For exam-
ple, a variant of the Random Forest method has been proposed where the feature sub-sampling was conducted 
according to spatial information of genes on a known functional network10.Objective functions of the support 
vector machine and the logistic regression were modi�ed by adding relational penalty terms, again based on 
known functional information11–13. Very recently, a method embedding protein-protein interaction feature 
graph directly into the deep neural network structure has also been proposed14. �e authors of these methods 
have demonstrated that incorporating feature relation structures results in better classi�cation performance. 
However, considering the functional relation structures explicitly requires external information in addition to 
gene expression values. �is requirement cannot always be satis�ed as the functional structure can be unknown 
or incomplete.

Trying to develop a powerful classi�er which can implicitly extract sparse feature relations from an extremely 
large feature space, we intend to incorporate a forest “feature detector” with deep neural networks (DNN), which 
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is one of the state-of-the-art learning techniques15. Although in recent years, deep learning models have been 
proved to be powerful tools in classi�cation, their application in bioinformatics is limited due to the n p issue16. 
�is is because cell populations and clinical subject populations exhibit large heterogeneity and data characteris-
tics across various laboratories are inconsistent, resulting in gene expression datasets to have limited numbers of 
samples compared to the large numbers of features. On the other hand, deep learning usually requires a large 
amount of training samples such as in image classi�cation17, therefore the contradiction obstructs the use of deep 
learning techniques in the �eld of bioinformatics. Based on these facts, modi�ed deep learning models suitable 
for disease outcome classi�cation using gene expression data with n p are in need.

Building a supervised feature detector on top of DNN classi�ers is a natural choice to achieve sparse learning 
with less parameters compared to the usual DNN, for the following reasons: (1) the detector detects e�ective 
features in a supervised manner, i.e. using the information of training outcomes, resulting in accurate feature 
representations; (2) the input of the downstream DNN, which is the output of the feature detector, has a much 
smaller dimension compared to the original feature sets. Also, the rationale of employing random forests over 
other models lies in two aspects: (1) as an ensemble model, RF is able to output prediction results from all its base 
learners rather than a single predicted probability score; (2) the importance of features in each base learner can be 
easily obtained. �e �rst aspect allows us to build downstream DNN following the feature detector, which cannot 
be achieved if the detector only outputs a single prediction such as in support vector machines and logistic regres-
sions. �e second aspect facilitates feature evaluation process for the entire integrated model, while other classi�-
ers such as kernel based methods may not naturally embrace feature selection mechanism. To the best of our 
knowledge, no work has been done along this track for gene expression data. In the �eld of traditional machine 
learning research such as computer vision, the idea of stacking classi�ers18 has been implemented and is now very 
popular in Kaggle data science competitions (https://www.kaggle.com). Nevertheless, stacking methods are 
mainly intended to cross-validate a large amount of multi-level models, and consequently require much larger 
number of instances (samples) than the number of features with no exception. In contrast, our new fDNN classi-
�er with supervised forest feature detector is developed for n p sparse learning. In this paper, we justify our 
approach by demonstrating the classi�cation performance on both synthetic data and real RNA-seq datasets.

Methods and Materials
Forest deep neural networks. Our newly proposed forest deep neural network (fDNN) model consists 
of two parts. �e forest part serves as a feature detector to learn sparse representations from raw inputs with 
the supervision of training outcomes, and the DNN part serves as a learner to predict outcomes with the new 
feature representations. In the forest part, independent decision trees19 are constructed, and the forest is then 
an ensemble of the trees. �erefore, a natural choice of building the forest is the Random Forest model7. Other 
forest constructions are also possible. For example, one can use the network-guided forests10 if the feature space 
is structured and known, or the forest can be simply built through bagging trees20. In this paper, we only employ 
random forests as the feature detector.

