
S. I . : EMERGING APPLICATIONS OF DEEP LEARNING AND SPIKING ANN

A deep Q-learning portfolio management framework
for the cryptocurrency market

Giorgio Lucarelli1 • Matteo Borrotti1,2

Received: 21 November 2019 / Accepted: 9 September 2020 / Published online: 20 September 2020

� The Author(s) 2020

Abstract

Deep reinforcement learning is gaining popularity in many different fields. An interesting sector is related to the definition

of dynamic decision-making systems. A possible example is dynamic portfolio optimization, where an agent has to

continuously reallocate an amount of fund into a number of different financial assets with the final goal of maximizing

return and minimizing risk. In this work, a novel deep Q-learning portfolio management framework is proposed. The

framework is composed by two elements: a set of local agents that learn assets behaviours and a global agent that describes

the global reward function. The framework is tested on a crypto portfolio composed by four cryptocurrencies. Based on our

results, the deep reinforcement portfolio management framework has proven to be a promising approach for dynamic

portfolio optimization.

Keywords Deep reinforcement learning � Q-learning � Portfolio management � Dueling double deep Q-networks

1 Introduction

Nowadays, new developments in Machine Learning (ML)

and advancements in neuroscience together with an

increasing amount of data and a new generation of com-

puters are ushering in a new age of Artificial Intelligence

(AI). Currently, AI researchers possess a rising interest in a

collection of powerful techniques that fall under the

umbrella of deep Reinforcement Learning (RL) [4].

The success of deep RL is related to the fact that both

biological and artificial agents must achieve goals to sur-

vive and be useful. This goal-oriented behaviour is the

milestone of RL. Such behaviour is based on learning

actions that maximize rewards and minimize punishments

or losses. RL relies on interactions between an agent and its

environment. The agent must choose actions based on a set

of inputs, where the inputs define the states of the envi-

ronment. The agent tries to optimize the outcomes of these

actions over time, which can be either rewards or punish-

ments. This formulation is natural in biological systems,

but it has also proven to be highly useful for artificial

agents [22]. In fact, the combination of representation

learning with goal-oriented behaviour gives deep RL an

inherent interest for many different applications.

Deep RL approaches have been successfully applied to a

range of fields that vary from image understanding [6] to

natural language processing [32]. For example, deep RL

has been widely proposed to tackle cyber attacks against

Internet-connected systems. The complexity and dynamics

of cyber attacks require protective mechanisms to be

responsive, adaptive, and effective in large scale. It has

been proven that deep RL is highly capable of solving

complex, dynamic, and especially high-dimensional cyber

defense problems [23]. Furthermore, deep RL algorithms

exceeded human performance at the game Go [10] and at

numerous Atari video games [21].

Additionally, deep RL has been applied to the definition

of intelligent agents for automated financial trading. The

process of trading is represented as an online decision

making problem that concerns two critical steps of market

condition summarization and optimal action execution.

& Matteo Borrotti

matteo.borrotti@unimib.it

1 Department of Economics, Management and Statistics,

University of Milano-Bicocca, Piazza dell’Ateneo Nuovo, 1,

20126 Milan, Italy

2 Institute for Applied Mathematics and Information

Technologies, National Research Council, Via Alfonso Corti,

12, 20133 Milan, Italy

123

Neural Computing and Applications (2020) 32:17229–17244

https://doi.org/10.1007/s00521-020-05359-8 (0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-9246-0260
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-020-05359-8&domain=pdf
https://doi.org/10.1007/s00521-020-05359-8

Dynamic decision making requires the agent to explore an

unknown environment independently from human inter-

actions and, at the same time, perform correct online

activities [7]. In this context, dynamic portfolio optimiza-

tion is an attractive problem for deep RL applications [26].

In portfolio management, an agent or a set of agents should

continuously reallocate an amount of fund into a number of

different financial assets with the final aim of maximizing

the return and minimizing the risk [12].

In this work, we extend the approach presented by

Lucarelli et al. [18] by incorporating the idea of multi-

agent employment by a framework that performs dynamic

management of cryptocurrency portfolio (as presented by

Patel [24]). With dynamic management, we intend a

management able to define the best set of actions at each

trading time. The final aim is to maximize portfolio returns.

The management framework learns from past behaviours

in order to adapt and evolve its way to act on the market.

More precisely, each financial asset in the portfolio is

represented by a local agent. In each local agent, a spe-

cialized deep Q-learning technique competes in the defi-

nition of a global reward function used to dynamically

update the information of each local agent. Global reward

function is managed by a global agent. Hence, actions are

weighted and applied to each asset in the portfolio. Dif-

ferently from Patel [24], a set of local agents are consid-

ered, one for each asset in the portfolio. Each agent concurs

in the description of the global environment, defined by

hourly price movements. In Patel [24], the author considers

two RL agents (one for tick data and one for order book

data) for managing only one asset.

Three different deep RL approaches are tested as local

agents: Deep Q-Networks (DQN), Double Deep Q-Net-

works (D-DQN) and Dueling Double Deep Q-Networks

(DD-DQN). Each local agent is then evaluated in combi-

nation with two global reward functions: sum of nominal

net returns and a linear combination of Sharpe ratio and

portfolio net return. The proposed Q-learning portfolio

management framework is tested on a cryptocurrency

portfolio composed by four crypto assets: Bitcoin (BTC),

Litecoin (LTC), Ethereum (ETH) and Riple (XRP).

Cryptocurrencies can be described by the opening price

at the start of a certain period, the highest and lowest price

within that period and the closing price at the end of the

period (i.e. candlesticks or Open-High-Low-Close infor-

mation). In this work, only the closing prices will be

considered. However, two aspects of cryptocurrencies are

worth mentioning. Cryptocurrencies are based on a

decentralized structure and the so-called openness. Open-

ness refers to the availability of all information to the

public. Furthermore, without a central regulating party,

anyone can participate in cryptocurrency trading with low

entrance requirements. Consequently, there is an

abundance of small-volume currencies that are affected by

smaller amount of investment, compared to traditional

markets. This helps deep RL techniques take advantage of

the consequences of their own market actions. In addition,

most cryptocurrency exchanges are open 24/7 without

restricting the number of trades. These non-stop markets

are ideal for deep RL approaches to learn how to act in

shorter time-frames [13].

However, the complexity of cryptocurrencies is yet to be

fully explored and this work goes on the direction of

empirically understanding how deep RL approaches can

deal with such a complex market. Furthermore, the

Q-learning portfolio management framework is compared

with two alternative techniques: an equally-weighted

portfolio approach [20] and a portfolio management tech-

nique based on genetic algorithm optimization [8].

The paper is organized as follows. Section 2 briefly

describes deep RL. Section 3 defines the portfolio man-

agement problem. The cryptocurrency portfolio manage-

ment framework based on deep RL is described in Sect. 4.

The results are shown in Sect. 5, whereas Sect. 6 provides

conclusions and future work.

1.1 Related works

Nowadays, RL and deep RL have been largely applied to

dynamic portfolio optimization. An increasing number of

published works can be found in the literature. For a review

of RL and deep RL approaches please see Sato [26]. The

author provides a brief survey by examining existing

methods of both value-based and policy-based model-free

RL for the portfolio optimization problem identifying some

key unresolved questions and difficulties facing today’s

portfolio managers. Some works are shortly described

below.

