
IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 68, NO. 1, FEBRUARY 2021 105

A Deep Neural Network With Multiplex Interactions

for Cold-Start Service Recommendation
Yutao Ma , Member, IEEE, Xiao Geng, and Jian Wang , Member, IEEE

Abstract—As service-oriented computing (SOC) technologies
gradually mature, developing service-based systems (such as
mashups) has become increasingly popular in recent years. Faced
with the rapidly increasing number of Web services, recommending
appropriate component services for developers on demand is a
vital issue in the development of mashups. In particular, since
a new mashup to develop contains no component services, it is
a new “user” to a service recommender system. To address this
new “user” cold-start problem, we propose a multiplex interaction-
oriented service recommendation approach, named MISR, which
incorporates three types of interactions between services and
mashups into a deep neural network. In this article, we utilize
the powerful representation learning abilities provided by deep
learning to extract hidden structures and features from various
types of interactions between mashups and services. Experiments
conducted on a real-world dataset from ProgrammableWeb show
that MISR outperforms several state-of-the-art approaches regard-
ing commonly used evaluation metrics.

Index Terms—Cold start, deep learning, mashup development,
service recommendation, service-based system.

I. INTRODUCTION

W
ITH the maturity of service-oriented computing (SOC),

the development paradigm of software systems is shift-

ing from component-based software development (CBSD) to

service-oriented software development (SOSD). The SOSD

paradigm can reduce the cost and effort of system development

and increase the reusability and quality of software systems [1].

Nowadays, numerous Web services have been published on the

Internet, and mashups (i.e., a new type of web application),

which provide specific functionalities by integrating one or more

Web services, become increasingly popular in this context [2].

The rapidly increasing number of Web services poses significant

challenges for effective service management and reuse. Thus,

Manuscript received July 28, 2019; revised October 12, 2019; accepted
December 16, 2019. Date of publication January 15, 2020; date of current
version November 13, 2020. This work was supported in part by the National Key
Research and Development Program of China under Grant 2017YFB1400602,
in part by the National Science Foundation of China under Grant 61972292,
Grant 61832014, Grant 61702378, and Grant 61672387, in part by the Natural
Science Foundation of Hubei Province of China under Grant 2018CFB511, and
in part by the Science and Technology Project of Shenzhen City of China under
Grant CKCY20180322093215776. Review of this manuscript as arranged by
Department Editor P. Hung. (Corresponding author: Jian Wang.)

The authors are with the School of Computer Science, Wuhan Univer-
sity, Wuhan 430072, China (e-mail: ytma@whu.edu.cn; xiaogeng5515@whu.
edu.cn; jianwang@whu.edu.cn).

Color versions of one or more of the figures in this article are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TEM.2019.2961376

promptly recommending appropriate component services for

developers and easing their selection burden has become a vital

issue in the development of mashups.

Service recommendation usually refers to recommending

services according to users’ explicit and implicit preferences

(e.g., invocation and subscription) as well as historical data

of service compositions [1]. The content information of user

requests and service descriptions (including structured or un-

structured descriptions in texts or Web services description

language documents) can also be utilized if provided. In recent

years, researchers from different research fields have proposed

many service recommendation approaches. The keyword-based

approach [2], [3], ontology-based approach [4], [5], and latent-

semantics-based approach [6], [7] were studied to this end in the

beginning. Considering the limited capability to achieve better

performance by exploiting only the content information, other

useful information of service usages, such as invocation history,

co-invocation, and popularity, was also involved in improving

the recommendation performance further [8]–[14].

The hybrid approach usually uses collaborative filtering (CF),

natural language processing (NLP), and other techniques to deal

with the content information and usage history. For example,

Li et al. [8] combined functionality and usage history in a

topic model to recommend services in mashup creation. Xiong

et al. [13] also presented a hybrid recommendation approach

by integrating CF and deep learning for NLP. Since most of

these hybrid approaches leverage the interaction history between

mashups and web application programming interfaces (APIs),

they perform well in the normal recommendation process for

services. However, if a developer wants to create a new mashup

without any component service, the mashup does not have any

interaction with the existing APIs. The lack of such interaction

information will decrease the performance and generalizability

of these hybrid approaches.

More specifically, a specific scenario investigated in this

article is described as follows. A developer who plans to develop

a new mashup inputs his or her functional requests into a service

recommender system. Then, the developer wants to obtain a list

of candidate services that can be used in the development of the

mashup. From the perspective of the recommender system, the

new mashup to be built does not contain any component service,

which could be regarded as a new “user” to the recommender

system. In such a scenario, the traditional CF-based approach

does not work well because no usage history is available to the

new mashup. Therefore, how to deal with the new “user” cold-

start problem remains challenging for the mashup development.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-4239-2009
https://orcid.org/0000-0002-1559-9314
mailto:ytma@whu.edu.cn
mailto:xiaogeng5515@whu.edu.cn
mailto:jianwang@whu.edu.cn
http://ieeexplore.ieee.org

106 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 68, NO. 1, FEBRUARY 2021

In this article, we propose a multiplex interaction-oriented

service recommendation approach (referred to as MISR) to

address the cold-start problem of developing new mashups. An

interaction in the MISR represents an underlying relationship

between a mashup and a service. Unlike the hybrid approaches

mentioned previously, the objective of the MISR is to take ad-

vantage of the dominant representation learning ability of deep

learning to learn hidden structures from various interactions

between services and mashups. In the proposed approach, three

types of interactions between services (or APIs) and mashups,

including content interaction, implicit neighbor interaction, and

explicit neighbor interaction, are identified and incorporated into

a deep neural network (DNN), which can predict ratings of

candidate services on a new mashup, i.e., the probabilities of

candidate services to be invoked by a new mashup. Note that

the content interaction indicates a relationship of functionality

matching between a new mashup and a candidate service, and the

two neighbor interactions represent the relationships between a

new mashup’s neighbor mashups that share similar functionali-

ties and candidate services.

The main contributions of this article are threefold.

1) We make an in-depth analysis of the cold-start prob-

lem in service recommendation for new mashup devel-

opment, which has not yet been sufficiently discussed

before.

2) We propose a novel multiplex interaction-oriented service

recommendation approach, called MISR, by integrating

three types of interactions between services and mashups

into a DNN.

3) Experiments conducted on a real-world dataset crawled

from the website ProgrammableWeb1 demonstrate that the

proposed approach outperforms several state-of-the-art

approaches regarding recommendation performance.

The rest of this article is organized as follows. Section II

presents the related work of service recommendation. Section III

defines the cold-start problem and introduces the details of the

proposed approach. Section IV reports the experimental results

and analysis. Section V concludes this article.

II. RELATED WORK

The primary goal of recommender systems is to predict user

ratings or preferences on an item. Along with great success in

commercial applications, they have already been prevalent in

the modern society. According to the type of information used in

recommender systems, the existing recommendation algorithms

mainly fall into three types: collaborative filtering algorithms

that utilize usage history, content-based algorithms that utilize

the content information, and hybrid algorithms that utilize two

or more types of information [15]–[17].

In the past decade, recommendation algorithms have

been widely used in the services computing field to address the

“service overload” problem on the Internet. Generally speaking,

service recommendation systems analyze developers’ requests

(or their preferences) and recommend appropriate candidate

1https://www.programmableweb.com

services for them. According to the aforementioned taxonomy of

general recommendation algorithms, service recommendation

methods can also be divided into the following three types:

content-based approach, CF-based approach, and hybrid

approach.

A. Content-Based Service Recommendation

The content-based approach recommends services according

to the content similarities between candidate services and the

target mashup. As earlier progress in this direction, the keyword-

based approach matches services to mashup development re-

quests in terms of keyword similarities, but it cannot recommend

semantically relevant services [2], [3].

Semantics-aware service recommendation approaches were

then proposed to overcome the limitation of the keyword-based

approach. These approaches can be generally classified into two

categories. First, the ontology-based approach annotates mashup

requests and service descriptions with domain ontologies and

calculates their semantic similarities based on logical reasoning

[4], [5]. However, the lack of appropriate domain ontologies

and the high cost of manual annotation make it difficult to

apply such an approach to large-scale datasets [18]. Second, the

latent-semantics-based approach usually extracts text features

by using topic models and measures the content relevance of

services to mashup requests in terms of their feature similarities

[6], [7]. However, the bag-of-words model used in the approach

ignores word orders, possibly leading to the loss of semantic

information.

