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ABSTRACT

Ship stowage plan is the management connection of quae crane scheduling and yard crane scheduling. �e quality 
of ship stowage plan a�ects the productivity greatly. Previous studies mainly focuses on solving stowage planning 
problem with online searching algorithm, e�ciency of which is signi�cantly a�ected by case size. In this study, a Deep 
Q-Learning Network (DQN) is proposed to solve ship stowage planning problem. With DQN, massive calculation and 
training is done in pre-training stage, while in application stage stowage plan can be made in seconds. To formulate 
network input, decision factors are analyzed to compose feature vector of stowage plan. States subject to constraints, 
available action and reward function of Q-value are designed. With these information and design, an 8-layer DQN 
is formulated with an evaluation function of mean square error is composed to learn stowage planning. At the end 
of this study, several production cases are solved with proposed DQN to validate the e�ectiveness and generalization 
ability. Result shows a good availability of DQN to solve ship stowage planning problem. 

Keywords: Deep Q-Leaning Network (DQN); Container terminal; Ship stowage plan; Markov decision process; Value function approximation; 

Generalization

INTRODUCTION

In Recent years more and more researchers devoted 
themselves to the study of marine science, port logistics and 
so on[1-3], cause ocean is one of the important resources 
for human beings. Especially in ports, researchers have 
made great contributions to container terminal equipment 
[4-7] and planning [8-10] intelligence. In container 
terminals, stowage plan is one of the most important and 
time consuming planning phase. In present time, stowage 
planning is mainly made by hand with computer assistance. 
Such manual planning management mode relies heavily on 
experience of planners, which costs labor and time. With 
automation currency in container terminal, the manual 
planning hinders management automation process. At the 
same time, container ships has been larger and larger in recent 

time, which increases planning labor and time consumption. 
Under such circumstances, stowage planning automation or 
intelligent stowage planning has been a critical technology 
to be broke through in container terminal management to 
optimize both cost and e�ciency. 

Previous studies of container ship stowage planning focus 
on stowage planning model and algorithms to solve this 
problem. 

In terms of stowage planning model, Master Bay Plan 
and In-Bay Plan have been the mainstream. Among Master 
Bay Plan, Todd D S and Sen P [11] propose a Master Bay 
Plan model minimizing reshu�ing, with trimming moment, 
heeling moment, ship stability and position as constraints. 
A GA is designed to solve this problem. Zhao N and Mi W J 
[12] made a multi-objective mixed integer programming 
model with ship stability factors and operation factors as 
constraints to optimize reshu�es and yard crane e�ciency. 
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�e proposed MIP model can only solve small scale problems 
with traditional planning solver. Moura A and Oliveira J et al 
[13] proposed a MIP model optimizing total transportation 
cost with shipping line in consideration. Amone In-Bay Plan, 
Avriel M and Penn M [14] proposed a MIP model minimizing 
reshu�es. Proposed algorithm can solve small scale problems. 
J.J.Shields [15] made a comparison between model solving 
outputs and actual loading outputs to validate proposed 
model. Imai et al [16-18] proposed multi-objective MIP model 
minimizing reshu�es. Numerical experiments reveals more 
binary variables and binary constraints would signi�cantly 
increase complexity and signi�cantly lower solving e�ciency. 
Haghani and Kaisar et al [19] proposed a MIP model with 
turnaround time and ship parameters as constraints. 

In terms of stowage planning algorithm, most researches 
prefer intelligent optimization algorithms. Álvarez et al 
[20] proposed a tabu-search algorithm with multiple initial 
solutions to solve the problem optimizing moving distance 
of stackers, shu�es and container weight distribution in 
ship. Numerical experiments show that proposed tabu-search 
algorithm can solve cases with more than 100 containers in 
short time while MIP solvers cannot solve cases with more 
than 40 containers. Kim et al [21-24] proposed beam-search 
algorithm to solve stowage planning problem. Y.Lee et al 
[25] decomposes stowage planning problem into smaller 
scale sub-problems using hierarchy theory to solve stowage 
planning problem. An Ant Colony Optimization-Tabu Search 
hybrid algorithm is proposed, and numerical experiment 
shows superiority of proposed hybrid algorithm over original 
independent algorithms. 