In Liang et al. [16], authors adapted three versions of RL

algorithm based on Deep Determinist Policy Gradient

(DDPG), Proximal Policy Optimization (PPO) and Policy

Gradient (PG) for portfolio management. For this purpose,

authors proposed the so-called Adversarial Training in

order to reach a more robust deep RL and to consider

possible risks in optimizing the portfolio more carefully.

They conducted extensive experiments on China’s stock

market. Similarly, Yu et al. [33] proposed a novel RL

architecture consisting in an infused prediction module

(IPM), a generative adversarial data augmentation module

(DAM) and a behaviour cloning module (BCM). In both

works, the proposed approaches have proven to be

profitable.

Wang et al. [29] proposed the AplhaStock approach, a

novel reinforcement learning (RL)-based investment strat-

egy enhanced by interpretable deep attention networks.

One of their main contributions is related to a sensitivity

17230 Neural Computing and Applications (2020) 32:17229–17244

123

analysis used to unveil how the model selects an asset to be

invested according to its multi-aspect features.

Alessandretti et al. [1] and Jiang et al. [13] applied

Artificial Intelligent (AI) approaches on portfolio man-

agement. In [1] the authors applied a gradient boosting

decision tree (i.e. XGBoost) and Long Short Term Memory

(LSTM) network on a cryptocurrency portfolio. Perfor-

mances were evaluated considering Sharpe ratio [27] and

geometric mean return. All the proposed strategies pro-

duced profit over the entire test period. Jiang et al. [13]

applied a deterministic policy gradient using a direct

reward function (average logarithmic return) for solving

the portfolio management problem. The approach proved

to outperform classical management techniques except

against a Passive Aggressive Mean Reversion technique in

terms of cumulative return.

Alternative approaches can be found in the literature. In

Maillard et al. [20], the authors proposed an approach

based on minimum variance and equally weighted portfo-

lios. Other possible solutions are based on optimization

algorithms [8]. Among the most effective optimization

algorithms, are metaheuristic methods, which have proved

to be very successful in portfolio optimization.

2 Deep reinforcement learning: a short
description of main concepts

As described by François-Lavet et al. [9], the general RL

problem is formalized as a discrete time stochastic control

process where an agent interacts with its environment in

the following way: the agent starts, in a given state within

its environment s0 2 S, by gathering an initial observation

x0 2 X. At each time step t, the agent has to take an action

at 2 A. Actions are selected based on a policy, p. The

policy is a description of the behaviour of the agent and

tells the agent which actions should be selected for each

possible state. As a consequence of each action, the agent

obtains a reward rt 2 R, the state transitions is updated to

stþ1 2 S, an observation xtþ1 2 X is observed by the agent

[2].

At this point, it is possible to define the transition

probability of each possible next state stþ1 as Pðstþ1jst; atÞ,
with stþ1; st 2 S and at 2 A. Similarly, a reward proba-

bility of each possible reward rt is defined as Pðrtjst; atÞ

where st 2 S, at 2 A. Hence, the expected scalar reward,

rt, received by executing action a in current state s is

calculated based on EPðrt jst ;atÞðrtjst ¼ s; at ¼ aÞ. This

framework can be seen as a finite Markov Decision Process

(MDP) [28]. The final aim of an agent is to learn an optimal

policy p�, which defines the probability of selecting action

a in state s in order to maximize the sum of the discounted

rewards.

The expected discounted return R at time t is defined as

follows:

Rt ¼ E½rt þ crtþ1 þ c2rtþ2 þ . . .� ¼ E
X

1

k¼0

ckrtþk

" #

; ð1Þ

where E[.] is the expectation with respect to the reward

distribution and 0\c\1 is called the discount factor. At

this point, a Q-value function, Qpðs; aÞ, can be defined as

follows:

Qpðs; aÞ ¼ Ep½rtjst ¼ s; at ¼ a� ¼ Ep

X

1

k¼0

rtþkjst ¼ s; at ¼ a

" #

:

ð2Þ

The Q-value, Apðs; aÞ, for an agent is the expected return

achievable by starting from state s 2 S and performing

action a 2 A following policy p. Equation 2 satisfies a

recursive property, so that an iterative update procedure

can be used for the estimation of Q-value function:

Qp
iþ1ðs; aÞ ¼ Ep rt þ c

X

1

k¼0

ckrtþkþ1jst ¼ s; at ¼ a

" #

¼

¼ Ep½rt þ cQp
i ðstþ1 ¼ s0; atþ1 ¼ a0Þjst ¼ s; at ¼ a�;

ð3Þ

for all s; s0 2 S and a; a0 2 A.

The reinforcement learning agent aims at finding the

policy which achieves the greatest outcome. Hence, it must

learn an optimal policy p� with the expected value greater

than or equal to all other policies, and lead to an optimal Q-

value Q�ðs; aÞ. In particular, the iterative update procedure

for estimating the optimal Q-value function can be defined

as in Eq. 4.

Qiþ1ðs; aÞ ¼ Ep½rt þ cmax
a0

Qiðs
0
; a0Þjs; a�: ð4Þ

The iteration procedure converges to the optimal Q-value,

Q�, as i ! 1 and is called value iteration algorithm. One

of the most popular value-based algorithms is the Q-

learning algorithm [31].

The basic version of Q-learning algorithm makes use of

the Bellman equation for the Q-value function [3] whose

unique solution is Q�ðs; aÞ:

Q�ðs; aÞ ¼ ðBQ�Þðs; aÞ; ð5Þ

where B is the Bellman operator mapping any function

K : S� A ! R into another function S� A ! R and is

defined as follows:

Neural Computing and Applications (2020) 32:17229–17244 17231

123

ðBKÞðs; aÞ ¼
X

s02S

Tðs; a; s0Þ½Rðs; a; s0Þ þ cmax
a02A

Kðs0; a0Þ�;

ð6Þ

where T is the function for calculating the transaction value

to go from s to s0 given action a. One general proof of

convergence to the optimal value function is available in

Walkins et al. [31] under the conditions that: (i) the state-

action pairs are represented discretely, and (ii) all actions

are repeatedly sampled in all states (which ensures suffi-

cient exploration, hence not requiring access to the tran-

sition model).

In that context, a parametric value function Qðs; a; hÞ is

needed, where h refers to the model parameters used for

approximating the value function. For example, if neural

networks are used, h corresponds to the network weights.

In what follows, there is a short description of deep

Q-learning approaches used in this work.

2.1 Double deep Q-networks

Double Deep Q-Networks (D-DQNs) are deep RL methods

based on Deep Q-Networks (DQNs). DQNs were intro-

duced by Mnih et al. [21]. DQNs stabilize the training of

action value function approximation with Convolutional

Neural Networks (CNNs) [5] by using experience replay

[17] and target network. In fact, DQNs use CNNs to

approximate the optimal action value function:

Q�ðs; aÞ ¼ max
p

E
X

1

k¼0

ckrtþ1jst ¼ s; at ¼ a; p

" #

: ð7Þ

In standard Q-learning, as well as in DQN, the parameter h

in Qðs; a; hÞ is updated as follows:

htþ1 ¼ ht þ aðyQt � Qðst; at; htÞÞrQt
ðst; at; htÞ; ð8Þ

where a is the learning rate and

y
Q
t ¼ rtþ1 þ cmaxa Qðstþ1; a; htÞ.