Due to the remarkable progress of deep learning in NLP, in

this article, we will utilize a DNN to extract text features from

the content information automatically.

B. CF-Based Service Recommendation

Collaborative filtering, which captures users’ implicit re-

quirements from their usage history, has been widely used in

service recommendation. The CF-based approach predicts the

quality of service (QoS) by leveraging historical QoS records

of similar users or services, aiming to recommend and select

high-quality services. For example, Zheng et al. [19] proposed a

neighborhood integrated matrix factorization (MF) approach to

predict QoS values. Chen et al. [20] presented a neighbor-based

approach to predict QoS values of candidate services by utilizing

the historical records of neighbors within the same region. Liu

et al. [21] made use of the location information to find similar

neighbors for users and services, and they predicted QoS values

using a location-aware CF method.

Besides QoS prediction, CF was also applied in some service

recommendation approaches to find similar users or services.

For example, in [22], a hybrid random walk approach was

adopted in computing the similarities between indirect users or

services, and an improved CF model was designed for service

recommendation. Zou et al. [23] integrated user-intensive and

service-intensive CF in a reinforced CF approach and eliminated

the interference of the services (or users) dissimilar with the

target service (or the target user). In [24]–[26], the authors built

a heterogeneous information network (HIN) using various types

https://www.programmableweb.com

MA et al.: DNN WITH MULTIPLEX INTERACTIONS FOR COLD-START SERVICE RECOMMENDATION 107

of information of mashups and services, measured an overall

similarity score between mashups based on HIN, and finally,

made a rating prediction using the user-based CF.

Since the service recommendation problem investigated in

this article is for a cold-start scenario, new mashups do not have

any usage history with the existing services, which hinders the

CF-based approach from achieving ideal results. Inspired by the

most “similar” strategy of the user-based CF, in this article, we

will learn the interaction between a new mashup and a candidate

service from the interactions between the mashup’s neighbors

(i.e., semantically similar mashups) and the service.

C. Hybrid Service Recommendation

Considering the performance limitation of a single prediction

model in service recommendation, many hybrid approaches that

integrate multiple models or various kinds of feature information

have been proposed in recent years.

Some hybrid approaches usually integrate additional feature

information into topic-model-based service recommendations.

In [8], the invocation records between mashups and services

were incorporated into a latent Dirichlet allocation (LDA) [27]

model to discover topics from the content information, which

enables the learned topics to model the connections among

services, mashups, and words. Gao et al. [9] applied LDA to

the data structure made up of services and their co-occurring

services. Xia et al. [10] clustered services into categories based

on their popularities and topic features extracted by LDA, and

they then combined the services in the most relevant category to

generate a set of candidate services.

Other hybrid approaches make use of the content information

and usage history in service recommendation. In [11] and [12],

the authors calculated the functional correlation scores between

services and mashups based on topic models and neighbor inter-

action probabilities by using CF methods, and then, they multi-

plied the scores to generate a list of candidate services. However,

these linear and multiplication-based approaches have a limited

ability to capture complex interactions between mashups and

services.

Deep-learning-based recommendation approaches, such as

Wide & Deep [28] and neural collaborative filtering (NCF)

[29], have been recently proposed. Wide & Deep memorizes

interactions with data with a large number of features. However,

the number of features identified in the interactions between

mashups and services is usually very small, which makes this

method difficult to apply to service recommendation scenarios.

Instead, NCF, which combines the advantages of neural net-

works and CF, has begun to attract much attention in this research

field. For example, Xiong et al. [13] integrated the invocation

records between mashups and services as well as their content

similarities into a DNN. Chen et al. [14] presented a preference-

based neural CF recommender model, which leveraged feature

vectors of users and items, including language preference and

historical data, to recommend appropriate services in the normal

recommendation process. However, the aforementioned two

DNN models do not work well for developing new mashups

without any component service before recommendation.

TABLE I
SYMBOLS USED IN THIS ARTICLE

In brief, these existing hybrid approaches have limitations in

capturing complex interactions between mashups and services,

especially in the scenario of the new “user” cold-start problem.

This article is, therefore, to address this problem.

III. MULTIPLEX INTERACTION-ORIENTED

SERVICE RECOMMENDATION

First of all, in Section III-A, we state the problem studied

in this article and analyze our solution with a real-life case.

Next, we detail two main components of the MISR, namely the

content interaction component and neighbor interaction compo-

nent, in Sections III-B and III-C, respectively. Section III-D then

shows how the two components are combined to make rating

prediction. Finally, we describe the offline training and online

prediction phases in Sections III-E and III-F, respectively. In

Table I, we list those frequently-used symbols in this section

and their respective meanings.

A. Overall Framework

1) Problem Statement: Above all, the problem to be ad-

dressed in this article can be described as follows. Given a re-

quest (in text form) to develop a new mashup, how to recommend

appropriate component services for developers to facilitate the

development process? In this article, we focus on recommending

possible component services for new mashups to be built.

Suppose a developer plans to develop a new mashup that

tracks the price of products on Amazon and provides price drop

alerts for users. First, the developer inputs the requirements into

108 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 68, NO. 1, FEBRUARY 2021

Fig. 1. Architecture of MISR.

a service recommendation system. The system aims to predict

the rating of each candidate service (denoted as s) over the new

mashup (denoted as m). We take “Amazon Product Advertising

API” as an example service, whose description is “Through

this API, developers can retrieve product information. The API

exposes Amazon’s product data and e-commerce functionality.”

We then analyze our solution from two aspects. On the one

hand, requests can be used to match with services that provide

the desired functionalities. Since developers are more likely to

select services that are able to meet their functional requests

when developing mashups, a content interaction component

can be designed to learn the functional interactions based on

the content information of m and s, as well as to analyze the

possibility of a developer selecting s for m from the functional

perspective. Here, the content information means user requests

and functionality descriptions of candidate services, and the

content interaction indicates the relationship of functionality

matching between m and s, i.e., whether the functionality of

s (e.g., retrieving product price) can meet the request of m.

On the other hand, the invocation history between mashups

and services can also be used to improve the recommendation

performance. Unfortunately, a new mashup has no invocation

history. If two mashups have similar functional descriptions,

they have a substantial probability of invoking the same service;

in other words, they may have similar interactions with the

same service. Although new mashup m has no interaction with

service s, the interactions between s and the neighbor mashups

(referred to as NM) of m that share similar functionalities can

be leveraged. The most intuitive way is to predict unknown

interactions between m and s from all the historical interactions

between NM and s (i.e., neighbor interaction). For example,

the content information of an existing mashup, PriceZombie, is

similar to the request of m, and s is a component service of

PriceZombie. Therefore, there is a substantial possibility that m

interacts with s.

In this article, we attempt to utilize neighbor interactions to

alleviate the absence of the direct interaction between m and

s. As a result, we propose a service recommendation approach

to learn the interactions between a new mashup and candidate

services based on their content information (also known as re-

quests in text form or functional descriptions) and the invocation

history of the new mashup’s neighbor mashups on the services.

2) Model Framework: As shown in Fig. 1, the proposed

MISR approach consists of two primary components: a content

interaction (CI) component, and a neighbor interaction (NI)

component, which is made up of an implicit neighbor interaction

(INI) part and an explicit neighbor interaction (ENI) part. The

CI component is a prerequisite for the NI component, and the

two parts in NI work in parallel. All the components are comple-

mentary to each other. Different types of interactions between

MA et al.: DNN WITH MULTIPLEX INTERACTIONS FOR COLD-START SERVICE RECOMMENDATION 109

candidate services and mashups can be learned from the three

components. These interaction vectors are then concatenated

and fed into a multiple layer perceptron (MLP), which predicts

the ratings of candidate services over the target mashup.

The CI component first represents the content information of

m and s as their word-embedding forms, and then, extracts their

respective feature vectors. Finally, an MLP is designed to process

the concatenated features and learn their content interactions.

The NI component aims to learn interactions between m and

s based on the usage history of the neighbor mashups of m to s.

A prerequisite of the component is to get neighbor mashups that

are most similar tom in terms of content similarity, which will be

detailed in Section III-C. In the INI part, neighbor mashups and

s are mapped into a deep feature space by applying node2vec

[30], a graph embedding technology in deep learning, to the

invocation matrix. Then, we can obtain the weighted represen-

tation of m in the space. After concatenating the representations

of m and s, an MLP is used to learn their interactions in this

feature space. The ENI part learns more direct interactions from

the original invocations about the neighbor mashups of m to s.