In the fDNN model, a forest   is a collection of decision trees

F JΘ = Θ = …m M( ) { ( )}, 1, , ,m m

where M is the total number of trees in the forest, Θ = {Θ1, …, ΘM} represents the parameters in  . In random 
forests, Θ includes splitting variables and their splitting values. In the feature detection stage,   is �tted by the 
training data X and y, where ∈ ×X n p  is the input data matrix with n samples and p features and ∈y n is the 
outcome vector containing classi�cation labels. �rough the �tted forest, for any observation xi, i = 1, …, n, we 
obtain the prediction from each tree in  :

Θ = Θ … Θf T Tx x x( ; ) ( ( ; ), , ( ; )) ,i i M i M
T

1 1

where Θ = ˆT yx( ; )m i m im
 is the binary prediction of observation xi given by m . Hence, denote fi: = f(xi;Θ) for sim-

plicity, for an observation xi, fi is a binary vector summarizing the signal detected from the forest and later on 
serves as the new input features to be fed into the DNN.

Following the new feature representations provided by the forest, the deep neural network with l hidden layers 
has a standard architecture
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where F = (fi, …, fM)T is the forest matrix with n samples and M tree predictions, y again is the classi�cation 
outcome vector, Ψ denotes all the parameters in the DNN model, Zout and Zk, k = 1, …, l − 1 are hidden neurons 
with corresponding weight matrices Wout, Wk and bias vectors bout, bk. �e dimensions of Z and W depend on 
the number of hidden neurons hin and hk, k = 1, …, l, as well as the input dimension M and the number of classes 
hout. For binary classi�cation problems, hout ≡ 2 since the elements of y are binary. Usually, the number of hidden 
neurons decreases from the input layer, namely hin = M > h1 > h2 … > hout. σ(⋅) is the activation function such as 
sigmoid, hyperbolic tangent or recti�ers. g(⋅) is the so�max function converting values of the output layer into 
probability prediction i.e.

https://www.kaggle.com
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where i = 1, …, n.
�e parameters to be estimated in the DNN are thus all the weights and biases. �e model can be trained using 

a stochastic gradient decent (SGD) based algorithm21 by minimizing the cross-entropy loss function

∑Ψ = − + − −
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where again Ψ denotes all the model parameters, and p̂
i
 is the �tted value of pi. More details about DNN can be 

found in standard deep learning reviews21. �e entire architecture of the fDNN model is visualized in Fig. 1.

Details of model training. �e training of fDNN classi�er consists of two stages. In the �rst stage, training 
data including labels are used to �t the forest, and predictions from each tree in the forest for all instances are then 
fed into the fully-connected DNN, for training in the second stage. A�er the two-stage training, given a testing 
instance, the testing prediction is calculated through the entire model by the �tted forest and DNN. Note that for 
implementation purpose, the forest prediction feature fi, ∀i is one-hot encoded as shown in Fig. 1. �is is the same 
operation as with the label vectors yi, since the �nal output dimension from DNN is two. Consequently, the actual 
input for the DNN in our implementation is an n × M × 2 tensor rather than an n × M matrix F.

For the DNN model, the activation functions are the recti�ed linear unit (ReLU)22 with the form (in scalar 
case)

σ = .x max x( ) ( , 0)ReLU

�is activation has an advantage over sigmoid and hyperbolic tangent as it can avoid the vanishing gradient 
problem23 during optimization. For the optimization algorithm, We choose the Adam optimizer24 as it is the 
most widely used variant of traditional gradient descent algorithms in deep learning nowadays. Also, we use the 
mini-batch training strategy by which the optimizer randomly trains a small proportion of the samples in each 
iteration. Details about the Adam optimizer and mini-batch training can be seen in deep learning literature21,24.
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Figure 1. Visualization of the architecture of the fDNN model.
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�e classi�cation performance of the fDNN model is associated with both hyper-parameters for the forest and 
for the DNN. Forest hyper-parameters include number of trees in the forest, and tree related parameters such as 
tree depth, minimum splitting sample size etc. DNN hyper-parameters are architecture related parameters such 
as the number of layers and the number of hidden neurons in each layer, regularization related parameters such 
as the dropout proportion and the penalty scale of regularizers, model training related parameters such as the 
learning rate and the batch size. �ose hyper-parameters can be �ne-tuned using advanced hyper-parameter 
optimizing algorithm such as Bayesian Optimization25. However, in this work, our primary interest is to examine 
the performance of fDNN compared to ordinary classi�ers under same or similar settings, instead of �ne tuning 
a “best-of-all” model for speci�c datasets. �erefore, the hyper-parameters are simply chosen by convention or 
tuned using grid search with synthetic validation datasets in a feasible hyper-parameter space. �e method is 
implemented in Python with packages Scikit-learn26 and Tensor�ow27.

