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ABSTRACT

Venue recommendation is an important application for Location-

Based Social Networks (LBSNs), such as Yelp, and has been exten-

sively studied in recent years. Matrix Factorisation (MF) is a popular

Collaborative Filtering (CF) technique that can suggest relevant

venues to users based on an assumption that similar users are likely

to visit similar venues. In recent years, deep neural networks have

been successfully applied to tasks such as speech recognition, com-

puter vision and natural language processing. Building upon this

momentum, various approaches for recommendation have been

proposed in the literature to enhance the effectiveness of MF-based

approaches by exploiting neural network models such as: word em-

beddings to incorporate auxiliary information (e.g. textual content

of comments); and Recurrent Neural Networks (RNN) to capture

sequential properties of observed user-venue interactions. How-

ever, such approaches rely on the traditional inner product of the

latent factors of users and venues to capture the concept of collabo-

rative filtering, which may not be sufficient to capture the complex

structure of user-venue interactions. In this paper, we propose a

Deep Recurrent Collaborative Filtering framework (DRCF) with a

pairwise ranking function that aims to capture user-venue inter-

actions in a CF manner from sequences of observed feedback by

leveraging Multi-Layer Perception and Recurrent Neural Network

architectures. Our proposed framework consists of two compo-

nents: namely Generalised Recurrent Matrix Factorisation (GRMF)

and Multi-Level Recurrent Perceptron (MLRP) models. In particular,

GRMF and MLRP learn to model complex structures of user-venue

interactions using element-wise and dot products as well as the

concatenation of latent factors. In addition, we propose a novel

sequence-based negative sampling approach that accounts for the

sequential properties of observed feedback and geographical loca-

tion of venues to enhance the quality of venue suggestions, as well

as alleviate the cold-start users problem. Experiments on three large

checkin and rating datasets show the effectiveness of our proposed

framework by outperforming various state-of-the-art approaches.

1 INTRODUCTION

Location-Based Social Networks (LBSNs) such as Foursquare and

Yelp have become popular platforms that allow users to find in-

teresting venues to visit based on their preferences, share their
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location to their friends (i.e. making a checkin) as well as leave

comments on venues they have visited. Such implicit and explicit

feedback can be leveraged to study user’s behaviour in urban cities

as well as to make personalised recommendation of venues to visit.

Among various collaborative filtering techniques, Matrix Factoris-

ation (MF) [12] is widely used to predict users’ ratings on venues by

leveraging explicit feedback (e.g. prior ratings of venues). �en, the

venue recommendations are generated by ranking the venues based

on their predicted ratings. However, users in LBSNs only focus on

the top-K ranked venues for recommendation, and explicit feedback

can be difficult to collect. For these reasons, Bayesian Personalisa-

tion Ranking (BPR) [20], which aims to generate accurate ranked

lists of venues, and leverages implicit feedback, is more effective

than rating prediction-based models (i.e. regression models).

A challenge of implicit feedback from observing checkins is that

only positive feedback can be observed, and MF-based and BPR

models trained on only positive feedback are likely to be biased

to positive instances. To address this challenge, various negative

sampling approaches have been proposed [7, 20, 29]. For example,

a negative sampling approach proposed by Rendle et al. [20] in

BPR uniformly and randomly selects items/venues that the users

have not interacted with as negative instances. Moreover, users’

preferences are not static and change dynamically over time (e.g.

users may prefer to visit shopping malls at daytime but prefer to

visit bars in evenings) [11]. However, both MF and BPR can only

capture users’ long-term (static) preferences and not their short-

term (dynamic ) preferences. Meanwhile, recent observed feedback

can have more influence on users’ likely checkin behaviour than

historical feedback. For instance, consider a user who has recently

visited several art museums and a restaurant, sequentially. Models

that only capture the user’s long-term preferences will recommend

other museums to visit, whereas a model that can capture the user’s

short-term preferences might recommend a bar to visit instead.

Another challenge in recommendation systems is the problem

of cold-start users (i.e. users who have li�le observed feedback),

which can hinder the effectiveness of MF-based approaches. To

alleviate the cold-start user problem, various MF-based approaches

in literature have been proposed to leverage additional sources of

information such as friendships, textual content of comments and

geographical location of venues (e.g. [16–18, 29]). Previous stud-

ies [4, 11, 19, 25, 28, 32] have shown that the sequential properties

of user’s interactions (e.g. sequences of checkins or clicks) play an

important role in improving the quality of recommendation for var-

ious tasks. To effectively capture users’ dynamic preferences as well

as take previous feedback into account, various approaches have

been proposed to exploit Recurrent Neural Network models (RNN)

for recommendation systems (e.g. [25, 28, 32]). Such approaches

still rely on a dot product of latent factors of users and items to cap-

ture the user-item interactions in a Collaborative Filtering manner,



where similar users will obtain similar recommendations. However,

the dot product of latent factors may not be sufficient to capture

the complex structures of user-item interactions. To address this

challenge, He et al. [7] recently proposed a Neural Matrix Factoris-

ation (NeuMF) framework that leverages a Multi-Layer Perceptron

to learn the complex structures of user-item interactions. NeuMF

can generalise MF-based approaches by replacing the dot prod-

uct with a neural architecture that can learn an arbitrary function

from implicit feedback. In this work, we propose a Deep Recurrent

Collaborative Filtering framework that aims to learn the complex

structure of users’ static and dynamic preferences. In particular, our

contributions are summarised below:

• We propose a Deep Recurrent Collaborative Filtering frame

work (DRCF) with a pairwise ranking function for venue

recommendation. Our proposed framework differs from

the framework of He et al. [7] (NeuMF) in three aspects:

(1) DRCF can capture both user’s dynamic and static pref-

erences, while NeuMF can only capture user’s static prefer-

ences; (2) NeuMF ignores the dot product of latent factors

when making the prediction. In contrast, DRCF framework

exploits the dot products of latent factors to model the

user-venue interactions; and (3) DRCF aims to generate

accurate ranked list of venue, unlike NeuMF which aims

to accurately predict user’s rating on items. To the best

of our knowledge, our proposed framework (DRCF) is the

first study that extends NeuMF framework to model both

users’ static and dynamic preferences.

• Within the DCRF framework, we propose Generalised Re-

current Matrix Factorisation (GRMF) and Recurrent Multi-

Level Recurrent Perceptron (MRLP) models that exploit

Recurrent Neural Networks (RNN) models to capture users’

dynamic preferences. In contrast to existing RNN-based ap-

proaches [25, 28, 32] for recommendation systems, GRMF

and MLRP models do not only rely on the dot products

of latent factors but also element-wise product and con-

catenation of latent factors, which are weighted using the

Deep Neural Networks architecture.

• We propose a novel sequence-based (dynamic) negative

sampling approach that takes the sequential properties of

checkins and geographical location of venues into account

to enhance the effectiveness of the DRCF framework, as

well as alleviate the cold-start user problem.

• We conduct comprehensive experiments on 3 large-scale

real-world datasets from Foursquare, Yelp and Brightkite

to demonstrate the recommendation accuracy of DRCF.

�e experimental results demonstrate that DRCF consis-

tently and significantly outperforms various state-of-the-

art venue recommendation approaches across three datasets.

�e rest of this paper is organised as follows. We review related

literature on venue recommendation in Section 2. �en, we briefly

provide the problem statement, the MF-based and RNN-based ap-

proaches and the Neural Matrix Factorisation framework (NeuMF)

in Section 3. Our proposed DRCF framework and its components

are described in Section 4. �e experimental setup for our experi-

ments is detailed in Section 5, while comprehensive experimental

results comparing the effectiveness of DRCF with various state-of-

the-art approaches are reported in Section 6. Concluding remarks

follow in Section 7.

2 RELATED WORK

Matrix Factorisation, proposed by Koren et al. [12], is a widely used

collaborative filtering technique in recommendation systems. Tradi-

tional MF-based approaches leverage explicit and implicit feedback

(e.g. rating of venues and checkins) to model user’s preferences and

characteristic of venues. In particular, MF aims to find the latent

factors of users and venues to accurately predict the rating of the

user to unvisited venues. Various MF-based approaches have been

proposed in the literature (e.g. [3, 7, 14, 16–18]) to generate person-

alised venue recommendation to the users by ranking the unvisited

venues based on the predicted user-venue ratings. Such approaches

can be identified as pointwise approaches [15]. However, as users in

LBSNs only focus on the top-K suggestions, MF-based approaches

that aim to optimise pointwise loss (e.g. Root Mean Square Error) are

less effective than approaches that are directly optimised for rank-

ing venues (i.e. focusing on the top-K ranked list of venues that are

relevant to user’s preferences) [1, 2, 15]. Rendle et al. [20] proposed

a pairwise optimisation criteria that can be applied with MF-based

approaches, named Bayesian Personalised Ranking (BPR), in which

an assumption is that for each user, the user’s previously visited

venues are preferred over their non-visited ones. Although previ-

ous literature [1, 2, 15] have demonstrated that listwise approaches

can be more effective than pairwise and pointwise approaches for

general information retrieval tasks such as web search, such listwise

approaches are not feasible in recommendation contexts, because

of the need to rank a large set of non-observed item/venues for

each user rather than small sets of candidate web documents.

�e aforementioned MF-based approaches assume that users’

preferences are static, hence users who have visited similar sets of

venues in different orders would get similar venue suggestions. In-

deed, users’ preferences are not static and change dynamically over

time [11]. To leverage sequences of implicit feedback (e.g. checkins)

in order to model users’ dynamic preferences, existing approaches

in literature (e.g. [4, 19]) have been proposed based on Markov

Chains. However, such Markov Chains-based approaches have a

similar deficiency as they can only model local sequential behaviour

between each pair of adjacent feedback items [28]. With the success

of Deep Neural Network models (DNN) in several domains such

as on speech recognition, computer vision and natural language

processing (e.g. [6, 9, 30]), various approaches (e.g. [25, 26, 28, 32]

have been proposed to exploit Recurrent Neural Networks (RNN)

models to capture users’ dynamic preferences from the observed

sequences of implicit feedback. For example, Tang et al. proposed

a MF-based approach that leverages Bidirected Long-Short Term

Memory, a recurrent neural network, to predict the rating of user

for movie recommendation, while Yu et al. [28] extended BPR to

incorporate RNN models to recommend a ranked list of items for

the user to purchase, given his previous sequence of item baskets.