A limitation of DQN is related to over-estimation. To

overcome this limitation, in D-DQN a greedy policy is

evaluated in accordance with the online network and a

target network is used to estimate its value. This can be

achieved by replacing y
Q
t with:

yD�DQN
t ¼ rtþ1 þ cQðstþ1; argmax

a

Qðstþ1; a; htÞ; h
�
t Þ;

ð9Þ

where ht is the parameter for online network and h�t is the

parameter for target network. At this point, y
Q
t can be

written as:

yQt ¼ rtþ1 þ cQðstþ1; argmax
a

Qðstþ1; a; htÞ; htÞ: ð10Þ

2.2 Dueling double deep Q-networks

Dueling Double Deep Q-Network (DD-DQN) [30] is based

on a dueling network architecture to estimate value

function

VðsÞ ¼ E
X

1

k¼0

rtþkjst ¼ s; p

" #

; ð11Þ

and the associated advantage function

Aðs; aÞ ¼ Qðs; aÞ � VðsÞ: ð12Þ

The two functions are then combined together in order to

estimate Q(s, a) and to converge faster than Q-learning. In

DQN, a CNN layer is followed by a Fully Connected (FC)

layer. In dueling architecture, a CNN layer is followed by

two streams of FC layers, used to estimate the value

function and the advantage function separately; then the

two streams are combined to estimate the action value

function. Usually Eq. 13 is used to combine V(s) and

A(s, a).

Qðs; a; h; a; bÞ ¼ Vðs; h; bÞ þ ðAðs; a; h; aÞ �max
a0

Aðs; a0; h; aÞÞ:

ð13Þ

In Eq. 13, d and b are parameters of the two streams of FC

layers. In DD-DQN, Wang et al. [30] propose to replace the

max operator with an average action value (Eq. 14).

Qðs; a; h; d; bÞ ¼ Vðs; h; bÞ þ ðAðs; a; h; dÞ �
a

jAj
Aðs; a0; h; dÞÞ:

ð14Þ

3 Portfolio management problem definition

Portfolio management is a continuous decision process

based on an adaptive capital allocation into a set of

financial assets. Periodically, a portfolio agent takes

investment actions based on specific management policies

and information from the past.

A portfolio is generally composed by N financial assets

usually described by a set of price information: the opening

price at the start of a certain instant t, the highest and

lowest price within t and the closing price at the end of

t. Financial data can be sampled at different rates. For

simplicity purposes, we consider only the closing price

from now on.

Considering a period T composed by t trading instants

and each instant characterized by N closing prices p, we

can construct the portfolio price matrix P as in Eq. 15.

17232 Neural Computing and Applications (2020) 32:17229–17244

123

P ¼

p11 p12 . . . p1t . . . p1T

p21 p22 . . . p2t . . . p2T

..

. ..
. . .

. ..
. . .

. ..
.

pn1 pn2 . . . pnt . . . pnT

..

. ..
. . .

. ..
. . .

. ..
.

pN1 pN2 . . . pNt . . . pNT

2

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

5

ð15Þ

where pnt is the closing price at time t of a financial asset n.

The t-th column is the price vector of the t-th trading

instant, denoted by vt. The n-th row is the price time

sequence of an asset. The first row is reserved for the risk-

less asset. At this point, considering vtþ1 e vt, the price

change vector can be defined as follows:

yt ¼ vtþ1 � vt ¼ fp1ðtþ1Þ � p1t; p2ðtþ1Þ � p2t; p3ðtþ1Þ

� p3t; . . .; pNðtþ1Þ � pNtg

ð16Þ

At time t, an agent invests on the market by a portfolio

weights vector wt ¼ fw1t;w2t;w3t; . . .;wNtg. wnt represents

the proportion of financial exposure on a trading period

t for asset n.

Now, the portfolio management problem can be

described by the MDP framework. Then, we need the

following elements: S, A, transition probability

Pðstþ1jst; atÞ with stþ1; st 2 S and at 2 A and the reward

function r.

In our example, S defines the closing price at time t of

the n assets. A is the set of possible actions doable on the

assets, defined as in Eq. 17 for n-th asset.

Action ¼

Buy; if E½pnðtþ1Þ�[pnt;

Hold; if E½pnðtþ1Þ� ¼ pnt;

Sell; if E½pnðtþ1Þ�\pnt:

8

>

<

>

:

ð17Þ

where E½pnðtþ1Þ� is expected price at time t þ 1 of the n-th

asset.

The usual reward function r at trading time t for asset n

can be defined as a simple net profit function, g
profit
nt ¼

ðpnt � pnðt�1ÞÞ (i.e. nominal return) or as Sharpe ratio [27],

spnt ¼
ð.pnt�.f Þ

rpnt
, where .pnt is the return of the portfolio or

merely the return of the asset, .f is the risk-free rate, rpnt is

the standard deviation of portfolio’s return [18].

4 The Q-learning portfolio management
framework

The deep Q-learning portfolio management framework is

basically based on two main principles: (1) problem

decomposition and (2) on financial interactions identifica-

tion (between micro- and macro-levels). In Fig. 1, a

graphical representation of the proposed approach is pro-

vided. A multi-agent approach is used: local agents (one

for each asset) are given with hourly data and makes the

Portfolio
st = vt

Asset1

Asset2

Asset3

AssetN

Local DQN AgentN

Local DQN Agent3

Local DQN Agent2

Local DQN Agent1

r1t

r2t

r3t

rNt

st

wt x at = {w1t a1t, w2t a2t, w3t a3t, , wNt aNt}

st+1 = vt+1

rt+1

Global Agent

Data Repository

Random

minibatch

local

local

local

local

local

G
lo

b
a
l

re
w

a
rd

,
rg

lo
b

a
l

w1t"x"a1t

w2t"x"a2t

w3t"x"a3t

wNt"x"aNt

st = (p1t, p2t, p3t, , pNt)

Fig. 1 Deep Q-learning

portfolio management

framework

Neural Computing and Applications (2020) 32:17229–17244 17233

123

decision to buy, sell or hold the specific asset, whereas a

global agent is defined as a reward function that describes

the global portfolio environment. Differently from other

approaches [13, 33], N deep RL approaches are used to

manage the portfolio instead of only one RL approach.

More precisely, the problem decomposition principle is

translated by defining a local agent for each asset (i.e.

currency) in the portfolio. A local agent is a deep Q-

learning technique trained in a specific asset. We consid-

ered three different deep Q-learning techniques: Deep Q-

Networks (DQNs), Double Deep Q-Networks (D-DQNs)

and Dueling Double Deep Q-Networks (DD-DQNs). The

connection between micro-levels (local agents) and macro-

levels (portfolio) is designed by the global reward function.

The global reward function is a mathematical combination

of the single reward obtained by each local agent. The

global reward value is then used to feed the local agents

before selecting a new action. The portfolio weights, w, are

updated at the micro-level at each step. The weight rep-

resents the proportion of financial exposure for each asset

at trading time t and is used to scale the single trading

action. Algorithm 1 describes the deep RL portfolio man-

agement framework. In this specific case, each local agent

is represented by a deep Q-network.