Synthetic data generation. �e goal of simulation experiments is to mimic disease outcome classi�cation 
using gene expression data, where n p and e�ective features are extremely sparse and correlated, and explore 
the performance of our new model compared to ordinary classi�cation methods. We compare our fDNN method 
with usual random forests and DNN, which account for the two parts of fDNN respectively. �rough the numer-
ical experiments, we are intended to show that fDNN is able to improve the classi�cation performance of pure 
random forests or DNN, and the better performance cannot be achieved simply by increasing the complexities of 
the two ordinary classi�ers. Robustness is also tested as we simulate datasets that do not fully satisfy the correlated 
feature assumption, and apply the new method to examine whether it can still achieve a reasonable 
performance.

For a given number of features p, we �rst generate a latent feature network using the preferential attach-
ment algorithm28. Each node of the network represents one feature. �e resulting network is scale-free with a 
power-law degree distribution. �at means only a few features in this network have relatively large number of 
“neighbors”. De�ning the distance between two features in the network as the shortest path between them, a p × p 
distance matrix D recording pairwise distances among features is then calculated. Next, the distance matrix is 
transformed into a covariance matrix Σ by letting

Σ = . = … .i j p0 7 , , 1, ,ij
Dij

Here by convention the diagonal elements of D are all zeros meaning the distance between a feature to itself 
is zero, and thus the diagonal elements of Σ are all ones. Since only a few features have high connections in the 
feature network, this fact is re�ected in the Σ matrix. Utilizing Σ as the covariance matrix for generating sample 
instances, we are then able to achieve the goal that features have sparse and correlated structures. n multivariate 
Gaussian samples are simulated forming the data matrix X = (x1, …, xn)T i.e.

 Σ = …~ i nx 0( , ), 1, ,i

where n p for imitating real gene expression situations.
To generate outcome variables, we select a subset of all features to be the “true” predictors. �e selection is 

conducted as follows: in the generated feature network mentioned above, we randomly select part of the 
high-degree features as “cores”, and a portion of their neighbors are also randomly selected. In this way, the true 
predictors satisfy: (1) sparsity, since only a few of all are high-degree features and only part of the neighbors are 
selected. (2) correlated structure, since the “core” features have much higher correlation with their neighbors than 
other distant features. Denoting the number of true predictors as p0, we sample a set of parameters 

β ββ = …( , , )p
T

1
0

 and an intercept β0 within a certain range. In our experiments, we �rst sample β’s from the 

interval (0.05, 0.1), and some of the parameters are randomly turned into negative, so that we accommodate both 
positive and negative coe�cients. Finally, the outcome variable y is generated through a logistic regression model
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where (·) is the indicator function, t is a threshold and logit(⋅) is the logit function
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�e inverse logit−1 is equivalent to a binary class so�max function.
Following the above procedure, we simulate a set of synthetic datasets with 5,000 features and 400 samples. 

Since we are considering cases with extremely low signal-to-noise ratio, we examine di�erent numbers, i.e. 10, 20, 
30 40, and 50 of true predictors, corresponding to 1–5 cores among all the high-degree features. Also, in reality, 
the true predictors may not be only distributed at the high-degree nodes and their neighbors in the latent feature 
network. Instead, a few of the true predictors can be quite scattered. To test model robustness in this possible 
circumstance, in addition to generating datasets following the above procedure, we also simulate another series 
of datasets where 50% of the true predictors are randomly selected among the entire feature network rather than 
from high-degree features and their neighbors. We call these two sets of data “clustered” case and “scattered” case 
respectively, according to the property of predictor structures.
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Real datasets. We apply the fDNN method to two real datasets. �e �rst is the single-cell RNA-seq data 
on bone marrow cells29 (GSE99095). �e dataset consists of a gene expression matrix with 17,258 genes in 391 
control cells from healthy donors, and 588 cells from 5 patients with bone marrow failure. �e original study has 
found the cell populations are diverse both in patients and in healthy donors, with patient cells showing higher 
diversity due to the existence of aneuploid cells29. We obtain the normalized expression matrix from the Gene 
Expression Omnibus (GEO). Our interest is to test the method’s capability to classify the source of the cells, i.e. 
healthy/diseased, despite the presence of cell diversity within each class.