Apart from the recommendation systems that exploit recurrent-

based models to leverage sequential properties of implicit feedback,

DNN models that learns user-item interactions have been explored

in the literature (e.g. [5, 7, 23]). Cheng et al. [5] proposed a Wide &

Deep learning approach for mobile application recommendation

system that exploits both linear models and DNNs to incorporate

various features of users and items. Recently, He et al. [7] explored

the advantages of DNNs in modelling user-item interactions in the

collaborative filtering manner. In particular, they proposed a Neural

Matrix Factorisation (NeuMF) framework that exploits Multi-Level

Perception architecture to accurately predict the user’s item rating.



Figure 1: An illustration of the similarity between users and

vectors representing the latent factors of each user in user

latent space P . NB: Figure regenerated from [7].

3 MATRIX FACTORISATION APPROACHES
FOR RECOMMENDATION SYSTEMS

In this section, we first formalise the problem statement as well as

the notations used in this paper (Section 3.1). �en, we briefly de-

scribe the Matrix Factorisation approaches (Section 3.2), the Neural

Collaborative Filtering framework (NeuMF) that exploits a deep

neural networks architecture to generalise MF-based approaches

(Section 3.3) and MF-based approach that exploits a Recurrent Neu-

ral Networks model to captures the dynamic preferences of users

(Section 3.4). Note that these MF-based approaches and frame-

work were not originally proposed for venue recommendation but

are flexible to do so. For simplicity, we explain these approaches

and framework in the context of venue recommendation. Finally,

Section 3.5 summarises the elicited limitations of these MF-based ap-

proaches. Later, in Section 4, we describe our proposed framework

that addresses these limitations.

3.1 Problem Statement

�e task of venue recommendation is to generate a ranked list of

venues ∈ V that a user might visit given his/her historical feedback

(e.g. previously visited venues from checkin data). LetV+u denote

the list of venues the user has previously visited, sorted by time

and Su denote the list of sequence of visited venues (e.g. ifV+u =

(v1,v2,v3), then Su = ((v1), (v1,v2), (v1,v2,v3))). st ∈ Su denotes

the sequence of visited venues of user u at time t (e.g. s2 = (v1,v2)).

We can represent all checkins by all users as a matrix C ∈ Rm×n

where m and n are the number of users and venues, respectively.

Let cu,i ∈ C denote a user u ∈ U visited venue i ∈ V . Ni is a set

of neighbouring venues that are nearby venue i . Note that cu,i = 0

means useru has neither le� a rating nor made a checkin at venue i .

3.2 Matrix Factorisation

Traditional Matrix factorisation-based approaches (MF) [12] assume

that users who share similar preferences (e.g. visit similar venues)

can influence each other. MF techniques aim to approximate the

matrix C by finding a decomposition of C , i.e. a dot product of

latent factors of users P ∈ Rm×d and venues Q ∈ Rn×d where d

is the number of latent dimensions, C ≈ PTu Qi . In particular, the

predicted checkin of user u on venue i can be computed as follows:

ĉu,i = p
T
u qi = pu ⊚ qi =

d∑

k=1

pu,k Ûqi,k (1)

where ⊚ denotes the dot product and pu and qi are latent factor

of user u and venue i , respectively. Indeed, MF behaves as a linear

model of latent factors by assuming that each dimension of the la-

tent factor is independent and linearly combining those dimensions

with the same weight [7]. �e objective of MF is to minimise the

pointwise loss between the predicted checkin ĉu,i and the observed

checkin cu,i and the loss function is defined as follows:

L(Θ) =min
Θ

1

2

m∑

u=1

n∑

i=1

Ii, j · (cu,i − ĉu,i )
2
+

λ

2
‖Θ‖2F (2)

where Ii, j is an indicator variable that is 1 if user i makes a checkin

at venue j, otherwise 0. To avoid overfi�ing, a traditional regu-

larisation technique is added into Equation (2), where λ ≥ 0 is a

regularisation parameter, Θ = {P ,Q} denotes all the parameters to

be learnt and ‖.‖2
F

denotes the Frobenius norm.

Once the training process of MF is finished, the distance of the

latent factors of users who have visited similar venues will be close

in the latent factor space (i.e. similar users will get similar venue

suggestions). He et al. [7] argued that the dot product of latent

factors may not be sufficient to capture the complex structures of

user-item interactions. Figure 1 illustrates a limitation of the dot

product operation explored by He et al. [7], which can degrade

the effectiveness of MF-based approaches. �e table in the figure

provides the cosine similarity between the latent factors of pairs

of users, e.g. p1 and p2 are the latent factors of user u1 and u2,

respectively, and the cosine similarity between u1 and u2 is 0.5. Let

us first consider users u1, u2 and u3. �e vectors in Figure 1 present

the geometric relative angles of p1 , p2 and p3 in the latent factor

space. From the angles of the vectors, we can see that u1 shares

more common preferences with u2 than u3. Next, let us consider

u4, the highlighted row in the table. In fact, u4 is most similar to

u1, followed by u3 and u2. Placing p4 closest to p1 (the two possible

geometric positions between p1 and p4 in latent factor space are

presented as red-dashed lines) results p4 is closer to p2 than p3.