B. Content Interaction Component

The functionality descriptions of mashups and services,

namely their content information, generally have two forms:

word sequence and separate word set. We use descriptions and

tags as the representatives of the two types of information and

extract their features in different ways. Finally, the content

interaction between mashups and services can be learned based

on the extracted features.

Before extracting features by deep learning techniques, we

need to use a dense vector to represent each term that appears

in the content information of existing mashups and services. To

this end, we first transform these terms into sparse binary vectors

with one-hot encoding, e.g., [0, 0, …, 1, …, 0]. Next, we feed the

vectors into an embedding layer and map each term to a dense

vector or an embedding. More specifically, the embedding layer

can be viewed as a lookup table, and the embedding of a term is

indeed its corresponding weights in the embedding layer.

1) Feature Extraction From Word Sequences: After the pre-

processing of truncation or padding, the word sequence in-

formation of m and s are transformed into their respective

word-embedding forms, Em and Es, which are two matrices

with a fixed size. The process can be described as

E = [et1 , et2 , . . . , eti , . . . , etL]
T

(1)

where E denotes the word-embedding representation of a word

sequence, L is the length of the processed sequence, ti is the

ith term in the sequence, and eti is the D-dimensional word

embedding for ti.

We then extract feature vectors fromEm andEs. As a popular

class of DNNs, convolutional neural networks (CNNs) have

been successfully applied in many NLP tasks [31]. Here, we

design a new network (named text_inception) based on incep-

tionV2 [32] to extract feature vectors. Fig. 2 shows the structure

of the text_inception network.

Fig. 2. Structure of the text_inception network.

The convolution layer in Fig. 2 captures feature maps of

different scales from E by using parallel convolution kernels of

different sizes. We first introduce how the convolution operation

works on sequential data. Inspired by Kim’s work [31], we use

convolution kernel j with shared weightW j ∈ R
ws×D to extract

a local feature c
j
i from ws terms adjacent to ti. The process is

described as

c
j
i = f

(

W j∗E(i:(i+ws−1), :) + bj
)

(2)

where E(i:(i+ws−1), :) is a ws×D submatrix of E formed by

rows from i to i+ ws− 1, ∗ denotes a convolution operation,

bj is a bias term corresponding to W j , and f is a rectified linear

unit (ReLU) function that can avoid the gradient disappearance

problem and encourage sparse activations [29]. We apply the

convolution kernel j to different locations in the sequence, and

then, get a feature map c
j ∈ R

L.

c
j =

[

c
j
1, c

j
2, . . . , c

j
i , . . . , c

j
L

]

. (3)

In the convolution layer, the first two branches utilize 1×D

and 3×D convolution kernels, respectively. The third branch

first executes a convolution on E with 3×D kernels, and then,

executes another convolution on this result with 3× 1 kernels,

increasing the nonlinearity of the network and improving fea-

ture abstraction. Moreover, it can reduce the number of model

parameters as well as the risk of overfitting. In the fourth branch,

a max-pooling operation with size 3× 1 is first carried out,

followed by a convolution operation with 1×D kernels. The

max-pooling helps the convolution operation obtain higher level

features. After the last convolution operations in all the four

branches end, E is compressed into a feature map c
j ∈ R

L.

These feature maps are then concatenated in the concatenation

layer for subsequent operations.

C =
[

c
1, c2, . . . , cj , . . . , cF

]T
(4)

where F is the sum of all the convolution kernels in the last

convolution layer in the four branches.

110 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 68, NO. 1, FEBRUARY 2021

A global average pooling (GAP) layer, followed by the incep-

tionV2 [32], is applied to the pooling of C. We then utilize an

MLP to process the pooling results and obtain a dense feature

vector. The process can be expressed as

l1 = f
(

WT
1

[

c1GAP, c
2
GAP, . . . , c

i
GAP, . . . , c

F
GAP

]T
+ b1

)

(5)

li = f
(

WT
i li−1 + bi

)

(i = 2, 3, . . . , n) (6)

where ciGAP denotes the GAP result of a feature map c
i; WT

i

and bi denote the weights and bias parameter of the ith layer,

respectively; and li denotes the output of the ith hidden layer in

the MLP.

For convenience, we use MLP to represent all the operations

contained in the MLPs in this article. Equations (5) and (6) can

be simplified as

vseq = MLP
[

c1GAP, c
2
GAP, . . . , c

i
GAP, . . . , c

F
GAP

]T
. (7)

Particularly, vseqm
and vseqs

represent the features extracted

from the word sequence information of m and s, respectively.

2) Feature Extraction From Separate Word Sets: Unlike nat-

ural language sequences, the tags of mashups or services are

represented in the form of a separate word set. We cannot

apply the text_inception network and other deep-learning-based

techniques designed for word sequences to the feature extraction

of tags. For word set T , we retrieve and average the embeddings

of all words to obtain its feature vector of fixed size, vset.

vset = average [eT1
. . . eTi

. . . eTx
] (8)

where eTi
is the embedding of the ith term in the set and x is

the size of the set.

3) Content Interaction Learning: After the feature vectors of

mashup m and service s, denoted by vseqm
, vseqs

, vsetm , and

vsets , are extracted by the text_inception network and average

pooling, respectively, they are concatenated together and fed

into an MLP to learn their functional (or content) interactions.

Finally, a low-dimensional content interaction vector, cims, can

be obtained as

cims = MLPCI

(

vseqm
⊕ vseqs

⊕ vsetm ⊕ vsets

)

(9)

where ⊕ denotes the concatenation operation.

C. Neighbor Interaction Component

The NI component aims to learn the interactions between m

and s based on the usage history of the neighbor mashups of m

to s. An essential work of the NI component is to find neigh-

bor mashups NM for new mashup m based on their content

similarities. When calculating the content similarity between

a neighbor mashup nmi and m, we compute the similarity

between word sequences and the similarity between separate

word sets, respectively, and then, integrate the two similarities.

Since the word sequence features of m and nmi are real-valued

vectors, we calculate their similarity, simvseqm ,vseqnmi
, using

the commonly used Cosine similarity.

simvseqm ,vseqnmi
=

vseqm
· vseqnmi

‖vseqm
‖‖vseqnmi

‖
. (10)

The similarity between the separate word set of m and that

of nmi, simvsetm ,vsetnmi
, is computed in the same way. The

weighted sum of the two similarities is regarded as the content

similarity between m and nmi. In this article, a and b are not

set to fixed values, and they act as learnable parameters in the

process of model training.

simm,nmi
=a× simvseqm ,vseqnmi

+b× simvsetm ,vsetnmi
.

(11)

We select K most similar mashups of m to build its neighbor

mashups NM in terms of their content similarities. Next, the in-

teractions between neighbor mashups NM and s are leveraged

using the following two strategies.

1) Implicit Neighbor Interaction: When modeling the inter-

actions between mashups and services based on their histori-

cal invocations, a general framework is to map mashups and

services into the same feature space and then define or learn

their interactions in this unified space. For example, MF models

first use latent factors to represent mashups and services, and

then, utilize their inner product to model their interactions.

Some deep-learning-based models, such as NCF, use an MLP to

process the latent representations of mashups and services and

capture their complex interactions.

Similarly, in this part, we first apply node2vec to learn the

latent representation of all existing mashups and services from

the mashup-service invocation matrix. In the following step,

an intuitive strategy is to employ multiple MLPs to learn the

interaction between each neighbor mashup of m and s. Then,

we integrate these interactions to learn the interaction between

m and s with another MLP. However, the computational com-

plexity of this strategy is too high. Therefore, we adopt a feasible

strategy: we calculate a weighted representation of mashupm in

the same feature space and use an MLP to capture the interaction

of m and s in this feature space.

As a graph embedding method, node2vec has achieved re-

markable results in processing graph data with plenty of inter-

active information among elements [33]. Because the mashup-

service invocation matrix can be transformed into a graph where

nodes denote mashups/services and edges represent invocations

between them, it is feasible to use node2vec to learn low-

dimensional representations of mashups and services.