Algorithm 1 Deep Q-learning Portfolio Management Framework

1: procedure Portfolio Management(
)Input:

Raw price p1, . . . , pT for the n assets in an online manner
rglobal, definition of global reward function

rlocal, definition of local reward function

c, learning rate
γ, discount rate
ǫ, random action probability
Initialize replay memory Dn, n = 1, . . . , N (local agent)
Initialize action-value function Qn with random weights
sl and tp, stop loss and take profit value
Initialize portfolio weights vector, w

2: for episode = 1 to M do

3: Initialize sequence s1 = v1

4: for t = 1 to T do

5: For each local agent n (with n = 1, . . . , N):
6: Following ǫ-greedy policy, select ant in A = {(wnt, buy), hold, (wnt, sell)},
7: where wnt is the financial exposure, as

ant =

{

random action with probability ǫ

arg maxa Q(snt, an; θn) otherwise

8: Execute action ant and observe reward rlocal
nt and state sn(t+1)

9: Compute global reward, rglobal

10: Set sn(t+1) = snt and ant

11: Store transition (snt, ant, r
global
t , sn(t+1)) in D

12: Sample random minibatch of transitions (snj , anj , r
global
j , sn(j+1)) from Dn

13: Set

ynj =

{

r
global
j for terminal sn(t+1)

r
global
j + maxa Q(sn(j+1), a

′

n; θn) for non-terminal sn(t+1)

14: Perform a gradient descent step on (ynj − Q(snj , anj ; θn))2 [21]

17234 Neural Computing and Applications (2020) 32:17229–17244

123

A local agent n takes the global reward value, r
global
t , and

the closing price at time t, pnt, as input. The global reward

value, r
global
t , is the same for each agent and it is defined at

macro-level. The output of each local agent is represented

by an action, ant, in A ¼ fðwnt; buyÞ; hold; ðwnt; sellÞg. wnt

is the related financial exposure. wnt value ranges between

0.83 USD dollars and 25 USD dollars. For simplicity

purposes, the interval is discretized in 30 values. Therefore,

the cardinality of A is 61.

Similarly to Lucarelli et al. [18], a stop-loss (sl =

�2:3%) and a take-profit (tp = þ6:5%) are also applied to

the portfolio. The exploration—exploitation dilemma is

considered by using an �-greedy technique, where the agent

can take a random action with probability, �, and follows

the policy that is believed to be optimal with probability,

1� �. As for the first observations, � is set to �initial ¼ 1.

Then, � is decreased to 0.13 during the training phase. For

each action on the market, a trade cost transition equal to

0.2% is applied (both buy and sell actions).

Locally, a reward function (local reward) is used for

each local agent. The results are then combined in the

global reward value. Two possible functions are considered

as global reward: simple sum of nominal net returns and a

linear combination of Sharpe ratio [27] and portfolio net

return. In the first case, the global return is computed as the

sum of the local reward, r
global;1
t ¼

PN
n¼1 r

local
nt . In the sec-

ond case, after computing a portfolio Sharpe ratio, spt , and

a portfolio net return, g
portfolio
t , a weighted sum is applied as

follows: r
global;2
t ¼ g1 � spt þ g2 � g

portfolio
t , where g1 ¼ g

and g2 ¼ ð1� gÞ.

5 Experimental settings and results

5.1 Cryptocurrency data

The deep Q-learning portfolio management framework is

tested on a portfolio composed by four cryptocurrencies:

Bitcoin (BTC), Litecoin (LTC), Ethereum (ETH) and Riple

(XRP). Cryptocurrencies are decentralized currencies

based on blockchain-based platforms and are not governed

by any central authority. Although Bitcoin is one of the

most established and discussed cryptocurrency available

today, there are more than 200 available tradable

cryptocurrencies.

For each cryptocurrency we collect the main technical

aspects, namely price movement (opening price, highest

and lowest price and closing price). However, only one

technical aspect is used as input of the deep Q-learning

portfolio management framework, the closing price. The

selected sample rate is hourly. Data goes from 01 July 2017

to 25 December 2018. The final dataset is composed by

roughly 13,000 observations and one feature. All cryp-

tocurrencies are in USD dollars. In Fig. 2 the USD close

price movements are shown. Price movements are indexed

using the first available data point (01 July 2017). BTC,

LTC and ETH are gathered from www.coinbase.com and

XRP from www.bitstamp.net.

Percentage historical daily returns and volatility, skew-

ness and kurtosis are reported in Table 1. All statistical

indicators are computed over the entire period. As pointed

out in [25], cryptocurrencies exhibit long memory, lever-

age, stochastic volatility and heavy tailedness. Given that,

0

5

10

2017−07 2018−01 2018−07 2019−01

Date

U
S

D
 c

lo
s
e

 p
ri
c
e

(i
n

d
e

x
e

d
 2

0
1

7
−

0
7

)

Criptocurrencies

BTC

ETH

LTC

XRP

Data collected from www.coinbase.com and www.bitstamp.net

Fig. 2 USD close price

movements of Bitcoin (BTC),

Litecoin (LTC), Ethereum

(ETH) and Riple (XRP) time

series. All time series are

indexed at the first available

data point (01 July 2017)

Neural Computing and Applications (2020) 32:17229–17244 17235

123

http://www.coinbase.com
http://www.bitstamp.net

cryptocurrencies have the potential to generate massive

amounts of returns but there is also a high risk of losing a

significant amount of capital due to the high volatility [14].

5.2 Hyper-parameter tuning

Reinforcement learning and deep learning algorithms fre-

quently require careful tuning of model hyper-parameters,

regularization terms and optimization parameters. The

deep Q-learning portfolio management framework is based

on three different deep Q-learning techniques as local

agent. Deep Q-learning techniques have different hyper-

parameters that can be tuned in order to increase perfor-

mance and better fit the problem.

Three different validation periods are randomly sampled

from the data and therefore the training set is built. For

both reward functions, the cumulative average net return

(%) over the three validations is considered as the objective

for optimization purpose.

Two separate optimizations are performed. The first is

related to rglobal;1 and 4 hyper-parameters are considered

for optimization leading to a total number of settings equal

to 108. The second optimization concerns rglobal;2 and 324

different settings are tested since 5 hyper-parameters are

optimized. Table 2 summarizes selected hyper-parameters

and related domains.

This task requires a large amount of computational time.

For this reason, the neural network architecture is not

involved in the optimization. Furthermore, DQN is con-

sidered as the only deep Q-learning technique used for

hyper-parameter tuning. At a later stage, the best settings

are then applied also to D-DQN and DD-DQN. Eventually,

the best settings are applied to all the local agents in the

considered deep Q-learning portfolio management

framework.

After the optimization, the following best hyper-pa-

rameters are selected:

– rglobal;1: c ¼ 0:001, c ¼ 0:90, epoch = 65 and training

size = 6.

– rglobal;2: c ¼ 0:001, c ¼ 0:85, epoch = 55, training size

= 9 and g ¼ 0:30.

Following [18], the DQN is composed by 3 CNN layers

followed by a Fully Connected (FC) layer with 150 neu-

rons. The batch size is set to 50. The network optimization

is made by the ADAM algorithm [15]. The loss function is

the Mean Squared Error, MSE ¼

Pn

i¼1
ðyi�ŷiÞ

2

n
. The activa-

tion function of all the CNN layers is set as the Leaky

Rectified Linear Units (Leaky ReLU) function [19]. Fig-

ure 3 shows the proposed architecture. The input of the

network is a 1� 24 vector, which represents the prices of a

single cryptocurrency in last 24 trading periods. The output

layer has 61 neurons. Each one represents a possible

combination of action and related financial exposure. The

output activation function is a softmax function. D-DQN

has similar settings. DD-DQN varies only in the network

architecture. It is composed by 3 CNN layers followed by a

FC layer with 150 neurons. The FC layer is followed by

two streams of FC layers: the first with 75 neurons dedi-

cated to estimate the value function (Eq. 11) and the second

with 75 neurons to estimate the advantage function

(Eq. 12).