�is scenario can lead to a large pointwise loss (i.e. u4 gets similar

venue suggestions to u2, rather than u3). Modelling such complex

structures of user-venue interactions is challenging.

3.3 Neural Matrix Factorisation (NeuMF)

To address the aforementioned challenge of MF-based approaches

that rely on the dot products of latent factors, He et al. [7] proposed a

Neural Matrix Factorisation Filtering framework (NeuMF) that con-

sists of two components, namely: Generalised Matrix Factorisation

(GMF) and Multi-Level Perceptron (MLP) models to capture complex

structures of user-venue interactions from their implicit feedback

using element-wise product and concatenation of latent factors

where the dimensions of the latent factors are treated dependently.

3.3.1 General framework. Figure 2 illustrates the multiple

layers of the NeuMF framework; the output of one layer serves as

the input of the layer abover. �e connections between layers of

NeuMF framework are presented using red-do�ed lines, the layers

that are not connected with the red-do�ed lines are not part of

NeuMF (i.e. the RMF and RNN layers). Starting at the bo�om of the

figure, the input layer consists of a binary sparse vector with one-

hot encoding that represents user vUu and venue v Ii , respectively.

�e sparse vectors of user and venue are fed into the embedding

layer. �e outputs of the embedding layer can be seen as the latent

factors of user pu = PTvUu and venue qi = Q
Tv Ii in the context of

factorised model. Next, the latent factors are fed into the Neural

Collaborative Filtering layers (i.e. hidden layers) to discover certain



Figure 2: Deep Recurrent Collaborative Filtering Frame-

work. �e connections of each layer linked by the red-dotted

lines illustrate the NeuMF framework.

latent structures of user-venue interactions. �e final output layer

provides the predicted checkin ĉu,i , which is defined as follows:

ĉu,i = aout (h(ϕ
GMF ⊕ ϕMLP )) (3)

where aout denotes the activation function, ⊕ denotes the concate-

nation of two layers, ϕGMF and ϕMLP , and h(x) = (WT x +b) is the

hidden layer –W and b are the weight matrix and bias vector, re-

spectively. Overall, θh = {W ,b} denotes a set of parameters of the

hidden layers. h(x) ensures that each dimension of the latent factors

from ϕGMF and ϕMLP are dependent. He et al. [7] proposed to use

the sigmoid function σ (x) = 1/(1 + e−x ) as the activation function

aout . �e combination of GMF and MLP models enables NeuMF to

model user-venue interactions as non-linear latent factor models.

In particular, GMF and MLP models capture user-venue interaction

using element-wise product and concatenation of latent factors,

respectively (further discussed in Section 3.3.2 and Section 3.3.3

below). Similar to MF’s loss function (Equation (2)), the framework

aims to minimise the Root Mean Square Error (RMSE) between

the predicted checkin ĉu,i and the observed checkin cu,i . However,

as mentioned in Section 1, users in LBSNs only focus the top-K

ranked list of venues for obtaining recommendations, and hence

we argue that the training of NeuMF that aims to minimise a re-

gression metric (RMSE) may not provide an effective top-K ranked

list of venues (Limitation 1). Moreover, to alleviate the challenge

of implicit feedback mentioned in Section 1, i.e. lack of negative

instances, He et al. [7] proposed to apply traditional negative sam-

pling, as defined in BPR, to randomly select unvisited venues as

negative instances. However, we argue that more effective negative

sampling approaches should take both the sequential properties of

observed feedback as well as the geographical location of venues

into account (Limitation 2).

3.3.2 Generalised Matrix Factorisation model (GMF). As

discussed in Section 3.2, He et al. [7] argued that the dot-product

may not be sufficient to capture the complex structures of user-

venue interactions. �ey proposed a Generalised Matrix Factorisat-

ion model (GMF) to address the limitation of MF-based approaches

that relies on dot product operation, which is defined as follows:

ϕGMF
= pGu ⊗ q

G
i (4)

where ⊗ denotes the element-wise products of two latent factors

and pGu = PT
G
vUu (see red-dashed lines with ⊗ operation in Figure 2)

and qG
i
= QT

G
v Ii are the latent factors of user u and venue i that are

projected from the GMF user and venue embedding layers1 (PG and

QG ), resp. (see the black nodes in the embedding layer of Figure 2).

3.3.3 Multi-Level Perceptron model (MLP). Next, He et

al. [7] proposed a Multi-Layer Perceptron model (MLP) that aims

to capture complex structure of user-venue interactions using the

concatenation of the latent factors, which is defined as follows:

ϕMLP
= aL(hL(...a1(h1(p

M
u ⊕ q

M
i )))) (5)

where L is the number of layers and pMu = PT
M
vUu and qM

i
=

QT
M
v Ii are the latent factors of user u and venue i that are pro-

jected from MLP user and venue embedding layer, PM and QM ,

respectively (see black nodes in the embedding layers of Figure 2).