An optimized random walk strategy is used to generate node

sequences according to the graph structure derived from the

mashup-service invocation matrix. Then, we process the node

sequences by the skip-gram model and learn the representa-

tion of each node. Compared with the MF-based approach,

node2vec captures more complex interactions between mashups

and services. After obtaining representations of all existing

mashups and services, we calculate the weighted representation

of mashup m using the following equation:

rm =
∑

nmi∈NM

simm,nmi
· rnmi

(12)

where nmi is a neighbor mashup of m, simm,nmi
is the content

similarity between m and nmi, and rnmi
is the representation

of nmi obtained by node2vec.

MA et al.: DNN WITH MULTIPLEX INTERACTIONS FOR COLD-START SERVICE RECOMMENDATION 111

Finally, we concatenate the representations of m and candi-

date service s, and then, compress the concatenation result into

an implicit interaction vector by an MLP.

inims = MLPINI (rm ⊕ rs) (13)

where rs denotes the representation of s obtained by node2vec.

2) Explicit Neighbor Interaction: In the second strategy, we

learn explicit interactions from the direct invocation history

of the neighbor mashups (NM) of m to s. More specifically,

we first construct a sparse binary vector sms according to the

invocation records of NM to s, described as follows:

sms = (Inm1,s, Inm2,s, . . . Inmi,s, . . . InmK ,s) (14)

where Inmi,s is an identity signal that indicates whether s is

a component service of nmi (nmi ∈ NM). Since the number

of neighbor mashups is K, the dimension number of sms is

also K.

Finally, sms is fed directly into an MLP, and the explicit

interaction between m and s, enims, can be learned from the

direct invocation history of NM to s.

enims = MLPENI (sms) . (15)

3) Combination of the Two Components: After learning the

three types of interactions between m and s, we design an MLP

to incorporate them and output the rating of s over m, r̂ms. The

MLP enables the three interactions to enhance and complement

each other and model the relationship between m and s more

accurately. Because our approach outputs the possibility of m

invoking s or the rating of s over m (r̂ms), we adopt a sigmoid

activation function in the last layer of this MLP to constrain

rating values ranging between 0 and 1 for the implicit feedback

recommendation task.

r̂ms = MLPfusion (cims ⊕ inims ⊕ enims) . (16)

D. Offline Model Learning

Since the goal of our approach is to predict the rating of a

service over a mashup, each training sample as an input to MISR

consists of a mashup and a service. A positive sample (labeled

as 1) is composed of a mashup and its component service, while

a negative sample (labeled as 0) is a pair of a mashup and an

irrelevant service without actual invocations.

The predicted value of MISR should be approximate to 1

for positive samples and 0 for negative samples. The likelihood

function is defined as

P
(

Y +, Y −|Θ
)

=
∏

(m,s)ǫY +

r̂ms

∏

(m,s)ǫY −

(1− r̂ms) (17)

where r̂ms is the predicted rating of service s over mashup m,

Θ is the parameter set, Y + represents a set of positive samples,

and Y − denotes a set of negative ones.

Maximizing the likelihood probability of (17) is equivalent to

minimizing the loss function described as follows:

J = −
∑

(m,s)∈Y +∪Y −

(rms log r̂ms + (1− rms) log

× (1− logr̂ms)) (18)

Algorithm 1: Training Algorithm of MISR.

Input: positive sample set Y +, negative sample set Y −,

mashup-service invocation matrix MS, and number of

epochs p

Output: parameter set Θ
//Model preparation

1. Y ← Y + ∪ Y −;

2. M ← FindMashup(Y), S ← FindService(Y);
3. for each mashup m in M and each service s in S do

4. rs ← node2vec(MS), rm ← node2vec(MS);
5. for each word ti in m. ct and each word ti in

s. ct do

6. Initialize eti by the pretrained glove model;

7. end for

8. end for

//Model training

9. ΘCI ← call Algorithm 2 (p, Y);

10. for each mashup m in M do

11. Compute vseqm
and vsetm using (7) and (8),

respectively, with the pretrained CI component;

12. end for

13. ΘINI ← call Algorithm 3 (p, Y , {vseqm
}m∈M ,

{vsetm}m∈M , {rm}m∈M , {rs}s∈S);

14. ΘENI ← call Algorithm 4 (p, Y , {vseqm
}m∈M ,

{vsetm}m∈M , MS);

15. ΘMLPfusion
← call Algorithm 5 (p, Y , ΘCI, ΘINI,

ΘENI);

16. Initialize Θ with ΘCI, ΘINI, ΘENI, and ΘMLPfusion
;

17. Update Θ by fine-tuning the MISR;

18. return Θ.

where rms denotes the label (0 or 1) of a sample that consists of

m and s.

Then, we need to use an optimization algorithm to find

the parameters that minimize the loss function of our end-to-

end deep-learning-based model. Adaptive moment estimation

(Adam) [34], an extension of the stochastic gradient descent

(SGD), has been widely used in deep learning applications. It

designs independent adaptive learning rates for different param-

eters by calculating the first-order and the second-order moment

estimation of the gradient. Besides, Adam can be applied to

large-scale datasets and high-dimensional space. Therefore, we

select Adam as our optimization algorithm to update model

parameters in this article.

The whole training process is depicted as Algorithm 1.

Lines 1–8 show the preparation for model training. We first

employ node2vec to process the invocation matrix and get the

vector representation of each mashup and each service. Next,

we set the embedding of the words appeared in the content

information of mashups and services to be trainable, and use

their word embeddings pretrained by the glove model [35] to

initialize their corresponding weights in the embedding layer.

The parameters to be optimized in this model mainly include:

weight parameters in the embedding layer, parameters in the

text_inception network, weight parameters used to calculate

112 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 68, NO. 1, FEBRUARY 2021

Algorithm 2: Training Algorithm of the CI Component.

Input: number of epochs p and sample set Y

Output: parameter set ΘCI of this pretrained component

1. for epoch = 1, …, p do

2. for each sample (m, s) in Y do

3. Compute cims using (19);

4. Compute r̂ms using (20);

5. Update ΘCI to minimize J in (18) with Adam;

6. end for

7. end for

8. return ΘCI.

mashup similarities (i.e., a and b), and weight and bias parame-

ters in MLPCI, MLPINI, MLPENI, and MLPfusion.

Lines 9–17 demonstrate our training strategy for the MISR.

Since MISR is a hierarchical model with several nested MLPs,

directly updating all parameters may result in slow convergence.

Therefore, we first train each component in MISR separately,

then use their parameters to initialize the parameters in MISR,

and finally, fine-tune the whole model.

Taking the training algorithm of the CI component,

Algorithm 2, as an example, we show how to train an individual

component of the MISR. For each sample of (m, s), we only

use the CI component to process the content information of m

and s (denoted by m. ct and s. ct), and then, we obtain a content

interaction vector cims. Here, the content information of each

mashup and service is linked to the corresponding mashup and

service. Next, we perform a nonlinear transformation on the

vector to directly predict the rating of s over m, r̂ms.

cims = fCI (m.ct, s.ct) (19)

r̂ms = f
(

WT
CIcims + bCI

)

(20)

where fCI represents all operations in the CI component, WCI

and bCI are the parameters used for the transformation, and f

is the sigmoid activation function. Then, we perform backward

propagation and update the parameters in the CI component,

according to (18)–(20) (see lines 3–5 in Algorithm 2).

Line 3 in both Algorithm 3 and Algorithm 4 aims to find the

most similar neighbor mashups for mashup m when training

both the INI part and the ENI part. Lines 3–5 in Algorithm 5

indicate that we use the pretrained components to calculate in-

termediate interaction vectors for each mashup-service instance

in sample set Y .

E. Online Prediction and Complexity Analysis

In the online recommendation phase, the MISR predicts the

possibility of mashup m invoking service s, and the detailed

process is described as follows.

In the CI component, the content information of m and s is

transformed into their word embedding form. Then, we extract

feature vectors of m and s from their content information by

using the text_inception network and the average pooling layer,

respectively, denoted by vseqm
, vseqs

, vsetm , and vsets . Next,

Algorithm 3: Training Algorithm of the INI Part.