�e other dataset we study is GSE106291, which contains the RNA-seq expression pro�les of 23,368 genes 
from 250 acute myeloid leukemia patients under intensive treatment30. �e primary clinical outcome is treatment 
resistance. Each patient was labeled as either resistant or sensitive to the treatment. We aim at classifying the two 
responses with the gene expression data. From the original normalized expression matrix, we delete genes with 
more than 10% zero measurements, resulting in the �nal data matrix with 11,068 features and 250 columns. For 
each feature, the expression value is Z-score transformed, i.e. the expression value minus the mean across all 
patients and then divided by the standard deviation.

�e two datasets are suitable for testing our method, because the datasets fall into the n p category, the 
features are correlated due to their functional relations, and only a small portion of the features are expected to 
contribute to the biological mechanism that generated the class membership.

Results and Discussion
Simulation results. In our simulation studies, the fDNN had 300 trees in the forest part and three hidden 
layers in the DNN part, with 256, 64 and 16 hidden neurons respectively. Note the 300-tree forest served as a 
supervised feature detector for the downstream DNN, and the feature space was shrunk from p = 5000 to 
M = 300, mediating intractable n p situation since n and the input dimension M are now at the same magni-
tude. We also observed that adding more hidden layers to DNN resulted in similar prediction performance, hence 
the three-hidden layer architecture was �nalized as a parsimonious choice. To compare, we also recorded the 
prediction performance from the 300-tree forests (RF_300) in fDNN and experimented with a DNN classi�er 
(DNN_3_256) with the same architecture as the one in fDNN. Moreover, we tested additional random forests 
with 500 trees (RF_500) and DNN with one more hidden layer (1024 neurons) at the top (DNN_4_1024), for the 
reason mentioned in the Methods section. For each of the data generation settings, 10 datasets were generated, 
and all methods mentioned above were applied on the data. For each simulated dataset, we randomly split the 
dataset into training and testing sets at a 4:1 ratio. �e �nal testing classi�cation performances were then averaged 
across the ten datasets. All the classi�cation results were evaluated by the area under the receiver operating char-
acteristic (ROC) curve (AUC).

Table 1 and Fig. 2 show the results of the simulation experiments. Corresponding to the “clustered” case, 
Fig. 2(a) shows the fDNN method outperformed RF_300 and DNN methods, and performed better than RF_500 
in most cases. As the number of true predictors increased, there were increasing trends for all of the methods, 
with a few exceptions due to the randomness of data generation. �e trends for fDNN and RF_300 are quite par-
allel. However, the downstream DNN in fDNN always improved the prediction from the forests. Note that 
DNN_4_1024 was actually worse than DNN_3_256, and this makes sense because under n p the deeper neu-
ral network is more a�ected by the pitfall of the over�tting phenomenon. Hence, it in turn demonstrated the 
necessity for constructing a model with reduced feature dimension as in fDNN to get around this issue.

As for the “scattered” case (Fig. 2(b)), fDNN was still the best among the �ve, while overall AUC’s slightly 
decreased compared to Fig. 2(a). �is is because for neural network methods, DNN inherently tackles correlated 
features. When the correlation among features decreased, the performance of DNN_3_256 and DNN_4_1024 
in (b) became worse than that in Fig. 2(a). At the same time, although not as directly a�ected as DNN meth-
ods, decreased feature correlation also deteriorated the performance of RF_300 and RF_500. Recall we only 
selected a proportion of high-degree feature neighbors as the true predictors. �e remaining neighbors could 
also be informative when constructing decision trees, due to their high correlation with the true predictors. 
Consequently, compared to the scattered case where half of the selected true predictors could hardly be connected 
by others in the feature network, the clustered case is easier for random forests as the chance of selecting “rele-
vant” predictors is higher.