θe = {PG , PM , ...,QM } denotes the set of parameters of the embed-

ding layers. Although the activation function aL can be a sigmoid,

a hyperbolic tangent (tanh) or a Rectified Linear Unit (ReLU), they

applied ReLU as the activation function for the hidden layer hL to

alleviate the saturation problem (i.e. neurons stop learning when

their output is near either 0 or 1, a problem that can be suffered

by the sigmoid and tanh functions). By concatenating pMu and qM
i

,

MLP is more flexible than the GMF and the factorised models since

both the dot-product and element-wise product operations require

the dimension d of the latent factors to be identical. However, We

argue that both GMF and MLP can only capture the users’ static pref-

erences, while previous works [4, 11, 19, 25, 28, 32] have shown that

users’ dynamic preferences also play an important role in effective

recommendation systems (Limitation 3). In addition, although

GMF and MLP can capture different structures of user-venue in-

teractions by using both element-wise product and concatenation

of latent factors, we argue that the NeuMF framework should not

ignore the structure of user-venue interactions that can be captured

by the dot-product of latent factors (Limitation 4).

3.4 Recurrent Neural Networks-based Approaches

Recently, various approaches have been proposed to enhance the

effectiveness of MF-based approaches for recommendation systems

by exploiting Recurrent Neural Networks (RNN) [28, 32] to leverage

sequential properties of observed implicit feedback. For example,

Zhang et al. [32] proposed a RNN-based approach that models users’

dynamic preferences from sequences of clicks as follow:

du,t = σ (Xqi,t + Rdu,t−1) (6)

where qi denotes the latent factor of item i the user visited at time t

andhu
t−1 is the dynamic preferences of the user at previous time t−1.

R is a recurrent connection weight matrix that captures sequential

signals between every two adjacent hidden states du,t−1 and du,t
and X is a transition matrix between the latent factors of venues

and users. We note that θr = {R,X } denotes a set of parameters of

RNN layers. For example, if a model consists of two RNN layers,

we will have θr = {R1,R2,X1,X2}. σ (x) is the sigmoid function.

�en, similar to MF-based approaches, they apply the dot product

to estimate the probability that user u will checkin at venue i given

his recently click sequences, i.e. ĉu,i = dTu,tqi . �e approach of

Yu et al. [28] is similar to that of Zhang et al., but the application

of BPR to train their proposed RNN-based model. We argue that

1 �e embedding layer is equivalent to latent factors of MF-based approaches.



there are two limitations that need to be addressed. First, their

proposed approach does not take the user’s static preferences into

account (Limitation 5). Although we can apply more sophisticated

RNN-based models (e.g. Long-Short Term Memory model) that are

capable of dealing with long sequences of observed feedback, such

models are computationally expensive. Indeed, a venue that the

user has visited a couple of months ago has less impact to user’s

preference than a venue recently visited. Hence, an accurate model

need to be capable to capture both the static and dynamic preference

of users is more likely to generate be�er venue recommendation.

Second, to model user-venue interactions in a collaborative filter-

ing manner, their approach still relies on the dot products of latent

factor of venues qi and the user’s dynamic preference du,t . How-

ever, as mentioned above, previous work [7] has shown that the

dot product of latent factors may not be sufficient to capture the

complex structure of user-venue interactions (Limitation 6).

3.5 Summary of Limitations

To conclude, in the above analysis, we have identified four limita-

tions of NeuMF and two limitations of RNN-based models:

Limitation 1: �ere is an inherent disadvantage in the NeuMF for

identifying the top-ranked venues to present to users.

Limitation 2: Negative sampling approaches for which this lim-

itation applies (BPR, DREAM, NeuMF) do not account for the se-

quential properties of checkins and the geolocation of venues.

Limitation 3: MF-based approaches for which this limitation ap-

plies (GMF, MLP, NeuMF) assume that the users’ preferences are

static and do not account for the sequential properties of checkins.

Limitation 4: MF-based approaches for which this limitation ap-

plies (GMF, MLP, NeuMF) ignore the dot product of latent factors

that capture user-venue interactions.

Limitation 5: RNN-based approaches (RNN, DREAM) that exploit

recurrent models to capture the users dynamic preference but do

not take the users’ static preferences into account.

Limitation 6: RNN-based approaches that exploit recurrent mod-

els to capture user’s dynamic preferences for which this limitation

applies (RNN, DREAM) model user-venue interaction using the dot

product of latent factors to generate the venue recommendations.

In summary, there is no previous work that exploits RNN to

capture both the dynamic and static preferences of users, and cap-

ture user-venue interactions with three operations: namely dot and

element-wise products and concatenation. In the next section, we

propose a framework that addresses these limitations.

4 DEEP RECURRENT COLLABORATIVE
FILTERING FRAMEWORK

In this section, we propose a novel Deep Recurrent Collaborative

Filtering framework (DRCF) with a pairwise ranking function and

a novel sequence-based (dynamic) geo-based negative sampling

approach for venue recommendation (Section 4.1). �e proposed

framework consists of three components: namely Generalised Re-

current Matrix Factorisation (GRMF), Recurrent Multi-Level Per-

ceptron (MLRP) and Recurrent Matrix Factorisation (RMF) models,

which will be discussed in Section 4.2, Section 4.3 and Section 4.4,

respectively. In particular, our overall framework aims to address

Limitations 1, 2 & 4 in Section 4.1, while the GRMF and MLRP

models aim to address Limitations 3 and the RMF model aims to

address Limitations 5 & 6. Later, in Section 6, we demonstrate

the effectiveness of DRCF framework and its components in com-

parison with state-of-the-art venue recommendation systems.