Input: number of epochs p, sample set Y , content feature

sets of mashups extracted by the pretrained CI

component Vseq and Vset, and latent representation sets

of mashups and services by applying node2vec to MS,

Rm and Rs

Output: parameter set ΘINI of this pretrained component

1. for epoch = 1, …, p do

2. for each sample (m, s) in Y do

3. NM ← FindNeighbors(Vseq, Vset); //(10)

4. Compute rm using (12);

5. Compute inims using (13);

6. r̂ms = f(WT
INIinims + bINI);

7. Update ΘINI to minimize J in (18) with

Adam;

8. end for

9. end for

10. return ΘINI.

Algorithm 4: Training Algorithm of the ENI Part.

Input: Number of epochs p, sample set Y , content

feature sets of mashups extracted by the pretrained CI

component Vseq and Vset, and mashup-service

invocation matrix MS

Output: parameter set ΘENI of this pretrained

component

1. for epoch = 1, …, p do

2. for each sample (m, s) in Y do

3. NM ← FindNeighbors(Vseq, Vset);
4. Construct sms using (14) and MS;

5. Compute enims using (15);

6. r̂ms = f(WT
ENIenims + bENI);

7. Update ΘENI to minimize J in (18) with

Adam;

8. end for

9. end for

10. return ΘENI.

Algorithm 5: Training Algorithm of MLPfusion.

Input: number of epochs p, sample set Y , and parameter

sets ΘCI, ΘINI, and ΘENI

Output: parameter set ΘMLPfusion

1. for epoch = 1, …, p do

2. for each sample (m, s) in Y do

3. Compute cims using (9) with ΘCI;

4. Compute inims using (13) with ΘINI;

5. Compute enims using (15) with ΘENI;

6. Compute r̂ms using (16);

7. Update ΘMLPfusion
to minimize J in (18) with

Adam;

8. end for

9. end for

10. return ΘMLPfusion
.

MA et al.: DNN WITH MULTIPLEX INTERACTIONS FOR COLD-START SERVICE RECOMMENDATION 113

these features vectors are input into an MLP to obtain a content

interaction vector cims. For simplicity, in the convolutional layer

of the text_inception network, we assume that the channel num-

bers of feature maps in each branch are the same, and the channel

numbers in the input and output of each convolution layer are

also the same, denoted as C. Thus, the complexity of the con-

volutional layer is O(8L×D × C2 + 3L× C2 + 3D × C),
where L is the length of a word sequence or a word set and

D is the dimension of word embeddings. The complexity of

the GAP layer in the text_inception network is O(4C × L), and

that of the average pooling layer to process separate word sets

is O(D × L).
After getting the feature vectors of mashup m, vseqm

and

vsetm , we calculate its content similarity to the existing mashups

and obtain the neighbor mashup set NM . The complexity of

this processing is O(P (H +D) + P logK), where H is the

dimension of vseqm
, D is the dimension of vsetm as well as

that of word embeddings, P is the number of potential neighbor

mashups, K is the size of NM , and P logK is the cost of

searching top K values from a list that has P elements.

Next, in the INI component, we compute the representation

of m, rm, according to (12). The complexity is O(K × V),
where V is the dimension of rm. We then input rm and the

representation of s obtained by node2vec into MLPINI and get

an implicit interaction vector of m and s, inims. At the same

time, the ENI component constructs an invocation vector ofNM

to s using (15), then inputs it into MLPENI, and finally, learns

an explicit interaction vector of m and s, enims.

Finally, MLPfusion integrates multiple forms of interactions

between m and s, i.e., cims, inims, and enims, and predicts the

possibility of m invoking s.

The complexity of MLPs, including MLPCI, MLPINI,

MLPENI, MLPfusion, and the MLP in the text_inception net-

work, is O(
∑N

i=1 ni−1ni), where N is the number of layers in

each of the MLPs and ni is the number of units in the ith layer.

Note that we do not consider bias parameters for simplicity.

To sum up, the simplified complexity of predicting the rating

of a candidate service over a mashup is O(L×D × C2 +
P (H +D + logK) +K × V +

∑N
i=1 ni−1ni). If the structure of

MLPs is fixed, parameters L, D, C, H , and V can be regarded

as certain constants. Therefore, the complexity can be rewritten

as O(P logK +K).
After predicting the rating of each candidate service

over a mashup, the recommender system outputs the Top-

K services with the highest ratings for the target devel-

oper. Therefore, the complexity of the whole online rec-

ommendation process is O(Q(P logK +K) +QlogQ) =
O(Q(P logK +K + logQ)), where Q is the number of candi-

date services and QlogQ is the cost of sorting Q elements using

the quick sort algorithm.

IV. EXPERIMENTAL SETUPS AND RESULTS

A. Experimental Settings

All experiments were carried out on a workstation with Intel

Core 8 Xeon(R) at 3.50 GHz, GeForce GTX 1080, and 32-GB

memory, running the Ubuntu 16.04 operating system. The source

code implemented based on Keras2 is available on GitHub.3

1) Dataset: We crawled a dataset from ProgrammableWeb,

the largest online Web service registry, on July 25, 2016. The

mashups and services without functional descriptions, the ser-

vices that have not been invoked, and the mashups with fewer

than two component services were removed from the original

dataset. The experimental dataset contains 1979 mashups and

728 services, and the sparsity of the mashup-service invocation

matrix is 99.6%. We preprocessed the textual descriptions of

these mashups and services by removing punctuation and stop

words.

The functional descriptions of the mashups in the test set

were used as textual requests to build new mashups, and the

recommended lists of services were compared with the actual

component services of the mashups for evaluation. Also, we

randomly generated some negative samples (i.e., a pair of a

mashup and a service without invocation relations), which are

six times as many as positive samples, to construct our training

dataset.

2) Evaluation Metrics: In this article, we evaluated different

recommendation approaches using the fivefold cross-validation

technique. The 1979 mashups were divided into fivefolds. In

each time, onefold was used for testing, and the others for

training. Then, we averaged the results of fivefolds and took

them as the final result. We adopted the following evaluation

metrics to measure the recommendation performance.

Precision, Recall, and F1-measure at top N services in the

ranking list are defined as

Precision@N =
1

|M |

∑

m∈M

|rcmd (m) ∩ actual (m)|

|rcmd (m)|
(21)

Recall@N =
1

|M |

∑

m∈M

|rcmd (m) ∩ actual (m)|

|actual (m)|
(22)

F1@N =
1

|M |

∑

m∈M

2
|rcmd (m) ∩ actual (m)|

|rcmd (m)|+ |actual (m)|

(23)

where M is the set of mashups in the test set and |M | denotes

the size of M . For mashup m, rcmd(m) is the recommended

service list, while actual (m) is its actual component services.

Mean average precision (MAP) at top N services in the

ranking list is defined as

MAP@N =
1

|M |

∑

m∈M

1

Nm

N
∑

i=1

(

Ni

i
× I (i)

)

(24)

where Ii indicates whether a service at the position i in the

ranking list is an actual component service of m, Nm is the

number of component services ofm, andNi denotes the number

of actual component services of m occurred in the top i services

of the ranking list.

2https://keras.io
3https://github.com/ssea-lab/MISR

https://keras.io
https://github.com/ssea-lab/MISR

114 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 68, NO. 1, FEBRUARY 2021

Normalized discounted cumulative gain (NDCG) at top N

services in the ranking list is defined as

NDCG@N =
1

|M |

∑

m∈M

1

Sm

N
∑

i=1

2I(i) − 1

log2 (1 + i)
(25)

where Sm represents the ideal maximum DCG score that can be

achieved for m.

3) Baseline Approaches: Most of the previous works men-

tioned in Section II-C cannot work in the scenario of this article,

i.e., recommending services to a new mashup. To evaluate the

effectiveness of our approach, we selected six state-of-the-art

service recommendation approaches that can work in the sce-

nario for comparison.

1) Term Frequency–Inverse Document Frequency (TF-IDF)

[10]. The method recommends services using TF-IDF-

based cosine similarities between content information of

services and a mashup.

2) Aggregating Functionality, Use history, and Popularity

of APIs (AFUP) [11]. The approach first computes two

probabilities that a mashup invokes a service by analyzing

their content similarity and the usage history of neighbor

mashups and the service, then multiplies them based on

Bayes’ theorem, and finally, ranks candidates according

to their popularity.

3) Recommendation through Service Factors and Top-K

Neighbors (SFTN) [12]. The authors improve their pre-

vious work, the AFUP, by using the hierarchical Dirichlet

process (HDP) [36] and probability matrix factorization

to process the content information and usage history.