In summary, the simulation experiments demonstrated that our newly proposed fDNN classi�er had better 
classi�cation performance compared to ordinary random forests or deep neural networks alone, in the situation 
that n p and signals are sparse and correlated. Moreover, the improved performance could not be achieved by 

Case Clustered Scattered

# true predictors 10 20 30 40 50 10 20 30 40 50

fDNN 0.79 0.828 0.832 0.872 0.892 0.775 0.781 0.829 0.861 0.851

DNN_3_256 0.762 0.791 0.809 0.829 0.865 0.75 0.727 0.822 0.823 0.836

DNN_4_1024 0.76 0.754 0.76 0.836 0.833 0.742 0.724 0.774 0.846 0.805

RF_300 0.783 0.82 0.823 0.862 0.887 0.772 0.76 0.825 0.858 0.831

RF_500 0.765 0.826 0.824 0.86 0.904 0.765 0.738 0.818 0.843 0.852

Table 1. Classi�cation comparison of the forest Deep Neural Network (fDNN) method, deep neural networks 
(DNN) and random forests (RF). Statistics are the classi�cation accuracies measured by AUC.
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simply increasing the model complexities for random forests and DNN. �e method was also robust as it outper-
formed other methods in both of the clustered and scattered cases.

Real data results. For each of the two datasets, we again randomly divided all samples into training and 
testing sets. For GSE99095, we had 700 training and 279 testing samples; for GSE106291, the numbers were 
200 and 50 respectively. The three classifiers, fDNN, DNN, and RF were trained on the training samples. 
Hyper-parameters were chosen by cross-validation using the training datasets. �e classi�cation performance 
was again evaluated by the testing AUC of ROC. �e computation times of fDNN training plus testing were 
69.9 seconds for GSE99095 and 40.8 seconds for GSE106291 respectively, on a workstation with dual Xeon Gold 
6136 processors, 192 GB RAM, and a single Nvidia Quadro P5000 GPU. Tables 2 and 3 list the detailed architec-
tures for each classi�cation methods and summarize the testing results for GSE90995 and GSE106291 respec-
tively. Corresponding ROC plots are shown in Fig. 3(a,b).

From the tables and the ROC plots, we see that fDNN was able to obtain better classi�cation results in terms 
of ROC, compared to traditional DNN and RF classi�ers. All three methods performed reasonably well on 
GSE99095, which contained close to 1000 samples. Although RF performed better than DNN in simulations, in 
the real dataset DNN achieved slightly better testing results. Our fDNN method, by learning sparse representation 
using RF as a feature detector, improved over the two methods in terms of testing data classi�cation. GSE106291 
had a smaller sample size of 250, which tested the limits of the methods. �e small sample size may be the reason 
why all three methods performed worse. Still the fDNN achieved slightly better testing data classi�cation error 
rate, indicating its applicability on gene expression datasets with relatively small sample size.

In real analysis of gene expression data, one may not only be concerned about the prediction results, but also 
be interested in features with major contribution to the classi�cation, as those signi�cant genes can reveal biolog-
ical mechanisms. A�er �tting the fDNN model, we employed a newly developed variable ranking mechanism, 

Figure 2. Plots of the classi�cation comparison in Table 1. Cases: (a) clustered (b) scattered.

Method Architecture Testing AUC

fDNN 400Trees + 256 + 64 + 16 0.986

DNN 1024 + 512 + 128 + 16 0.949

RF 1000Trees 0.897

Table 2. Testing results for the GSE99095 dataset. Numbers in the architecture column denote the number of 
trees in Random Forest and the number of hidden neurons in neural network methods.

Method Architecture Testing AUC

fDNN 500Trees + 256 + 64 + 16 0.778

DNN 1024 + 256 + 16 0.751

RF 1000Trees 0.716

Table 3. Testing results for the GSE106291 dataset. Numbers in the architecture column denote the number of 
trees in Random Forest and the number of hidden neurons in neural network methods.
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which combined the variable importance calculation in ordinary random forests and the Connection Weights 
(CW) method31 introduced in neural networks, to calculate a score for each gene as the variable importance in 
fDNN.