4.1 Unified Framework

Our proposed DRCF framework is illustrated in Figure 2. �e DRCF

framework consists of multiple layers and the connections between

layers are presented using both blue-dashed and red-do�ed lines.

DRCF differs from NeuMF framework in various aspects. Starting

at the bo�om of the figure, at the input layer, we extend the NeuMF

framework to leverage sequences of checkins of each user u, su .

In embedding layers, there are four additional embedding layers

that are highlighted in green in Figure 2: namely GRMF and MLRP

user (venue) embedding layers that are used in the RMF model,

PGd (QGd ) and PMd (QMd ), respectively. Later in Section 4.4, we

explain why we need these four additional layers. Recurrent Neural

Networks (RNN) layers are included in our framework (pink and

purple in Figure 2) to encapsulate dynamic user preferences. In the

Neural CF layers, we include RMF layers to discover certain latent

structures of user-venue interactions. �e final output layer is the

predicted checkin ĉu,i , which is defined as follows:

ĉu,i = aout (h(ϕ
GRMF ⊕ ϕMLRP ⊕ ϕRMF )) (7)

where aout is the activation function, h is the hidden layer and

ϕGRMF , ϕMLRP and ϕRMF denote the GRMF, MLRP and RMF mod-

els that are described in Sections 4.2, 4.3 and 4.4, respectively. To

address Limitation 4, our proposed DRCF framework seamlessly

integrates the RMF model that captures user-venue interactions

using the dot-product of latent factors, discussed in Section 4.4.

Next, instead of training the DRCF framework to minimise the

pointwise loss between predicted checkin ĉu,i and observed checkin

cu,i , as in Equation (2), we address Limitation 1 by proposing to

apply Bayesian Personalised Ranking (BPR) to learn the parameters

Θ = {θr ,θe ,θh }, as follows:

J(Θ) =
∑

u ∈U

∑

st ∈Su

∑

k ∈Ni−st

∑

j ∈V−st

[

log(σ (ĉu,i − ĉu,k )) − log(σ (ĉu,k − ĉu, j ))

]

(8)

where i is a venue most recently visited in st , k is an unvisited venue

that is nearby to venue i and Ni is a set of venues that are nearby

to venue i . Note that venues j and k are negative instances that we

sample using our proposed dynamic geo-based negative sampling

approach. �is contrasts with the traditional negative sampling

approach that is widely applied in previous literature [7, 20], which

randomly selects negative instances from a static pool of negative

venues V−u = V − V
+

u . Instead, we address Limitation 2 by

proposing a novel dynamic geo-based negative sampling approach,

DRCFdдeo , that enhances the effectiveness of the DRCF framework

and alleviate the cold-start user problem by taking sequences of

checkins st at time t and the geographical location of venue i , i.e.

its neighbour venues Ni , into account. In particular, our proposed

dynamic negative sampling approach (see lines 8-11 in Algorithm 1)

samples an unvisited neighouring venue k and an unvisited dis-

tance venue j from a dynamic pool of negative venues Ni − st and

V−st not visited by the user in the current sequence of checkins st ,

respectively, rather than a static pool of negative venues as in the tra-

ditional negative sampling approach (V −V+u ). Moreover, we also

propose a static geo-based negative sampling approach, DRCFsдeo ,



Algorithm 1 An Optimisation Algorithm of DRCF

1: Input: U,V and sequences of visited venues S.

2: Output: Θ = {θr ,θe ,θh }

3: initial θr ,θe ,θh
4: N ← 0 // iteration number

5: repeat

6: for N ← 1 to |U| do

7: u ← draw a random user fromU

8: for st in Su do

9: i ← a venue most recently visited in st
10: k ← draw a random unvisited venue from Ni − st
11: j ← draw a random unvisited venue fromV − st
12: Compute gradients of θr ,θe ,θh
13: Update the above parameters

14: end for

15: end for

16: until convergence

that samples an unvisited neighouring venue k and a distant neg-

ative venue j from a static pool of negative venues Ni − V
+

u and

V − st not visited by the user in the current sequence of checkins

st , respectively. Later in Section 6, we compare the effectiveness of

the proposed dynamic and static geo-based negative sampling ap-

proaches, DRCFdдeo and DRCFsдeo , respectively, with DRCF alone,

which does not consider any k (neighbouring unvisited venues)

during training. �e gradients of θr ,θe ,θh can be estimated by the

back propagation through time algorithm proposed by Rumelhart

et al. [22], which we omit due to the space constraints. �e opti-

misation algorithm of DRCF and the proposed dynamic geo-based

negative sampling approach are described in Algorithm 1.