4) Preference-based Neural Collaborative Filtering Recom-

mender (PNCF) [14]. The framework compresses all

sparse features of users and items in an embedding layer,

and then, uses an MLP to model their interaction. How-

ever, its feature extraction component does not apply to

extract textual features, and we implement two variants for

this scenario: PNCF-HDP, which applies the HDP adopted

in the SFTN, and PNCF-Deep, which uses our feature

extraction strategy.

5) Service Set Recommendation (SSR) [37]. The approach

clusters services according to their functionalities, and

then, constructs service sets. Finally, the service set with

the highest utility function score (considering the com-

posability, functional similarity, and popularity) is recom-

mended.

Note that all baseline approaches and the MISR take descrip-

tions and tags as the content information. These two kinds of con-

tent information are processed indiscriminately by bag-of-words

models in the TF-IDF, AFUP, SFTN, SSR, and PNCF- HDP,

while being processed separately by deep learning techniques

in the PNCF-Deep and MISR. Moreover, the parameters of the

feature extractors and other parameters in the model are jointly

trained in the PNCF-Deep and MISR.

4) Parameter Settings: We set the dimension of word vectors

to 50 and initialized the vectors with the publicly available

50-dimensional word embeddings trained by the Glove model

[35]. The filter numbers in the four branches of the text_inception

network were set to 10, 10, 20, and 10, respectively. In node2vec,

the dimension of each node was set to 25, and other parameters

were set according to [30]. In MLPfusion, the unit numbers of

the four layers were set to 128, 64, 32, and 1, respectively. The

other MLPs used in the model shared the same structure, where

the numbers of units in two layers were set to 100 and 50,

respectively. Except for the MLP in the text_inception network

that selected PReLU [38] as the activation function, other MLPs

in the model used ReLU. The learning rate was set to 0.0003

when training each component of the MISR. When we began

to fine-tune the MISR based on all the pretrained components,

the learning rate was then reduced to 0.0001. For the baseline

approaches, we set most of their parameters according to the de-

fault settings mentioned in the original references and optimized

some parameters when necessary.

B. Performance of MISR

Fig. 3 presents the performance comparison of different

approaches, showing that the MISR outperforms all the six

baselines across all ranking positions. Since the complexity of

the SSR is exceptionally high, we only evaluated its performance

when the size of service sets is five.

The TF-IDF performed the worst because it just used the

content information, and the representations of mashups and

services did not appear to capture the latent semantics of textual

descriptions by using the TF-IDF. Besides the content informa-

tion and popularity, the AFUP and SFTN leverage the usage

history of neighbor mashups, but their performances were not

as good as expected. The reasons are twofold. First, their feature

extraction methods ignored word orders and lost some semantic

information. Second, the two probabilities derived from the

functionality and usage history were multiplied with the as-

sumption that they are conditionally independent of each other.

However, it is hard for the single multiplication to capture the

way how the content information and usage history jointly affect

service recommendation. Instead, the MISR aims to capture such

complicated interactions by a DNN.

We combined different parameter settings to optimize the

SSR, but its performance was still weak. There are two main

reasons. First, it did not utilize the usage history of neighbor

mashups like the MISR. Second, the pruning strategy it em-

ployed reduces the probability of the recommended service set

hitting actual component services.

The PNCF-Deep performed the best in the six baseline

methods. The possible reason is that the PNCF-Deep extracts

high-quality features from the content information and learns

the deep content interaction between mashups and services. The

PNCF-HDP worked worse than the PNCF-Deep, even though

it also used an MLP to learn the content interaction. The re-

sult indicates the superiority of our strategy for textual feature

extraction.

Although the MISR shares a similar content interaction com-

ponent with the PNCF-Deep, the NDCG@5, MAP@5, Preci-

sion@5, Recall@5, and F1@5 values of the MISR were higher

than those of the PNCF by 15.66%, 19.85%, 16.02%, 15.12%,

and 15.63%, respectively. These performance improvements

MA et al.: DNN WITH MULTIPLEX INTERACTIONS FOR COLD-START SERVICE RECOMMENDATION 115

Fig. 3. Performance comparison of different approaches. (a) NDCG@N. (b)MAP@N. (c) Precision@N. (d) Recall@N. (e) F1@N.

Fig. 4. Performance comparison of different variants of MISR. (a) NDCG@N. (b) MAP@N. (c) Precision@N. (d) Recall@N. (e) F1@N.

mainly benefit from the two elaborate NI parts that can exploit

the past interactions between neighbor mashups and services.

C. Ablation Study

As mentioned previously, the MISR utilizes three types of

interactions between mashups and services, namely the content

interaction and two neighbor interactions. To demonstrate the

necessity of the three components of the MISR, we designed

the following variants of the MISR for comparison: a model

(referred to as MISR-C) only uses the CI component, a model

(referred to as MISR-CII) consists of the CI and INI compo-

nents, a model (referred to as MISR-CEI) has the CI and ENI

components, and a model (referred to as MISR-IEI) composed

of the INI and ENI components.

According to the comparison among the variants of our ap-

proach shown in Fig. 4, the more interactions are involved, the

better the recommendation performance can we obtain. Both

the MISR-CEI and MISR-CII outperformed the MISR-C, sug-

gesting that both the ENI component and the INI component can

indeed learn useful interaction information. Moreover, the MISR

performed better than the MISR-CEI and MISR-CII, which

116 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 68, NO. 1, FEBRUARY 2021

TABLE II
PERFORMANCE OF DIFFERENT CONTENT SIMILARITY COMPUTATION METHODS (MEAN ± S. D.)

indicates that each of the two neighbor interaction components

can learn some complementary information missed by the other.

Compared with the MISR, the MISR-IEI ablates the CI

component and outputs worse recommendation results. Also,

the prediction performance of the MISR-IEI is inferior to that

of the MISR-C. This result indicates that in the process of

developing new mashups, developers pay more attention to the

degree of functionality matching between candidate services and

their requests, though the interaction experience obtained from

neighbor mashups is also beneficial to the development process.

Finally, the MISR-C performed far better than the TF-IDF.

This result demonstrates that the MISR does extract useful text

features from the content information of mashups and services

and can capture their functional interactions by an MLP.

D. Selection of Neighbor Mashups

In this article, a prerequisite of neighbor interactions is to find

neighbor mashups with similar requests to the target mashup.

More specifically, the content similarity between mashups and

the size of neighbor mashups are two critical factors in searching

for neighbor mashups. Therefore, we conducted two experi-

ments to investigate their respective impact on the selection of

neighbor mashups in this subsection.

1) Impact of Content Similarity on the NI Component: Find-

ing similar neighbor mashups in terms of the content similarity

between mashups is essential to the performance of the NI

component. As introduced in Section III-C, we calculate the

similarities between mashup texts and mashup tags, respec-

tively, and then, compute the weighted sum of them to obtain a

scalar similarity. In particular, the MISR extracts text features of

mashups by the text_inception network and takes their Cosine

similarity as text similarity (denoted as DeepText). The MISR

then obtains tag features of mashups using a pooling layer

and takes their Cosine similarity as tag similarity (denoted as

DeepTag). The similarity calculation strategy of the MISR is

denoted as DeepText + DeepTag.

As we know, there are many alternative ways to calculate the

content similarity between mashups (i.e., text similarity and tag

similarity). A commonly used way to calculate the text similarity

of two documents is to extract their feature vectors by the HDP

(a representative of traditional feature extractors) and calculate

the Cosine similarity between their HDP features (denoted as

HDPText) [12]. The simplest and most popular way to calculate

tag similarity is the method adopted in [24]–[26] (denoted as

metaPathTag).

metaPathTag (mi,mj) =
2×

∣

∣Tagmi
∩ Tagmj

∣

∣

|Tagmi
|+

∣

∣Tagmj

∣

∣

(26)

where Tagmi
and Tagmj

denote the tag set of mashup mi

and mj , respectively, and |Tagm| is the size of the tag set of

mashup m.

To evaluate the impact of the content similarity calculation

methods on the NI component’s performance, we compared ours

(DeepText + DeepTag) with three variants: Variant 1 (Deep-

Text + metaPathTag), Variant 2 (HDPText + DeepTag), and

MA et al.: DNN WITH MULTIPLEX INTERACTIONS FOR COLD-START SERVICE RECOMMENDATION 117

TABLE III
RECOMMENDATION PERFORMANCE WITH DIFFERENT K (MEAN ± S. D.)