In random forests, variable importance is quanti�ed by cumulating the decrease of impurity caused by split-
ting at a certain feature across all the trees. Based on this fact, the forest   in fDNN is also able to record feature 
importance during �tting. Moreover, importance scores of features in each tree   are also available, resulting in 
a p × M tree importance matrix S, where again p is the number of features and M is the number of trees in  .

For an ordinary DNN, the CW method tries to quantify the contribution of an input variable by summing 
over all the absolute values of the weights connecting the variable and the �rst hidden layers, assuming all input 
data are standardized. Mathematically, we have

∑= | |
=

u w ,j
k

p

jk
in

1

( )

where uj is the importance score for feature j, w(in) denotes weights between the input and �rst hidden layers. 
�e same logic applies in fDNN, but instead of calculating the importance of each feature, the CW method helps 
compute the importance of each tree output by

∑= | |
=

v w ,j
k

M

jk
in

1

( )

and here vj is the importance score for  j. Now we have both quanti�ed the feature importance in the forest part 
and the tree importance in the DNN part. Denoting = …⁎ ⁎ ⁎v vv ( , )M

T
1  as the normalized importance scores for 

all the trees in DNN with ∑ ==
⁎v 1i

M
i1 , we �nally combine the two parts of fDNN with

λ = ⁎Sv ,

where λ = (λ1, … λp)
T is the �nal importance of the original features.

Applying this feature evaluation procedure to our real data examples, we obtained a ranked gene importance 
lists for GSE99095 and GSE106291 respectively. For GSE99095, we analyzed top 1% ranked genes from both 
fDNN and RF for comparison purpose. �e reason for comparing RF is that it is commonly used as a variable 
importance ranking tool. Among the top 1% (172) genes selected by the two methods, 52 genes overlap. GO 
enrichment results are shown in Table 4.

Among the top 10 fDNN selected pathways, one of the major themes is related to the mitochondria. �e top 
three biological processes include the synthesis of mitochondrial proteins, mitochondrial transport, and the pro-
cess of energy generation through oxidative phosphorylation. �e results indicate that at the cellular level, mito-
chondria biogenesis and energy production is associated with the bone marrow failure outcome. Comparatively, 
RF also identi�ed the oxidative phosphorylation as a signi�cant process, but not the mitochondrial protein bio-
synthesis and transport processes. Both fDNN and RF found the hematopoietic process and the integrin pathway, 
which are integral parts of blood cell development. �e fDNN selected the hemostasis pathway, which is another 
important part of blood cell regulations.

For the GSE106291 data, as the total number of genes under study is smaller, to maintain su�cient statisti-
cal power in gene set enrichment analysis, we compared the top 2% most important genes from fDNN and RF. 
Between the two lists of top 221 genes, 81 genes overlap. As shown in the enrichment analysis results (Table 5), 
both fDNN and RF selected chemotaxis as the top GO term. However, the second term selected by fDNN, 

Figure 3. ROC plots for (a) GSE99095 and (b) GSE106291.
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“myeloid leukocyte activation”, was not found by RF. Given the nature of the disease, and the clinical response 
under study, i.e. treatment resistance, it is expected that the myeloid activation pathways play a critical role. 
�e fDNN also selected small molecule metabolism, exocytosis, and cAMP response as important processes in 
the resistance to the treatment, which have been implicated in chemotherapy response in other types of cancer. 
Overall, fDNN selected di�erent important genes from RF, and the biological functions overrepresented by the 
fDNN selected genes are plausible.

Conclusion
We presented a new forest - deep neural network classi�er aimed at n p classi�cation problems for clinical 
outcome prediction using gene expression data. Its machinery relies on supervised learning feature representa-
tions from a forest and training classi�ers in a deep neural network. Simulation experiments have shown its rela-
tively higher classi�cation accuracy compared to existing methods, and the real data application demonstrated 
the utility of the new model.