�ese analyses shows that stowage planning studies at 
the moment concentrate on composing a MIP model and 
design a heuristic algorithm to solve the model. Such method 
performs well in small scale cases while has limitations such 
as poor performance in large scale cases and weak ability 
of generalization. �us in this paper a deep reinforcement 
learning algorithm is proposed to solve stowage planning 
problem. Intelligent agent of stowage planning is trained 
to solve stowage planning problem e�ciently and maintain 
better generalization. 

CONTAINER SHIP STOWAGE 

PLANNING PROBLEM

DECISION FACTORS

In stowage planning process, several factors needs to be 
considered to ensure seaworthiness of container ship and 
improve operation e�ciency. 

1. Ship slot location and sequence relationship factor

To ensure e�ciency during ship loading process, ship slots 
has relative loading sequence relationship such as slot 8401 
can only be loaded when the slot right under slot 8401 which 
is 8201, and relative sea side slots should better be loaded 

before land side slots. �is sequence relationship between slot 
locations varies between Deck Stowage Plan and Hold Stowage 
Plan. Deck has more constraints to ensure ship stability and 
operation safety. 

2. Ship slot weight limit factor 

Before In-Bay Planning, Master Bay Plan has preplanned 
allocation to suggest a weight limit for each ship slot to 
guarantee ship stability and securing capacity. �us each 
slot has a weight range constraint. 

3. Heavy-over-light limit factor 

�eoretically, heavy containers should be loaded under 
light containers to ensure ship stability. While in actual 
planning, heavy containers are allowed to load over light 
containers if these containers weighs close. �us, a heavy-
over-light limit factor is applied to formulate this constraint. 

OPTIMIZATION OBJECTIVES

1. Staircase shape sequencing in deck stowage planning 

In terms of loading sequence, containers should better be 
loaded in stair shape, which means avoid insert a container 
between containers to improve loading operation e�ciency 
and safety. 

2. Minimizing reshu�es 

When a container needs to be loaded before containers 
over itself in container yard, reshu�e is needed. Reshu�es 
caused by stowage plan should be minimized during planning 
to improve loading e�ciency. 

3. Minimizing yard crane shi�s 

When containers with adjacent planned loading sequence 
locates in di�erent yard bays or even in di�erent yard blocks, 
yard crane needs to shi� from one bay to another to load 
these two containers. Unreasonable plan causes yard crane to 
shi� back and forth to pick containers, which a�ects loading 
e�ciency. �us, yard crane shi�s should be minimized 
to improve loading e�ciency. 

DEEP REINFORCEMENT LEARNING 

ALGORITHM FOR STOWAGE PLANNING 

PROBLEM

MARKOV DECISION PROCESS

L. S. Shapley �rst proposes Markov Decision Processes 
(MDP) in stochastic games research. R.Bellman then proposes 
dynamic programming method to solve general sequencial 
problem. R.A.Howard and D.Blackwell proposed general 
theoretical framework and e�ective method for MDP. A MDP 
is a 5-tuple ( , , , , )t t ts a r T π , where

ts  is a �nite set of states,

ta  is a �nite set of actions available from state ts ,
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tr  is immediate reward (or expected immediate reward),
T  is the transit function from state ts  to 1ts + ,
π  is the strategy or policy
�e problem of MDP is to �nd a policy π  that speci�es 

actions that the decision maker will choose when in state ts . 

MDP FOR STOWAGE PROBLEM

MDP for stowage planning problem is formulated 
according to basis of MDP. Fig. 2 shows a example of stowage 
planning MDP. 

Fig. 1. Slot Scheme.