Variant 3 (HDPText + metaPathTag). Note that we replaced the

content similarity method in the MISR with the three variants,

respectively, to compare their performance.

As shown in Table II, our method (DeepText + DeepTag)

performs the best, followed by HDPText + DeepTag, and Deep-

Text+metaPathTag outperforms HDPText+metaPathTag. This

result indicates that our deep-learning-based feature extractor,

the text-inception network, performed better than the HDP in

extracting feature vectors for the NI component. One possi-

ble reason is that the CNN-based feature extractor can extract

text features with richer semantics. Another reason lies in the

effective combination between the text-inception network and

other components of the MISR. This combination enables the

text-inception network to generate task-specific text features for

the NI component.

It is evident from Table II that DeepText+DeepTag outper-

forms DeepText+metaPathTag, and HDPText+DeepTag per-

forms better than HDPText+metaPathTag. Compared with

metaPathTag, our DeepTag can extract better tag features to

facilitate the identification of similar neighbor mashups for the

NI component. The meta-path-based approach regards tags as

plain symbols without semantics, while DeepTag maps tags into

a semantic space using an embedding layer. We initialized the

embeddings of some tags with their pretrained word embeddings

in [35] and updated the embedding of all tags when training

the MISR. Therefore, in this way, DeepTag can capture richer

semantics of tags than metaPathTag.

2) Impact of the Size of Neighbor Mashups: The size of

neighbor mashups of the target mashup, K, determines how

many similar mashups are involved in the ENI and INI parts.

Therefore, the setting of K is a critical factor that affects the

performance of our approach. To study the impact of K on the

recommendation performance, we set its value from 10 to 50 by

step 10, while fixing the other parameters.

As shown in Table III, when K increases from 10 to 30, the

performance results of the MISR in terms of the five evalua-

tion metrics are increasing. This result is probably because the

increase of the size of neighbor mashups can help our approach

118 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 68, NO. 1, FEBRUARY 2021

learn the usage history of more similar mashups. Instead, the rec-

ommendation performance of the MISR becomes worse when

K exceeds 30. The reason probably lies in that some noisy data,

i.e., mashups with low similarity to the target mashup, were

introduced into the learning of neighbor interactions. Therefore,

we set K to 30 in our experiments.

E. Threats to Validity

Some potential factors may threaten the validity of our article,

and we discuss them in this subsection.

1) Internal Validity: The internal validity concerns the au-

thenticity of the experimental results. The threats to the internal

validity of our article fall into two main aspects: evaluation

criterion and parameter settings.

There is no suitable evaluation dataset at present, including

actual mashup requirements and component services. In our

experiments, the content information of mashups registered at

the ProgrammableWeb is regarded as the functional require-

ments provided by users when developing mashups. However,

user requirements in real-life scenarios may differ from mashup

descriptions regarding language style and expression pattern,

which is a threat to the internal validity of this article. Accord-

ing to our analysis, mashup descriptions provided by different

service providers embody the functionalities of mashups and

have different description styles, which display high similarities

to user requirements. Besides, this evaluation criterion has also

been used in experiments of the existing service recommenda-

tion approaches [13], [24]. Hence, we argue that this threat to

the internal validity of our article is not severe.

Since the source code of most of the baseline approaches is

not publically available, we implemented them and used their

default parameter settings mentioned in their original papers.

There is no guarantee that they have reached their optimal

performance stated in the corresponding papers, which is another

threat to the internal validity of our article. To mitigate this

threat, we asked two master students who are familiar with these

approaches to examine our implementation code and optimize

them as needed.

2) External Validity: The external validity concerns the gen-

eralizability of the experiment results. It is challenging for the

dataset used in our experiments to represent all the real-world

scenarios accurately. To mitigate this threat, ProgrammableWeb,

the largest real-world repository of web APIs, mashups, and

applications, was selected as the experimental dataset. The

mashups and services provided by over 1000 companies or

personal developers make ProgrammableWeb a typical repre-

sentative of service registries. To further minimize the general-

izability issue, we divided the crawled dataset into five groups

and performed fivefold cross validation in the experiment. Even

so, evaluations of more large-scale real-world datasets are still

needed in the future.

The MISR is designed for an utterly cold-start scenario where

a user only inputs functional requirements. Last but not least,

another threat to the external validity of this article is whether the

approach can be generalized into other real scenarios where de-

velopers have selected one or more component services. Because

the CI and NI components can work in these scenarios, the MISR

can still work, and the threat is also not severe. We need to further

improve the MISR by leveraging the information of services that

have been selected and modeling complex interactions among

candidate services, the selected services, and the target mashup.

This study will be our future work.

V. CONCLUSION AND FUTURE WORK

In this article, we proposed a multiplex interaction-oriented

service recommendation approach, referred to as MISR, for

developing new mashups without any component service. Three

types of interactions between services and mashups were in-

corporated into a DNN to model their explicit and implicit

relationships. Experiments on a real-world dataset demonstrated

that the proposed approach was able to outperform several

state-of-the-art service recommendation methods regarding five

evaluation metrics.

In the future, we plan to improve our approach in the following

aspects. First, the MISR is currently designed to recommend ser-

vices for new mashups without any component. We will extend

the model framework to make it applicable to service recommen-

dation scenarios where developers have selected one or more ser-

vices. Second, we will also consider the composability or com-

position patterns between services, e.g., two services developed

by the same company are more likely to be invoked together.

REFERENCES

[1] N. Zhang, J. Wang, and Y. Ma, “Mining domain knowledge on service
goals from textual service descriptions,” IEEE Trans. Serv. Comput., to be
published, doi: 10.1109/TSC.2017.2693147.

[2] Q. He et al., “Efficient keyword search for building service-based sys-
tems based on dynamic programming,” in Proc. Int. Conf. Serv.-Oriented

Comput., 2017, pp. 462–470.
[3] Q. He et al., “Keyword search for building service-based systems,” IEEE

Trans. Software Eng., vol. 43, no. 7, pp. 658–674, Jul. 2017.
[4] M. Al-Hassan, H. Lu, and J. Lu, “A semantic enhanced hybrid rec-

ommendation approach: A case study of e-Government tourism service
recommendation system,” Decis. Support Syst., vol. 72, pp. 97–109, 2015.

[5] L. Yu, J. Zhou, J. Zhang, F. Wei, and J. Wang, “Time-aware semantic web
service recommendation,” in Proc. IEEE Int. Conf. Serv. Comput., 2015,
pp. 664–671.

[6] W. Gao, L. Chen, J. Wu, and A. Bouguettaya, “Joint modeling users,
services, mashups, and topics for service recommendation,” in Proc. IEEE

Int. Conf. Web Serv., 2016, pp. 260–267.
[7] C. Lin, A. K. Kalia, J. Xiao, M. Vukovic, and N. Anerousis, “NL2API:

A framework for bootstrapping service recommendation using natural
language queries,” in Proc. IEEE Int. Conf. Web Serv., 2018, pp. 235–242.

[8] C. Li, R. Zhang, J. Huai, and H. Sun, “A novel approach for API recom-
mendation in mashup development,” in Proc. IEEE Int. Conf. Web Serv.,
2014, pp. 289–296.

[9] Z. Gao et al., “SeCo-LDA: Mining service co-occurrence topics for
composition recommendation,” IEEE Trans. Serv. Comput., vol. 12, no. 3,
pp. 446–459, May/Jun. 2019.

[10] B. Xia, Y. Fan, W. Tan, K. Huang, J. Zhang, and C. Wu, “Category-
aware API clustering and distributed recommendation for automatic
mashup creation,” IEEE Trans. Serv. Comput., vol. 8, no. 5, pp. 674–687,
Sep./Oct. 2015.

[11] A. Jain, X. Liu, and Q. Yu, “Aggregating functionality, use history, and
popularity of apis to recommend mashup creation,” in Proc. Int. Conf.

Serv.-Oriented Comput., 2015, pp. 188–202.
[12] P. Samanta and X. Liu, “Recommending services for new mashups through

service factors and top-K neighbors,” in Proc. IEEE Int. Conf. Web Serv.,
2017, pp. 381–388.

https://dx.doi.org/10.1109/TSC.2017.2693147

MA et al.: DNN WITH MULTIPLEX INTERACTIONS FOR COLD-START SERVICE RECOMMENDATION 119

[13] R. Xiong, J. Wang, N. Zhang, and Y. Ma, “Deep hybrid collaborative
filtering for web service recommendation,” Expert Syst. Appl., vol. 110,
pp. 191–205, 2018.