References
 1. Kursa, M. B. Robustness of random forest-based gene selection methods. BMC bioinformatics 15, 8 (2014).
 2. Cai, Z. et al. Classi�cation of lung cancer using ensemble-based feature selection and machine learning methods. Mol. BioSystems 

11, 791–800 (2015).
 3. Chen, Y.-C., Ke, W.-C. & Chiu, H.-W. Risk classi�cation of cancer survival using ann with gene expression data from multiple 

laboratories. Comput. biology medicine 48, 1–7 (2014).
 4. Liang, Y. et al. Sparse logistic regression with a l 1/2 penalty for gene selection in cancer classi�cation. BMC bioinformatics 14, 198 

(2013).
 5. Algamal, Z. Y. & Lee, M. H. Penalized logistic regression with the adaptive lasso for gene selection in high-dimensional cancer 

classi�cation. Expert. Syst. with Appl. 42, 9326–9332 (2015).
 6. Vanitha, C. D. A., Devaraj, D. & Venkatesulu, M. Gene expression data classi�cation using support vector machine and mutual 

information-based gene selection. Procedia Comput. Sci. 47, 13–21 (2015).
 7. Breiman, L. Random forests. Mach. learning 45, 5–32 (2001).
 8. Vens, C. & Costa, F. Random forest based feature induction. In Data Mining (ICDM), 2011 IEEE 11th International Conference on, 

744–753 (IEEE, 2011).

GOBPID Pvalue Term

Signi�cant in 
RF selected 
genes (p < 0.01)

Signi�cant in genes 
uniquely selected by 
fDNN (p < 0.01)

GO:0070125 0.000319438 mitochondrial translational elongation Y

GO:1990542 0.000319438 mitochondrial transmembrane transport Y

GO:0006119 0.000431138 oxidative phosphorylation Y Y

GO:0006412 0.000524598 translation Y

GO:0048534 0.000553723 hematopoietic or lymphoid organ development Y

GO:0007229 0.00166512 integrin-mediated signaling pathway Y

GO:0098754 0.00166512 detoxi�cation Y

GO:0016073 0.002434088 snRNA metabolic process

GO:0007599 0.004203111 hemostasis

GO:1903018 0.00560232 regulation of glycoprotein metabolic process

Table 4. �e top 10 overrepresented GO biological processes by the top 1% genes selected in fDNN from 
GSE99095 data, a�er manual removal of redundant GO terms.

GOBPID Pvalue Term

Signi�cant in RF 
selected genes 
(p < 0.01)

Signi�cant in genes 
uniquely selected 
by fDNN (p < 0.01)

GO:0006935 0.000640609 chemotaxis Y

GO:0002274 0.001091917 myeloid leukocyte activation Y

GO:0062014 0.001389434
negative regulation of small molecule metabolic 
process

Y

GO:0016477 0.001567641 cell migration Y

GO:0045055 0.002003684 regulated exocytosis Y

GO:0060078 0.002129227 regulation of postsynaptic membrane potential

GO:0030334 0.00244581 regulation of cell migration Y

GO:0030501 0.002766529 positive regulation of bone mineralization

GO:0061045 0.002925766 negative regulation of wound healing

GO:0071320 0.003321428 cellular response to cAMP Y

Table 5. �e top 10 overrepresented GO biological processes by the top 2% genes selected in fDNN from 
GSE106291 data, a�er manual removal of redundant GO terms.



www.nature.com/scientificreports/

9SCIENTIFIC REPORTS |         (2018) 8:16477  | DOI:10.1038/s41598-018-34833-6

 9. Tang, A. & Foong, J. T. A qualitative evaluation of random forest feature learning. In Recent Advances on So� Computing and Data 
Mining, 359–368 (Springer, 2014).

 10. Dutkowski, J. & Ideker, T. Protein networks as logic functions in development and cancer. PLoS computational biology 7, e1002180 
(2011).

 11. Zhu, Y., Shen, X. & Pan, W. Network-based support vector machine for classi�cation of microarray samples. BMC bioinformatics 10, 
S21 (2009).

 12. Lavi, O., Dror, G. & Shamir, R. Network-induced classi�cation kernels for gene expression pro�le analysis. J. Comput. Biol. 19, 
694–709 (2012).