5.3 Algorithm configurations

Three different deep reinforcement learning techniques are

used to characterize the local agents: Deep Q-Networks

(DQNs), Double Deep Q-Networks (D-DQNs) and Dueling

Double Deep Q-Networks (DD-DQNs). Furthermore, two

different global reward functions are considered: r
global;1
t

and r
global;2
t . The first is the sum of the local reward (i.e.

nominal net return). The second is the weighted sum of

portfolio Sharpe ratio and portfolio net return.

A total of six different algorithm configurations are

tested for the optimization of the crypto portfolio. More

precisely, the deep RL portfolio management frameworks

are set as follows:

(1) DQN-RF1: DQNs as local agents and r
global;1
t as

global reward functions

Table 1 Historical daily return (%), historical daily volatility (%),

skewness and kurtosis for each cryptocurrency computed over the

entire period

Cryptocurrency Return Volatility Skewness Kurtosis

BTC 0.05 5.29 0.44 16.41

LTC 0.05 7.20 1.37 25.73

ETH 0.00 6.52 0.76 19.00

XRP 0.10 8.97 1.57 25.74

Table 2 List of hyper-parameters

Hyper-parameter Domain

Learning rate, c f0:001; 0:003; 0:005; 0:01g

Discount rate, c f0:85; 0:90; 0:95g

Number of epochs f55; 65; 75g

Size of the training period (months) f3; 6; 9g

(Only for rglobal;2) function weight, g f0:3; 0:5; 0:7g

Total number of settings 108 (rglobal;1), 324 (rglobal;2)

17236 Neural Computing and Applications (2020) 32:17229–17244

123

(2) DQN-RF2: DQNs as local agents and r
global;2
t as

global reward functions

(3) DDQN-RF1: D-DQNs as local agents and r
global;1
t as

global reward functions

(4) DDQN-RF2: D-DQNs as local agents and r
global;2
t as

global reward functions

(5) DDDQN-RF1: DD-DQNs as local agents r
global;1
t as

global reward functions

(6) DDDQN-RF2: DD-DQNs as local agent and r
global;2
t

as global reward functions

5.4 Results

All deep Q-learning portfolio management frameworks are

tested and compared by sampling 10 consecutive test

periods, from 25 July 2018 to 25 December 2018. Each

framework is run 5 times for each test period. Each test

period is composed by 15 out-of-sample trading days for

each cryptocurrency. Given the start date of each test

period, the training test is built accordingly. In accordance

with the results obtained in Sect. 5.2, the deep Q-learning

portfolio management frameworks based on r
global;1
t have a

training size of 6 months and the ones based on r
global;2
t a

training size of 9 months. As an example and by consid-

ering a training period of 6 months, if the test period starts

from 25 July 2018 to 10 August 2018 then the training

period starts from 25 January 2018 to 24 July 2018. All

portfolio sizes are set to 10,000 USD dollars.

Table 3 shows the daily volatility (%) of each cryp-

tocurrency on the 10 test periods. On average, the period

with the lowest volatility (2.47%) goes from 25 October

2018 to 10 November 2018 (Test 7) and the highest

volatility (7.34%) is reached in the period from 25

November 2018 to 10 December 2018 (Test 9).

In Fig. 4, the cumulative average portfolio net profit

over the 10 test sets is reported. 95% confidence intervals

around the mean are also included. A trade cost transition

equal to 0.2% is applied (both buy and sell actions). All

frameworks seem to be profitable on average.

In Table 4, the daily returns (%) for each framework

computed on each test period are reported. Furthermore,

Table 4 reports also the average daily returns computed

over the four cryptocurrencies (BTC/LTC/ETH/XRP). In

80% of the cases the proposed frameworks have a higher

daily returns with respect to the cryptocurrencies. No

frameworks reach positive daily returns in all test periods.

However, two frameworks (DQN-RF1 and DQN-RF2) out

of six get positive daily returns on 90% of the test periods.

Input layer

1x24

Convolutional

Layer 1D

Filters = 64

Kernel size = 8

Flatten layer

Size = 768

Output layer

Neurons = 61

FC layer

Neurons = 150

Convolutional

Layer 1D

Filters = 64

Kernel size = 8

Max Pooling 1D

Pool size = 2

Convolutional

Layer 1D

Filters = 64

Kernel size = 8

Max Pooling 1D

Pool size = 2

Fig. 3 DQN architecture

Table 3 Daily volatility (%) of the 10 test periods

Cryptocurrency Test 1 Test 2 Test 3 Test 4 Test 5

BTC 3.33 3.82 2.74 2.25 1.57

LTC 3.77 5.78 4.46 4.90 3.97

ETH 3.28 6.17 5.05 6.07 3.67

XRP 4.07 6.91 4.16 13.37 6.91

Cryptocurrency Test 6 Test 7 Test 8 Test 9 Test 10

BTC 2.11 0.98 5.68 6.32 4.95

LTC 3.28 2.74 7.25 8.13 6.96

ETH 4.02 2.30 6.47 7.99 7.64

XRP 5.09 3.87 7.05 6.91 6.76

Neural Computing and Applications (2020) 32:17229–17244 17237

123

On test period 8, DQN-RF2 gets an exceptional result

obtaining daily returns equal to 24.781%. On the same test

period, DDDQN-RF2 obtains the worst result (�12:052%).

Daily returns values are positive for all frameworks on

40% of the test periods. On the remaining 60%, at least one

framework gets negative performance. However, all

frameworks obtain positive daily returns values on average

(see Table 5).

Table 5 reports average daily returns (%), Return Of

Investments (ROI) and ROI standard deviation. At the end

of the test periods (last trading time), ROI (on average) is

always above the 2% considering an initial investment of

10,000 USD dollars. However, ROI standard deviation

values underline a high variability around the ROI average

values. DQN-RF2 reaches the highest value of average

daily return, more precisely 4.67%. The worst results in

Table 4 Daily returns (%)
Framework Test 1 Test 2 Test 3 Test 4 Test 5

DQN-RF1 4.443 4.190 1.819 9.031 7.240

DQN-RF2 0.781 3.893 2.691 3.073 2.586

DDQN-RF1 2.955 7.547 3.136 � 2.666 5.374

DDQN-RF2 3.987 � 1.425 0.044 � 4.650 4.623

DDDQN-RF1 4.138 6.947 2.858 � 1.694 7.437

DDDQN-RF2 6.005 1.888 � 2.283 5.101 4.657

BTC/LTC/ETH/XRP � 0.353 � 0.092 � 0.190 0.310 0.031

Framework Test 6 Test 7 Test 8 Test 9 Test 10

DQN-RF1 0.262 1.872 � 6.715 3.552 5.621

DQN-RF2 2.214 1.675 24.781 7.993 � 3.005

DDQN-RF1 5.365 1.837 � 0.811 2.979 � 8.516

DDQN-RF2 0.298 2.948 20.882 6.099 � 0.130

DDDQN-RF1 5.816 2.876 � 3.279 3.604 5.003

DDDQN-RF2 � 0.147 0.912 � 12.052 1.501 6.559

BTC/LTC/ETH/XRP � 0.086 0.045 � 0.663 0.111 0.311

Fig. 4 Average cumulative

portfolio net profit over the 10

test sets, i.e. different

combinations of start and end

dates for the trading activity

17238 Neural Computing and Applications (2020) 32:17229–17244

123

terms of average daily returns (%) are reached with

frameworks DDQN-RF2 and DDDQN-RF2. All the other

frameworks have an average daily return (%) higher than

3.00. The highest ROI is achieved by framework DDDQN-

RF2 followed by framework DQN-RF2.