Fig. 2. MDP for Stowage Planning Problem

1. Stowage State 

In stowage planning, t is stowage sequence, t=0 is the initial 
state when no container is loaded, t=1 is the next state when 
the �rst container is loaded, t=2 is the state when the second 
container is loaded, and so on. In Fig. 2, S

0
 is the initial state 

when the whole bay is empty, S
1
 is the next state when the �rst 

container C1 is stowed, and then S
2
. As is shown, when in 

S
0
, there are several available actions, which is to stow which 

container in which available slot. 1( 2, 1)S C M  means stow C2 
into M1 slot in state S

1
, 2 1( 6, 2 | ( 2, 1))S C M S C M  means two 

containers are stowed, �rst stow C2 into M1 slot and then 
stow C6 into M2 in state S

2
. 

2. Stowage Action 

In stowage planning, an action is to mate a container with 
a slot, which means stow this container in this slot. In di�erent 
state, available actions are di�erent. In Fig. 2, when in S

0
, 

if stowage constraints are ignored, there are 36 available 
actions or mate of containers to slots. 

3. Stowage Reward

In reinforcement learning, reward represents the 
environment. In stowage planning learning, reward mainly 
expresses objectives and constraints. Since the result of 
a stowage plan is evaluated by availability, reshu�ing, yard 
crane shi�ing, and these evaluations have di�erent scales 
of importance, the stowage reward is as follow. 

1

-500,

500,

0,

if stowage plan is available

r if stowage plan is not available

else


= 



 

  (1)

2 10 * (5)r φ= − (2)

3 -30* (9)r φ= (3)

Formula (1) is the reward of availability, (2) is the reward 
of reshu�ing, (3) is the reward of yard crane shi�ing. 

4. Stowage Planning Evaluation Function and Action 

Evaluation Function 

1 1

'

( ) ( ' | , )[ ( ' | , ) ( ) | ]t t t

s

v s T s s a r s s a v s s sπ πλ+ += + =∑ (4)

1 1

'

( , ) ( ' | , )[ ( ' | , ) ( )]t t

s

Q s a T s s a r s s a v sπ λ+ += +∑ (5)

* *

'

( ) max ( ' | , )[ ( ' | , ) ( ')]
a

s

V s T s s a R s s a V sλ= +∑ (6)

* *

'

( , ) ( ' | , )[ ( ' | , ) ( ')]
s

Q s a T s s a R s s a V sλ= +∑ (7)

π  is the stowage strategy or policy, 
λ  is the discount factor, which represents the in�uence 

of next stowage move to this move, 
( ' | , )T s s a  is the probability of taking action a  to get state 

's  in state s , 
( ' | , )R s s a  is the reward of taking action a  to get state 's  

in state s , 
( )v s  is expected reward of taking various actions in state s, 

or expected reward of stowing other containers a�er state s, 
( , )Q s a  is the total reward of taking action a  in state s, 
*( )V s  is the maximum reward in state s, 
*( , )Q s a  is the maximum reward of taking action a  in 

state s.

STOWAGE PLANNING FEATURES

�e dimensions of di�erent ship bays are usually di�erent 
in stowage planning, and reinforcement learning needs 
a training set with same dimensions. �us, stowage features 
are introduced to approximate di�erent stowage states. In 
this research, 9 features are selected as the feature vector of 
a stowage state, { (1), (2), (8), (9)}φ φ φ φΦ = 

max(1) /i iW Wφ = (8)

max(2) /i iT Tφ = (9)
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(4)i i iP Sφ = − (11)

max(5) /i iF Fφ = (12)

max(6) /i i jX X Xφ = − (13)

max(7) /i i kX X Xφ = − (14)

max(8) ( ) ( ) / 2i i j i kG G G G Gφ = − + − (15)

1,

(9)
      

0,

i

if this container is located in 

the same yard bay with the

 previous one

else

φ



= 



 

    
(16)

(8) Represents the normalized weight of selected container.
(9) Represents the normalized tier number of selected slot.
(10) Represents the normalized weight gap between selected 

container and the container located right under it on the ship.
(11) Represents the potential of selected match of container 

and slot (or action), which means number of remaining lighter 
container minus available ship slots above selected slot, or 
expression of in�uence of selected action to later stowage 
planning.