 13. Kim, S., Pan, W. & Shen, X. Network-based penalized regression with application to genomic data. Biom. 69, 582–593 (2013).
 14.  Kong, Y. & Yu, T. A graph-embedded deep feedforward network for disease outcome classi�cation and feature selection using gene 

expression data. Bioinforma., https://doi.org/10.1093/bioinformatics/bty429 (2018).
 15. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nat. 521, 436–444 (2015).
 16.  Min, S., Lee, B. & Yoon, S. Deep learning in bioinformatics. Brie�ngs bioinformatics bbw068 (2016).
 17. Russakovsky, O. et al. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. (IJCV) 115, 211–252, https://doi.

org/10.1007/s11263-015-0816-y (2015).
 18. Wolpert, D. H. Stacked generalization. Neural networks 5, 241–259 (1992).
 19. Quinlan, J. R. Induction of decision trees. Mach. learning 1, 81–106 (1986).
 20. Breiman, L. Bagging predictors. Mach. learning 24, 123–140 (1996).
 21. Goodfellow, I., Bengio, Y. & Courville, A. Deep learning (MIT press, 2016).
 22. Nair, V. & Hinton, G. E. Recti�ed linear units improve restricted boltzmann machines. In Proceedings of the 27th international 

conference on machine learning (ICML-10), 807–814 (2010).
 23. Hochreiter, S., et al. Gradient �ow in recurrent nets: the di�culty of learning long-term dependencies (2001).
 24. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).
 25. Mockus, J. Bayesian approach to global optimization: theory and applications, vol. 37 (Springer Science & Business Media, 2012).
 26. Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
 27. Abadi, M. et al. TensorFlow: Large-scale machine learning on heterogeneous systems So�ware available from tensor�ow.org (2015).
 28. Barab´asi, A.-L. & Albert, R. Emergence of scaling in random networks. science 286, 509–512 (1999).
 29. Zhao, X. et al. Single-cell rna-seq reveals a distinct transcriptome signature of aneuploid hematopoietic cells. Blood 130, 2762–2773 

(2017).
 30. Herold, T. et al. A 29-gene and cytogenetic score for the prediction of resistance to induction treatment in acute myeloid leukemia. 

Haematol. haematol–2017 (2017).
 31. Olden, J. D. & Jackson, D. A. Illuminating the “black box”: a randomization approach for understanding variable contributions in 

arti�cial neural networks. Ecol. modelling 154, 135–150 (2002).

Acknowledgements
�is study was partially funded by NIH grant R01GM124061 and R37AI051231. �e authors thank Dr. Hao Wu 
for helpful discussions.

Author Contributions
T.Y. conceived the study. Y.K. programed the algorithm, conducted simulation and real data experiments. T.Y. and 
Y.K. analyzed the results. Y.K. and T.Y. dra�ed the manuscript. Both authors reviewed the manuscript.

Additional Information
Competing Interests: �e authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional a�liations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. �e images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© �e Author(s) 2018

http://dx.doi.org/10.1093/bioinformatics/bty429
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1007/s11263-015-0816-y
http://creativecommons.org/licenses/by/4.0/

	A Deep Neural Network Model using Random Forest to Extract Feature Representation for Gene Expression Data Classification
	Methods and Materials
	Forest deep neural networks. 
	Details of model training. 
	Synthetic data generation. 
	Real datasets. 

	Results and Discussion
	Simulation results. 
	Real data results. 

	Conclusion
	Acknowledgements
	Figure 1 Visualization of the architecture of the fDNN model.
	Figure 2 Plots of the classification comparison in Table 1.
	Figure 3 ROC plots for (a) GSE99095 and (b) GSE106291.
	Table 1 Classification comparison of the forest Deep Neural Network (fDNN) method, deep neural networks (DNN) and random forests (RF).
	Table 2 Testing results for the GSE99095 dataset.
	Table 3 Testing results for the GSE106291 dataset.
	Table 4 The top 10 overrepresented GO biological processes by the top 1% genes selected in fDNN from GSE99095 data, after manual removal of redundant GO terms.
	Table 5 The top 10 overrepresented GO biological processes by the top 2% genes selected in fDNN from GSE106291 data, after manual removal of redundant GO terms.