Table 6 shows the average maximum loss and the

average maximum gain obtained in the 10 test periods and

the range of variations in-between. The ranges of variation

confirm a high fluctuation of the performance during the

different test periods leading to a risky portfolio.

Given these results, framework DQN-RF2 is the most

profitable solution with the considered portfolio. In Fig. 5,

the average cumulative portfolio net profit (%) of frame-

work DQN-RF2 for two different test periods is reported.

Period 1 corresponds to the time windows from 25 October

2018 to 10 November 2018. Data from 25 January 2018 to

24 October 2018 are used as training set. Period 2 corre-

sponds to time windows from 25 November 2018 to 10

December 2018. Data from 25 February 2018 to 24

November 2018 are used as training set. Period 1 has

average volatility of 2.47% and Period 2 of 7.34% (see

Table 3). Respectively, the lowest and highest average

volatility in the 10 test periods considered.

Figure 6 (Period 1) and Fig. 7 (Period 2) show the

contribution of each local agent in terms of cumulative

portfolio net profit.

In both cases the contribution of the local agent related

to trade BTC negatively impact the cumulative average net

profit. Instead, local agents that are specialized on ETH and

XRP have positive cumulative average net profit at the end

of both periods. In Period 1 the local agent related to LTC

does not perform well by reaching negative cumulative

average net profit.

Table 5 Average daily returns (%), Return Of Investments (ROI) with

standard deviation computed over the 10 trading periods. Best values

are indicated in bold

Framework Daily return (%) ROI (%) SD (ROI)

DQN-RF1 3.13 2.07 4.61

DQN-RF2 4.67 2.59 4.69

DDQN-RF1 1.72 2.56 3.56

DDQN-RF2 3.27 2.15 4.28

DDDQN-RF1 3.37 2.36 4.39

DDDQN-RF2 1.21 2.68 4.05

Table 6 Average maximum loss and gain with the corresponding

range of variation computed over the 10 trading periods. Best values

are indicated in bold

Framework Avg. max loss (%) Avg. max gain (%) Range

DQN-RF1 � 2.71 4.48 7.19

DQN-RF2 � 1.97 5.04 7.01

DDQN-RF1 � 1.76 4.56 6.32

DDQN-RF2 � 2.27 5.02 7.29

DDDQN-RF1 � 1.96 4.51 6.47

DDDQN-RF2 � 2.52 4.88 7.40

P
e

rio
d

 1
P

e
rio

d
 2

0 100 200 300 400

−500

0

500

1000

1500

−500

0

500

1000

1500

Time

C
u

m
u

la
ti
v
e

 A
v
e

ra
g

e
 N

e
t
P

ro
fi
t

Fig. 5 Average cumulative

portfolio net profit of

framework DQN-RF2 for test

period 7 (Period 1) and test

period 9 (Period 2). Period 1:

test set from 25 October 2018 to

10 November 2018, volatility

2.47%. Period 2: from 25

November 2018 to 10

December 2018, volatility

7.34%

Neural Computing and Applications (2020) 32:17229–17244 17239

123

As a result, even if framework DQN-RF2 shows

promising results, a further investigation of risk assessment

should be done to improve performance over different

periods. On average, framework DQN-RF2 is able to reach

positive results in both periods, even though they differ in

terms of magnitude. In Period 2, the ROI is around 7.5%

and average daily return is almost 8%.

In general, different volatility values strongly influence

the performance of the deep Q-learning portfolio man-

agement frameworks. Based on the results obtained by all

frameworks in Period 1 (low volatility) and Period 2 (high

volatility), Table 7 suggests which combination of local

agent and global reward function is the most suitable with

respect to the expected volatility of the portfolio. While

considering a D-DQN as local agent, the most

1
. B

T
C

2
. LT

C
3

. E
T

H
4

. X
R

P

0 100 200 300 400

−200

0

200

−200

0

200

−200

0

200

−200

0

200

time

C
u

m
u

la
ti
v
e

 A
v
e

ra
g

e
 N

e
t
P

ro
fi
t

Fig. 6 Average cumulative

portfolio net profit of each local

agent of DQN-RF2 for Period 1

0 100 200 300 400

−500

0

500

−500

0

500

−500

1
. B

T
C

2
. LT

C
3

. E
T

H
4
. X

R
P

0

500

−500

0

500

time

C
u
m

u
la

ti
v
e

 A
v
e
ra

g
e
 N

e
t
P

ro
fi
t

Fig. 7 Average cumulative

portfolio net profit of each local

agent of DQN-RF2 for Period 2

17240 Neural Computing and Applications (2020) 32:17229–17244

123

suitable global reward function is rglobal;2, which considers

also the Sharpe ratio. If a more complicated local agent is

to be used, then a simpler global reward function (rglobal;1)

is advisable, regardless of the type of volatility. A more

carefully selection should be done if DQN is considered. In

case of low volatility, then a reward function based on the

sum of the returns (rglobal;1) is more suitable. If a high

volatility is supposed, then a rglobal;2 should be

implemented.

The introduction of the Sharpe ratio in rglobal;2 does not

lead to more stable results. In fact, rglobal;2 shows higher

variability of the performance, regardless of the type of

deep RL. In general, rglobal;1 seems to be more stable.

Given these results, increase the complexity of the deep

RL does not help improving the overall performance of the

proposed framework. In this study, DQN represents the

best trade-off between complexity and performance. The

results suggest that the introduction of a greedy policy for

limiting over-estimation (as in D-DQN) does not increase

the performance while trading cryptocurrencies. The use of

a dueling architecture to estimate V(s) (Eq. 11) and A(s, a)

(Eq. 12) allows the deep RL to reach satisfactory results, on

average. However, a DD-DQN does not always guarantee

positive performance demonstrating a certain level of

uncertainty. More stable results can be obtained by using a

simple global reward function, such as rglobal;1.

5.5 Comparison

The deep Q-learning portfolio management framework

based on DQN as local agent and with r
global;2
t as global

reward function (DQN-RF2) is compared with two tech-

niques: an equally weighted portfolio technique [20] (EW-

P) and a portfolio selection using genetic algorithm tech-

nique [8] (PS-GA). All the approaches are compared in

terms of Sharpe ratio.

The equally weighted portfolio technique [20] is a

simple approach where all investments are uniformly dis-

tributed between the N financial assets. Given the four

cryptocurrencies (N ¼ 4), the following weight vector is

considered, w ¼ f1
N
;
1
N
;
1
N
;
1
N
g ¼ f0:25; 0:25; 0:25; 0:25g at

each trading instant.

A Genetic Algorithm (GA) [11] is a metaheuristic

search method used in many different optimization prob-

lems. At each iteration of the algorithm, GA works with a

population of individuals each representing a possible

solution to a given problem. Each individual in the popu-

lation is assigned a fitness score (i.e. objective function

value) that determines how good a solution is. The highly

fit individuals are identified (selection) and are given the

chance to reproduce by crossbreeding with other individ-

uals (crossover). With a certain probability, some random

modifications are possible (mutation). A whole new pop-

ulation of possible solutions is thus produced. In this way,

over many generations (i.e. iterations), good characteristics

are spread throughout the population in order to explore the

most promising areas of the search space. In the context of

portfolio management, GAs are used to find an optimal

weight vector for financial investments. In general, meta-

heuristic-based algorithms cannot prove the optimality of

the returned solution, but they are usually very efficient in

finding (near-)optimal solutions.