4.2 Generalised Recurrent Matrix Factorisation
(GRMF)

In this section, we explain how we exploit Recurrent Neural Net-

work models (RNN) to capture users’ dynamic preferences in the

collaborative filtering manner as well as how to integrate the dot

products of latent factors into the GMF model. In particular, we aim

to address Limitation 3 by extending the GMF model to leverage

sequential properties of checkins. As mentioned in Section 2, users’

dynamic preferences play an important role to enhance the effec-

tiveness of factorised models [4, 11, 19, 25, 28, 32]. For example,

users in the evening are more likely to visit a bar directly a�er

they have visited restaurant. However, such behaviour cannot be

captured by the GMF model because it does not take the sequen-

tial properties of checkins into account during the training process

(Limitation 3). We propose GRMF, an extension of the GMF model

mentioned in Section 3.3.2, to exploit an RNN model as follows:

ϕGRMF
=

[

dGu,t ⊗ p
G
u ⊗ q

G
i

]

(9)

where dG is the user’s dynamic preferences of user u at time t that

are projected from the RNN layer, pGu and qG
i

are the latent factors

of user u and venue i that are projected from the GRMF embed-

ding layers, respectively. Indeed, the proposed GRMF model is the

element-wise product of latent factors (see the connection between

red-dashed and blue lines under the GRMF layer with ⊗ operation

in Figure 2). Note that we do not consider the choice of recurrent

models and RNN se�ings in this work, which have already been

explored in previous literature (e.g. [24, 25]).

4.3 Multi-Level Recurrent Perceptron (MLRP)

As mentioned in Section 3.3.3, we argue that the effectiveness of the

MLP model can be enhanced by leveraging the sequential properties

of checkins. In particular, similar to previous section, we propose

to extend the MLP model to exploit RNN-based model to capture

users’ dynamic preferences to address Limitation 3 as follows:

ϕMLRP
=

[

aL(hL(...a1(h1(d
M
u,t ⊕ p

M
u ⊕ q

M
i ))))

]

(10)

where dM is the user’s dynamic preferences of user u at time t that

is projected from the RNN layer, pMu and QM
u are the latent factor

of user u and venue i that are projected from the MLRP Embedding

layer, respectively (see the connection between red-dashed and blue

lines under the MLRP layer with ⊕ operation in Figure 2). Note dif-

ferences between pGu (qG
i

) (dGu,t ) and pMu (qM
i

) (dMu,t ) in Equations (9)

& (10), we exploit different embedding and RNN layers for each

model in order to independently learn the complex structures of

both dynamic and static user-venue interactions from different mod-

els (i.e. the GRMF captures the interactions using the element-wise

product operation, while the MLRP capture the interactions using

the concatenation). Again, the effectiveness of the framework that

allows different models to learn from different set of embedding

layers have been explore in previous literature [7]. Although our

proposed DRCF framework allows different models to learn inde-

pendently, in the output layer (Equation (7), we exploit a hidden

layer h to seamlessly and dependently integrate those models to

generate the ranked-list of venues to the users. In the next section,

we explain RMF, the last component of the DRCF framework, which

incorporates the dot products of latent factors.

4.4 Recurrent Matrix Factorisation (RMF)

In this section, we propose a Recurrent Matrix Factorisation (RMF)

model that captures both the users’ static and dynamic preferences

using the dot products of latent factors as follows:

ϕRMF
=

[

( dGdu,t
︸︷︷︸

dynamic

+ pGdu
︸︷︷︸

static

)⊚qGdi
]

⊕
[

( dMd
u,t

︸︷︷︸

dynamic

+ pMd
u

︸︷︷︸

static

)⊚qMd
i

]

(11)

where dGdu,t (dMd
u,t ) are the latent factors of the dynamic preferences

of user u at time t that are projected from the GRMF (MLRP) RNN

layer. pGdu (pMd
u ) and qGd

i
(qMd
i

) are the latent factor of user u and

venue i that are projected from the GRMF (MLRP) embedding lay-

ers, respectively. �erefore, the RMF model addresses Limitation

5 by incorporating latent factors, dGdu,t (dMd ) and pGdu (pMd
u ), that

represent both users’ dynamic and static preferences. Indeed, in

order to allow GRMF, MLRP and RMF models to learn indepen-

dently, we follow He et al. [7] to train the RMF models by using

different sets of embedding and RNN layers (see green nodes in the

embedding layer and purple nodes in the RNN layer of Figure 2).

Each of the GRMF, MLRP and RMF models use different operations

(i.e. GRMF and MLRP use element-wise product and concatenation,

while RMF uses dot product). In doing so the complex structures of

user-venue interactions are independently captured by these three

models using the different operations.

Moreover, to address Limitation 6, unlike previous RNN-based

approaches [28, 32] mentioned in Section 3.4, we do not directly



use the dot product of latent factors to generate the venue recom-

mendations. Instead, we concatenate the RMF model with GRMF

and MLRP models and exploit a hidden layer h to determine the in-

fluence of each model (see Equation (7)). In summary, our proposed

DRCF framework that consists of GRMF, MLRP and RMF models

can comprehensively capture the complex structures of dynamic

and static user-venue interactions by leveraging the sequential prop-

erties of checkins using dot products, element-wise products and

concatenation of latent factors. To the best of our knowledge, the

proposed DRCF framework is the first that exploits those three op-

erations to capture the dynamic and static user-venue interactions.

5 EXPERIMENTAL SETUP

In this section, we evaluate the effectiveness of our proposed DRCF

framework and its components by comparing with state-of-the-

art venue recommendation approaches. In particular, to address

Limitations 1 - 6, we answer the following research questions:

RQ1 Can we enhance the effectiveness of the components of the

DRCF framework for venue recommendation systems, namely

the GRMF and MLRP models, by (a) leveraging the sequen-

tial properties of checkins to capture the users’ dynamic and

static preferences, (b) incorporating the dot product of la-

tent factors into the models and (c) training those models to

generate accurate ranked lists of venues for users?