(12) Represents normalized reshu�es caused by this action.
(13) Represents normalized sequential gap between selected 

container with containers located le� of selected.
(14) Represents normalized sequential gap between selected 

containers with containers located right under selected 
container.

(15) Represents normalized sum of sequential gap between 
selected container with containers located le� of selected and 
sequential gap between selected containers with containers 
located right under selected container.

(16) Represents whether this container locates in the same 
yard bay with the previous one. 

DEEP REINFOREMENT LEARNING ALORITHM FOR 

STOWAGE PLANNING PROBLEM

Figure 3 shows the framework of reinforcement learning or 
Q-Learning for stowage plan. In the initial state of learning, 
the intelligent agent is like a naïve planner, every action the 
planner take will have a reward to update ( , )Q s a , and the 
agent will decide next action for next state depending on 
updated ( , )Q s a , this is the iteration of reinforcement learning. 
Actually, the agent learns from iterations of attempts and 

rewards to maximize the �nal reward and make the policy 
better.  

Fig. 3. Framework of Reinforcement Learning

�e di�erence between Deep Q-Learning and Q-Learning 
is that the look up table is replaced by deep neuron network 
to update ( , )Q s a , which enables e�ectiveness in super large 
state space scale. And the deep neuron network can be trained 
with minimizing lost function ( )i iL w  which updates in each 
iteration. 

2

'
( ) [( max ( ', '; ) ( , ; )) ]i i i i

a

Target

L w r Q s a w Q s a wγ= Ε + −


(17)

's  is the next state, and 'a  is the next action. �e partial 
in the iw  direction is in (18). 

, , , '
'
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                              ( , ; )) ( , ; )]
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i
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a
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Stochastic Gradient Descent is used to optimize the lost 
function, and the weight updates a�er every iteration, which 
is quite similar to traditional Q-Learning algorithm. 

In order to approximate reward for new states that never 
appeared before, a evaluation function approximation 
function is introduced to improve generalization ability. 
Unlike supervised learning, reinforcement learning doesn’t 
have known tags for training, tags are obtained through 
iterations. While a state and an action is updated, the change 
of weight for this match can a�ect other matches, which 
causes ine�ectiveness of previous state and action matches, 
and then it causes longer training time or even failure of 
training. �us, an experience replay method is introduced 
to prevent ine�ectiveness. 

Experience replay stores the experience of time t  as 

1( , , , )t t t ta rφ φ +  in experience history queue D , and then D  is 
stochastically sampled as 1( , , , )j j j ja rφ φ +  to do mini-batch 
to update the weight. �is ensures every history points are 
considered when updating a new data point. Experience replay 
stores all previous states and action in a sequence to minimize 
objective function when Q-Function updates. 

( , , , ')~ ( )

2

( ) [( max ( ', ; )

                                ( , ; )) ]

i i s a r s U D i
b

i

L w r Q s b w

Q s a w

γ= Ε +

−
(19)
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D represents a sequence of previous states and actions, 
( )U D  is a uniform distribution among experience sequence D. 

Experience replay based upon uniform distribution lowered 
data dependency to improve learning robustness. 

�e deep network for the stowage planning problem is 
designed as follows. 

1. Input layer and output layer

For stowage planning problem, the input layer is a matrix 
of feature vector of stowage samples, the output layer is the 
approximate Q-value. �us, the number of nodes in input 
layer is 9, the number of nodes in output layer is 1. 

2. Number of hidden layers

Generally, more hidden layer makes higher precision 
of  approximation, while more hidden layer costs more 
training and greater probability of over-�tting. In this case, 
9 hidden layer is accepted. 

3. Number of nodes in hidden layers

To avoid over-�tting and maintain better generalization 
ability, the number of nodes in hidden layer should be 
minimized when the precision is assured. Number of nodes 
in hidden layer is related to number of nodes in input layer, 
number of nodes in output layer, complexity of learning 
problem, transition function and sample data. Too few nodes 
causes poor training performance, and too many nodes causes 
less system error but may cause over-�tting. 