For this reason, a real-valued GA is implemented. In

contrast to the binary GA, the real-valued GA codifies the

features of each individual in the population as real values.

More precisely, an individual is represented as a vector, w,

of real values between 0 and 1. The length of the vector is

equal to the number of cryptocurrencies in the portfolio

(N ¼ 4). Basically, each vector is a candidate portfolio

weights vector. A population is then composed by a set of

candidate portfolio weights vectors (Popsize ¼ 50) and each

individual is evaluated based on an objective function

(Sharpe ratio). At each iteration, the Sharpe ratio should be

maximized. The real-valued GA is also set with crossover

probability equal to 0.8 and mutation probability equal to

0.1. The average single-point procedure is selected as

crossover operator and a roulette wheel technique as an

example of proportional selection operator. Algorithm 2

describes the procedure.

Table 7 Comparison of the

deep Q-learning portfolio

management frameworks with

respect to the type of expected

volatility (low or high)

Low High

DQN rglobal;1 rglobal;2

D-DQN rglobal;2 rglobal;2

DD-DQN rglobal;1 rglobal;1

Neural Computing and Applications (2020) 32:17229–17244 17241

123

The equally weighted portfolio technique is directly

tested on the 10 test periods. The portfolio management

technique based on GA optimization is based on the fol-

lowing steps: (1) weights vector is optimized on the

training period and (2) performance is evaluated on the test

period. GA is a stochastic optimization algorithm than the

approach is run 5 times for each training and test period.

Only the size of the training period which is equal to 9

months is considered.

In Table 8, the average Sharpe ratio for each approach is

reported. None of them shows a remarkable Sharpe ratio.

PS-GA has a negative value. In this case, this is due to the

portfolio’s return is negative. EW-P has a Sharpe ratio

almost equal to zero due to an investment’s excess return

value near zero. DQN-RF2 has a Sharpe ratio that reaches a

value of 0.202. This value highlights the fact that the

standard deviation around the average daily return is quite

high. A high standard deviation value can be expected

while trading on an hourly basis. However, this result

suggests that the DQN-RF2 approach needs to be improved

by reducing the standard deviation. For instance, this can

be done by selecting cryptocurrencies that are less

correlated.

Now, we compare the three approaches on a specific

scenario. The scenario coincides with Period 2. The test

Period 2 corresponds to time windows from 25 November

2018 to 10 December 2018. Data from 25 February 2018 to

24 November 2018 are used as training set. This scenario is

characterized by high daily volatility (see Table 3). Fig-

ure 8 shows how the approaches perform on the 15 out-of-

sample trading days. The solid line represents the perfor-

mance of the DQN-RF2 approach. The dashed line repre-

sents the EW-P technique and the dash-dotted line

corresponds to the PS-GA. On the first trading days, DQN-

RF2 and EW-P have similar behaviour. After 8 days, EW-P

has a sharp reduction in terms of cumulative average net

profit. PS-GA is not able to get any profit in the 15 out-of-

sample trading days. In this scenario, DQN-RF2 shows

higher ability to manage the entire portfolio.

6 Conclusions and discussion

Portfolio management is an interesting field for the appli-

cation of deep RL approaches. In this work, a first defini-

tion of a deep RL portfolio management framework is

proposed. Differently from traditional works, N deep RL

approaches are used to manage the portfolio instead of only

one RL approach. The proposed general framework is

composed by two main ingredients: (i) a set of local agents

that are responsible for trading the single asset in the

portfolio and (ii) a global agent that rewards each local

agent based on the same reward function (global reward).

The local agent was based on three different deep RL

approaches: deep Q-learning, double deep Q-learning and

dueling double deep Q-learning. Furthermore, the global

reward takes the following two possible forms: a sum of

the local nominal returns (rglobal;1) and a weighted sum of

portfolio Sharpe ratio and portfolio net return (rglobal;1).

All frameworks were tested on a crypto portfolio com-

posed by four assets (currency): Bitcoin (BTC), Litecoin

(LTC), Ethereum (ETH) and Riple (XRP). Data were

Table 8 Sharpe ratio

DQN-RF2 EW-P PS-GA

Sharpe ratio 0.202 0.043 � 0.190

Algorithm 2 Portfolio Selection using Genetic Algorithm

1: procedure Weights Optimization(
)Input:

TrainMatrix, Training period (matrix of size T × N)
pcross, crossover probability
pmut, mutation probability
Popsize, population size
Randomly generate the initial population of candidate individuals (portfolio weights
vectors)

2: for iteration = 1 to MaxInteration do

3: for each individual ∈ population do

4: Apply weights vector to TrainMatrix

5: Compute returns
6: Compute Sharpe ratio (i.e. objective function)

7: Select individuals with a proportional selection operator
8: Apply average single-point crossover with probability pcross

9: Apply mutation with probability pmut

10: Update population for next iteration

17242 Neural Computing and Applications (2020) 32:17229–17244

123

collected from 01 July 2017 to 25 December 2018. All

cryptocurrencies were in USD dollars.

All frameworks produced positive average daily returns

(%) for a set of shorter trading periods (different combi-

nations of start and end dates for the trading activity).

Furthermore, ROI (on average) is always above the 2%

considering an initial investment of 10,000 USD dollars.

As suggested by the empirical study, while considering a

D-DQN as local agent, the most suitable global reward

function is a linear combination of Sharpe ratio and port-

folio net return. If a more complicated local agent is to be

used, then a simpler global reward function (such as sum of

nominal net returns) is advisable, regardless of the type of

volatility. A more carefully selection should be done if

DQN is considered. In presence of low volatility, then a

reward function based on the sum of nominal net returns is

more suitable. If a high volatility is supposed, then a

reward function that takes Sharpe ratio into consideration

should be implemented.

The portfolio management framework based on deep Q-

network as local agents and rglobal;2 as global reward

(DQN-RF2) achieved the best value in terms of average

daily returns (4.67%). The DQN-RF2 was then compared

with other two alternative approaches: an equally weighted

portfolio technique (EW-P) and portfolio management

technique based on GA optimization (PS-GA). The three

approaches were compared in terms of Sharpe ratio. None

of them showed remarkable results; however, DQN-RF2

reached the highest value of Sharpe ratio (0.20).

These initial results show that the proposed deep RL

portfolio management framework is a promising approach

that should be further investigated to improve overall

performance.

Given that, some considerations should be done with

respect to possible improvements. The proposed approach

should be compared with more traditional techniques for

portfolio management to demonstrate its potential superi-

ority. Additionally, rglobal;2 demonstrated not to consider

the risk of an investment as expected. A more in-depth

study should be carried out to better understand the inter-

action between local agents through the global reward.

Furthermore, each local agent used the same deep RL

approach. The development of a network selection proce-

dure could improve the performance on each single asset.

Moreover, a study on the cryptocurrency portfolio com-

position should be performed to identify a set of cryp-

tocurrencies that are less correlated and more suitable for

portfolio management purpose. In this regard, considering

works such as [25] or volatility studies on the cryptocur-

rency market [14] could help improve the deep RL

framework for portfolio management. Furthermore, the

deep RL framework should be tested on different markets

in order to assess the generalization power of the proposed

approach.