[14] L. Chen, A. Zheng, Y. Feng, F. Xie, and Z. Zheng, “Software service
recommendation base on collaborative filtering neural network model,” in
Proc. Int. Conf. Serv.-Oriented Comput., 2018, pp. 288–403.

[15] J. Bobadilla, F. Ortega, A. Hernando, and A. Gutierrez, “Recom-
mender systems survey,” Knowl.-Based Syst., vol. 46, pp. 109–132, 2013,
doi: 10.1016/j.knosys.2013.03.012.

[16] R. Yera and L. Martínez, “Fuzzy tools in recommender systems: A survey,”
Int. J. Comput. Intell. Syst., vol. 10, no. 1, pp. 776–803, 2017.

[17] J. Lu, D. Wu, M. Mao, W. Wang, and G. Zhang. “Recommender sys-
tem application developments: A survey,” Decis. Support Syst., vol. 74,
pp. 12–32, 2015.

[18] M. Aznag, M. Quafafou, and Z. Jarir, “Leveraging formal concept analysis
with topic correlation for service clustering and discovery,” in Proc. IEEE

Int. Conf. Web Serv., 2014, pp. 153–160, doi: 10.1109/ICWS.2014.33.
[19] Z. Zheng, H. Ma, M. R. Lyu, and I. King, “Collaborative web service QoS

prediction via neighborhood integrated matrix factorization,” IEEE Trans.

Serv. Comput., vol. 6, no. 3, pp. 289–299, Jul./Sep. 2013.
[20] X. Chen, X. Liu, Z. Huang, and H. Sun, “Regionknn: A scalable hybrid

collaborative filtering algorithm for personalized web service recommen-
dation,” in Proc. IEEE Int. Conf. Web Serv., 2010, pp. 9–16.

[21] J. Liu, M. Tang, Z. Zheng, X. F. Liu, and S. Lyu, “Location-aware and
personalized collaborative filtering for web service recommendation,”
IEEE Trans. Serv. Comput., vol. 9, no. 5, pp. 686–699, Sep./Oct. 2016.

[22] Y. Hu, Q. Peng, X. Hu, and R. Yang, “Time aware and data sparsity tolerant
web service recommendation based on improved collaborative filtering,”
IEEE Trans. Serv. Comput., vol. 8, no. 5, pp. 782–794, Sep./Oct. 2015.

[23] G. Zou, M. Jiang, S. Niu, H. Wu, S. Pang, and Y. Gan, “QoS-aware web
service recommendation with reinforced collaborative filtering,” in Proc.

Int. Conf. Serv.-Oriented Comput., 2018, pp. 430–445, doi: 10.1007/978-
3-030-03596-9_31.

[24] F. Xie, J. Wang, R. Xiong, N. Zhang, Y. Ma, and K. He, “An integrated
service recommendation approach for service-based system development,”
Expert Syst. Appl., vol. 123, pp. 178–194, 2019.

[25] T. Liang, L. Chen, J. Wu, H. Dong, and A. Bouguettaya, “Meta-path based
service recommendation in heterogeneous information networks,” in Proc.

Int. Conf. Serv.-Oriented Comput., 2016, pp. 371–386.
[26] F. Xie, L. Chen, D. Lin, Z. Zheng, and X. Lin, “Personalized service recom-

mendation with mashup group preference in heterogeneous information
network,” IEEE Access, vol. 7, pp. 16155–16167, 2019.

[27] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
J. Mach. Learn. Res., vol. 3, pp. 993–1022, 2003. [Online]. Available:
http://jmlr.csail.mit.edu/papers/v3/blei03a.html.

[28] H. Cheng et al., “Wide & deep learning for recommender systems,”
in Proc. Workshop Deep Learn. Recommender Syst., 2016, pp. 7–10,
doi: 10.1145/2988450.2988454.

[29] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neu-
ral collaborative filtering,” in Proc. Int. Conf. World Wide Web, 2017,
pp. 173–182, doi: 10.1145/3038912.3052569.

[30] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discovery Data

Mining, 2016, pp. 855–864, doi: 10.1145/2939672.2939754.
[31] Y. Kim, “Convolutional neural networks for sentence classification,”

in Proc. Conf. Empirical Methods Natural Lang. Process., 2014,
pp. 1746–1751. [Online]. Available: https://www.aclweb.org/anthology/
D14-1181

[32] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proc. IEEE Conf.

Comput. Vision Pattern Recognit., 2016, pp. 2818–2826.
[33] P. Goyal and E. Ferrara, “Graph embedding techniques, applications, and

performance: A survey,” Knowl.-Based Syst., vol. 151, pp. 78–94, 2018,
doi: 10.1016/j.knosys.2018.03.022.

[34] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2015, arXiv: 1412.6980, [Online]. Available: https://arxiv.org/abs/1412.
6980

[35] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for
word representation,” in Proc. Conf. Empir ical Methods Natural Lang.

Process., 2014, pp. 1532–1543. [Online]. Available: https://www.aclweb.
org/anthology/D14-1162

[36] M. D. Hoffman, D. M. Blei, C. Wang, and J. W. Paisley, “Stochastic
variational inference,” J. Mach. Learn. Res., vol. 14, pp. 1303–1347, 2013.
[Online]. Available: http://jmlr.org/papers/v14/hoffman13a.html

[37] W. Gao and J. Wu, “A novel framework for service set recommendation
in mashup creation,” in Proc. IEEE Int. Conf. Web Serv., 2017, pp. 65–72,
doi: 10.1109/ICWS.2017.17.

[38] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
surpassing human-level performance on imagenet classification,” in Proc.

IEEE Conf. Comput. Vision Pattern Recognit., 2015, pp. 1026–1034,
doi: 10.1109/ICCV.2015.123.

Yutao Ma (M’10) received the Ph.D. degree in com-
puter science from Wuhan University, Wuhan, China,
in 2007.

He is currently an Associate Professor with the
School of Computer Science, Wuhan University. He
was with the Institute of China Electronic System
Engineering Corporation, Beijing, China, as a Post-
doctoral Fellow and has been a Visiting Scholar with
the Department of Electronic and Computer Engi-
neeringy, Lehigh University, Bethlehem, PA, USA.
His research interests include the development and

maintenance of large-scale software service systems. He has authored and
coauthored more than 50 peer-reviewed papers and received two best paper
awards at international conferences.

Dr. Ma is currently a Senior Member of the China Computer Federation (CCF)
and a member of the CCF Technical Committee on Services Computing.

Xiao Geng received the B.S. degree in computer
science from the Central University of Finance and
Economics, Beijing, China, in 2018. He is currently
working toward the master’s degree with the School
of Computer Science, Wuhan University, Wuhan,
China.

His current research interests include services com-
puting, recommender systems, and deep learning.

Jian Wang (M’11) received the Ph.D. degree in com-
puter science from Wuhan University, Wuhan, China,
in 2008.

He is currently a Lecturer with the School of
Computer Science, Wuhan University. His current re-
search interests include services computing and soft-
ware engineering. He has authored and coauthored
more than 40 peer-reviewed papers.

He is currently a Member of the IEEE, a mem-
ber of the China Computer Federation (CCF), and a
member of the CCF Technical Committee on Services
Computing.

https://dx.doi.org/10.1016/j.knosys.2013.03.012
https://dx.doi.org/10.1109/ICWS.2014.33
https://dx.doi.org/10.1007/978-3-030-03596-9_31
http://jmlr.csail.mit.edu/papers/v3/blei03a.html
https://dx.doi.org/10.1145/2988450.2988454
https://dx.doi.org/10.1145/3038912.3052569
https://dx.doi.org/10.1145/2939672.2939754
https://www.aclweb.org/anthology/D14-1181
https://dx.doi.org/10.1016/j.knosys.2018.03.022
https://arxiv.org/abs/1412.6980
https://www.aclweb.org/anthology/D14-1162
http://jmlr.org/papers/v14/hoffman13a.html
https://dx.doi.org/10.1109/ICWS.2017.17
https://dx.doi.org/10.1109/ICCV.2015.123