4. Activation function

�ere are three widely used activation functions, TanH , 
Sigmoid  and Relu ( Recti�ed Linear Units). Relu  has better 
training performance especially in attenuation of gradient 
and network sparsely. �us, Relu  is used as the activation 
function of this research. 

max(0, )Relu : f(x)= x (20)

�e designed deep neuron network for stowage planning 
problem is shown in Figure 4. 

According to deep network design, DQN training 
algorithm is designed, pseudo code for DQN Algorithm 
for Stowage Planning is shown in Table 1, and �owchart in 
Figure 5. 

Figure 4. Deep Neuron Network for Stowage Planning Problem

Tab. 1. DQN Algorithm for Stowage Planning

DQN Training Algorithm for Stowage Planning

Initialize experience history queue D  with length N

Initialize ( , ; )Q s a w  with random weight 0w
For each stowage episode loop: 

Initialize observation sequence 1 1{ }s x=  and feature sequence 1 1( )sφ φ=
For each step in an episode loop: 

    Select an action to perform in state s  with ( )softmax greedyε −
    Update reward and extract feature 1 1( )sφ φ=
    Save experience tuple 1( , , , )t t t ta rφ φ +  into experience history queue D

Collect samples 1( , , , )j j j ja rφ φ +  with size of random sampling mini-batch

Transform sample 1( , , , )j j j ja rφ φ +  into training tuple ( , )k kx y
 

' 1 1, max ( , ', )k j k a i j ix y r Q a wφ λ φ + −= = +
Update network weights of training set {( , )}k k mx y  according to ( )

iw i iL w∇  

with stochastic gradient descent

Loop until end of states s  

Loop until end of episodes

Fig. 5. Flowchart for DQN Algorithm for Stowage Planning
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STOWAGE CASE STUDY OF DQN STOWAGE 

PLANNING

CASE DESCRIPTION

In this case, production data of Ningbo Port is used to 
verify proposed method. Selected ship bay has 19 slots, 
19 corresponding containers locate in 4 yard bays in 2 blocks. 
Ship bay is shown in Figure 6, this bay has 4 tiers and 5 rows, 
each weight box is a slot to be stowed. Container distribution 
in yard is shown in Figure 7. Number inside each box in 
Figure 7 is the weight of each container. 

Parameter setup for stowage planning is shown in Table 2 
and parameter setup for DQN learning algorithm is in Table 
3. Random exploration rate ε  indicates that in the initial 
state of iterations, the random exploration rate equals to 1 
to improve exploration. A�er each 1% of total iterations, the 
exploration rate decrease by a step of 0.09 to reach 0.1 when 
iterations �nish. With this descending, the agent can focus 
on optimized solution gradually to converge while keeping 
a moderate ability of exploration. 

Fig. 6. Ship Bay Layout

Fig. 7. Container Distribution

Tab. 2. Parameter setup for stowage planning

Heavy-over-light 
limit factor δ Reshu�e weight 1w

Yard crane shi� 
weight 2w

0.5 t 3 1

Tab. 3. Parameter Setup for DQN Learning Algorithm

Learning ratio α Discount factor λ
Random exploration 

rate ε

1*10-4 0.3
1 to 0.1 with step of 

-0.09

Random exploration 
rate update internal

Experience replay 
depth

Number of nodes in 
hidden layers

1% 5000 128

STOWAGE RESULT ANALYSIS

�e proposed DQN is trained with production data for 
200000 iterations, which costs 2 hours and 46 mins. �e 
trained DQN can �nish the test case in 0.069 seconds, and 
the stowage result of the test case is as in Figure 8. 