From a computational point of view, hyper-parameter

tuning is a really intensive task. The use of parallel com-

puting techniques and GPU processors could reduce the

time needed to optimize the deep RL framework parame-

ters and, furthermore, speed up the training phase.

−1000

−500

0

500

0 100 200 300

time

C
u

m
u

la
ti
v
e

 A
v
e

ra
g

e
 N

e
t
P

ro
fi
t

Fig. 8 Average cumulative

portfolio net profit of DQN-RF2

(solid line), EW-P (dashed line)

and PS-GA (dash-dotted line)

Neural Computing and Applications (2020) 32:17229–17244 17243

123

As such, considering these elements for future work is

surely a good prospect to improve the deep Q-learning

portfolio management framework.

Acknowledgements We greatly acknowledge the DEMS Data Sci-

ence Lab for supporting this work by providing computational

resources. Furthermore, the authors gratefully acknowledge the

anonymous reviewers and the editor for their helpful comments.

Funding Open access funding provided by Università degli Studi di

Milano - Bicocca within the CRUI-CARE Agreement.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of

interest.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Alessandretti L, ElBahrawy A, Aiello LM, Baronchetti A (2018)

Anticipating cryptocurrency prices using machine learning.

Complexity 2018:1–16

2. Barto AG, Sutton RS, Anderson CW (1983) Neuronlike adaptive

elements that can solve difficult learning control problems. IEEE

Trans Syst Man Cybern 13(5):834–846

3. Bellman RE, Dreyfus SE (1962) Applied dynamic programming.

RAND Corporation, Santa Monica

4. Botvinick M, Ritter S, Wang JX, Kurth-Nelson Z, Blundell C,

Hassabis D (2019) Reinforcement learning, fast and slow. Trends

Cognit Sci 23(5):408–422

5. Buduma N (2017) Fundamentals of deep learning: designing

next-generation artificial intelligence algorithms. O’Reilly Media,

Newton

6. Caicedo JC, Lazebnik S (2015) Active object localization with

deep reinforcement learning. In: IEEE international conference

on computer vision (ICCV’15), pp 2488–2496

7. Deng Y, Bao F, Kong Y, Ren Z, Dai Q (2017) Deep direct

reinforcement learning for financial signal representation and

trading. IEEE Trans Neural Netw Learn Syst 28(3):653–664

8. di Tollo G, Roli A (2008) Metaheuristics for the portfolio

selection problem. Int J Oper Res 5(1):13–35

9. François-Lavet V, Henderson P, Islam R, Pineau J, Bellemare

MC (2018) An introduction to deep reinforcement learning.

Found Trends Mach Learn 11(3–4):219–354

10. Fu MC, Chang HS, Hu J, Marcus SI (2016) Google DeepMind’s

AlphaGo. ORMS Today 43(5):1–14

11. Goldberg GE (1989) Genetic algorithms in search optimization

and machine learning. Addison Wesley, Boston

12. Haugen RA (1986) Modern investment theory. Prentice Hall,

Upper Saddle River

13. Jiang Z, Liang J (2017) Cryptocurrency portfolio management

with deep reinforcement learning. In: Proceedings of the intelli-

gent systems conference (IntelliSys’17), pp 905–913

14. Katsiampa P (2017) Volatility estimation for Bitcoin: a com-

parison of GARCH models. Econ Lett 158:3–6

15. Kingma DP, Ba J (2015) Adam: a method for stochastic opti-

mization. In: Proceedings of the 3rd international conference of

learning representations, pp 1–15

16. Liang Z, Chen H, Zhu J, Jiang K, Li Y (2018) Adversarial deep

reinforcement learning in portfolio management. arXiv:1808.

09940:1-11

17. Lin LJ (1991) Programming robots using reinforcement learning

and teaching. In: Proceedings of the ninth national conference on

artificial intelligence (AAAI’91). AAAI Press

18. Lucarelli G, Borrotti M (2019) A deep reinforcement learning

approach for automated cryptocurrency trading. In: IFIP advan-

ces in information and communication technology. Springer,

Berlin

19. Maas AL, Hannun AY, Ng AY (2013) Rectifier nonlinearities

improve neural network acoustic models. In: Proceedings of the

30th international conference on machine learning, pp 1–6

20. Maillard S, Roncalli T, Teı̈letche J (2010) The properties of

equally weighted risk contribution portfolios. J Portf Manag

Summer 36(4):60–70

21. Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I,

Wierstra D, Riedmiller M (2013) Playing Atari with deep rein-

forcement learning. arXiv:1312.5602:1-9

22. Neftci EO, Averbeck BB (2019) Reinforcement learning in arti-

ficial and biological systems. Nature Mach Learn 1:133–143

23. Nguyen TT, Reddi VJ (2019) Deep reinforcement learning for

cyber security. arXiv:1906.05799v2:1-16

24. Patel Y (2018) Optimizing market making using multi-agent

reinforcement learning. arXiv:1812.10252v1:1-10

25. Phillip A, Chan JSK, Peiris S (2018) A new look at cryptocur-

rencies. Econ Lett 163:6–9

26. Sato Y (2019) Model-free reinforcement learning for financial

portfolios: a brief survey. arXiv:1904.04973:1:20

27. Sharpe WF (1994) The Sharpe ration. J Portf Manag 21:49–58

28. Sutton RS, Barto AG (2018) Reinforcement learning: an intro-

duction. The MIT Press, Cambridge

29. Wang J, Zhang Y, Tang K, Wu J, Xiong Z (2019) AlphaStock: a

buying-winners-and-selling-losers investment strategy using

interpretable deep reinforcement attention networks. arXiv:1908.

02646:1:9

30. Wang Z, Schaul T, Hessel M, van Hasselt H, Lanctot M, de

Freitas N (2016) Dueling network architectures for deep rein-

forcement learning. In: Proceedings of the 33 international con-

ference on machine learning (ICML’16). PLMR

31. Watkins CJCH, Dayan P (1992) Q-learning. Mach Learn

8:279–292

32. Young T, Hazarika D, Poria S, Cambria E (2018) Recent trends

in deep learning based natural language processing. IEEE Com-

put Intell Mag 13(3):55–75

33. Yu P, Lee JS, Kulyatin I, Shi Z, Dasgupta S (2019) Model-based

deep reinforcement learning for dynamic portfolio optimization.

arXiv:1901.08740:1-21

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

17244 Neural Computing and Applications (2020) 32:17229–17244

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1808.09940:1-11
http://arxiv.org/abs/1808.09940:1-11
http://arxiv.org/abs/1312.5602:1-9
http://arxiv.org/abs/1906.05799v2:1-16
http://arxiv.org/abs/1812.10252v1:1-10
http://arxiv.org/abs/1904.04973:1:20
http://arxiv.org/abs/1908.02646:1:9
http://arxiv.org/abs/1908.02646:1:9
http://arxiv.org/abs/1901.08740:1-21

	A deep Q-learning portfolio management framework for the cryptocurrency market
	Abstract
	Introduction
	Related works

	Deep reinforcement learning: a short description of main concepts
	Double deep Q-networks
	Dueling double deep Q-networks

	Portfolio management problem definition
	The Q-learning portfolio management framework
	Experimental settings and results
	Cryptocurrency data
	Hyper-parameter tuning
	Algorithm configurations
	Results
	Comparison

	Conclusions and discussion
	Funding
	References