�e upper le� �gure shows the weight distribution of 
stowage, the upper right �gure shows the sequence of stowage. 
�e boxes are �lled with di�erent colors to distinguish its 
original yard bay. In this stowage plan, 1 reshu�e and 3 shi�s 
are needed to �nish loading of this ship bay, of which 3 shi�s 
are necessary (because there are 4 yard bays in total). �e 
reshu�e of container with sequence 18 is unnecessary, but 
it is still a good solution. With all that, the e�ectiveness of 
DQN trained with production data is validated. 

Fig. 8. Stowage result of test case

GENERALIZATION ABILITY ANALYSIS

1. Generalization of Data with Same Size 

To verify the generalization of same size data, another 
stowage case with 19 containers is introduced. �is case (case. 
2) comes from a di�erent ship of same port. Stowage result 
has 1 reshu�e and 4 shi�s, 4 shi�s of witch are all necessary. 
With comparison with port planners’ stowage results, the 
stowage plan of DQN shows a good performance. Manual 
plan costs 121 seconds on average, while DQN can complete 
the calculation in 0.073s. �is case study shows a good result 
in terms of generalization of same size data. 

2 Generalization of Data with Di�erent Size

To verify the generalization of di�erent size data, a stowage 
case with 40 containers is introduced. �is case (case. 3) has 
a big di�erence with the previous one both in case size and 
container distribution. Result of DQN of this case shows 
some heavy-over-light containers, while the weight gaps are 
all in the heavy-over-light limit. �e result has 12 reshu�es 
and 11 shi�s, 4 shi�s are unnecessary. For the complexity 
of this case, port planners show varieties in their plans, with 
an average of 10.2 reshu�es and 9.6 shi�s. Port planners takes 
237s to make the plan while DQN costs 0.131s. �us, DQN 
shows comparable ability in this case with human competitors 
with much better time consumption. �is case study shows 
a good result in terms of generalization of di�erent size data. 
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ROBUSTNESS ANALYSIS

In stowage planning DQN learning, robustness of 
algorithm refers to whether the training algorithm can get 
good DQN with various stowage planning cases. 

In generalization analysis part, DQN trained with case. 1 
is used to plan case. 2 and case. 3. To verify the robustness of 
proposed algorithm, case. 2 and case. 3 are used as training 
set to get new DQNs. Planning results of di�erent DQNs are 
shown below. 

Tab. 4. Training parameters and time consumption

Training Set No. of Containers Iterations Training time

Case. 1 19 150000 2 h 46 min

Case. 2 19 150000 2 h 53 min

Case. 3 28 150000 4 h 21 min

Table 4 shows that these three training has same iteration 
setup, and with same case size, the training time is quite 
similar.

Tab. 5. Comparison of DQNs’ planning results

Training Set Case. 1 Case. 2 Case. 3

Test Case Case. 1 Case. 2 Case. 3 Case. 1 Case. 2 Case. 3 Case. 1 Case. 2 Case. 3

Reshu�es 1 1 12 2 1 12 1 1 10

Shi�s 3 4 11 3 4 12 3 5 11

Training Time 0.069 0.073 0.131 0.071 0.081 0.142 0.068 0.073 0.137

As in Table 5, di�erent test cases shows good result with 
di�erent trained DQNs, and the e�ciency of di�erent 
DQNs are quite similar, which means in�uence of di�erent 
training cases and test cases are negligible. �us, the proposed 
algorithm has good stability and robustness. 

CONCLUSIONS

In this study, a DQN and a learning method for this DQN is 
proposed to solve ship stowage planning problem, inovations 
are as follows. 

1. Introduces deep learning algorithm to solve planning 
problem. With DQN, massive calculation and training is 
done in pre-training stage, while in application the planning 
problem can be solved in seconds

2. Objectives and constraints of ship stowage planning 
problem are transformed to feature vectors to extract stowage 
policies with deep learning algorithm automatically. Policies 
from data tends to have less bias than designed heuristics in 
previous studies. 

3. Experience replay is introduced in DQN to enforce 
generalization and robustness of proposed algorithm. 

4. Provided reference to solving planning problem in 
container terminals such as yard storage planning and 
equipment scheduling. 
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