RQ2 Are the MF-based models that capture both users’ dynamic

and static preferences using either the element-wise product

or concatenation of latent factors more effective than state-

of-the-art RNN-based approaches that only model the users’

dynamic preference using a dot product of latent factors?

Furthermore, as discussed in Section 3.3.1, no previous a�empt has

proposed negative sampling approaches that take the geographical

location of venues into accounts to address the cold-start problem.

Hence, our third research question:

RQ3 Can our proposed dynamic geo-based negative sampling

approach that leverages both sequential properties of checkins

and geographical location of venues enhance the effectiveness

of DRCF and alleviate the cold-start problems?

In the remainder of this section, we describe the experimental

setup in terms of datasets and measures (Section 5.1), baselines (Sec-

tion 5.2) and algorithm parameters (Section 5.3). �e experimental

results and analysis follow in Section 6.

5.1 Datasets & Measures

We conduct experiments using publicly available large-scale LBSN

datasets. In particular, to show the generalisation of our proposed

framework across multiple LBSN platforms and sources of feed-

back evidence, we use two checkin datasets from Brightkite2 and

Foursquare3, and a rating dataset from Yelp4. We follow the com-

mon practice from previous works [8, 13, 20, 29, 31] to remove

venues with less than 10 checkins/ratings. Table 1 summarises the

statistics of the filtered datasets. To evaluate the effectiveness of our

proposed framework, following previous works [7, 8, 20], we adopt

a leave-one-out evaluation methodology: for each user, we select

her most recent checkin/rating as a ground truth and randomly

select 100 venues that she has not visited before as the testing set,

where the remaining checkins/ratings are used as the training set.

2 h�ps://snap.stanford.edu/data/ 3 h�ps://archive.org/details/201309 foursquare

dataset umn 4 h�ps://www.yelp.com/dataset challenge

Table 1: Statistics of the three used datasets.

Brightkite Foursquare Yelp

Number of normal users 14,374 10,766 38,945
Number of venues 5,050 10,695 34,245
Number of ratings or checkins 681,024 1,336,278 981,379
Number of cold-start users 5,578 154 6903
% density of User-Venue matrix 0.93 1.16 0.07

�e venue recommendation task is thus to rank those 101 venues

for each user, aiming to rank highest the recent, ground truth

checkin/rating. We conduct two separate experiments, namely:

Normal Users (those with ≥ 10 checkins) and Cold-start Users (< 10

checkins) to evaluate the effectiveness of our proposed DRCF frame-

work and its components in the general and cold-start se�ings.

Recommendation effectiveness is measured in terms of Hit Ratio

(HR) and Normalized Discounted Cumulative Gain (NDCG) on the

ranked lists of venues – as applied in previous literature [7, 8, 28, 29].

In particular, HR considers the ranking nature of the task, by taking

into account the rank(s) of the venues that each user has previously

visited/rated in the produced ranking, while NDCG goes further by

considering the checkin frequency/rating value of the user as the

graded relevance label. Lastly, significance tests use a paired t-test.

5.2 Baselines

Our proposed Deep Recurrent Collaborative Filtering (DRCF) frame-

work consists of three components, namely: Generalised Recurrent

Matrix Factorisation (GRMF), Multi-Level Recurrent Perceptron

(MLRP) and Recurrent Matrix Factorisation (RMF) models. We

first compare our proposed DRCF framework with the NeuMF

framework as well as state-of-the-art MF-based and RNN-based

approaches, which can be categorised as the traditional MF-based

approaches, RNN-based approaches and Deep Neural Network-

based approaches. Note that such approaches may not be originally

proposed for venue recommendation but are flexible to do so with-

out any disadvantages. �en, we compare the components of our

proposed framework with the components of state-of-the-art Neu-

ral Matrix Factorisation framework (NeuMF) [7], the GMF and MLP

models. Our baselines are summarised below:

5.2.1 Traditional MF-based approaches.

MF. �e traditional matrix factorisation proposed by Koren et

al. [12] that aims to accurately predict the users’ checkin on the

unvisited venues.

BPR. �e classical pairwise ranking approach, coupled with ma-

trix factorisation for user-venue checkin frequency prediction, pro-

posed by Rendle et al. [20].

GeoBPR. A state-of-the-art BPR model that incorporates geo-

graphical influence proposed by Yuan et al. [29]. �eir model as-

sumes that neighbourhood venues of venues previously visited by

users should be ranked higher than the distant ones. �is model

uses a static negative sampling approach that incorporates the

geographical location of venues.

5.2.2 RNN-based approaches.

RNN. A sequential click prediction with recurrent neural net-

works approach proposed by Zhang et al. [32] (see Section 3.4).

DREAM [28]. A state-of-the-art RNN model that incorporates

BPR for ranking optimisation. As DREAM is originally proposed for

https://snap.stanford.edu/data/
https://archive.org/details/201309_foursquare_dataset_umn
https://archive.org/details/201309_foursquare_dataset_umn
https://www.yelp.com/dataset_challenge


next shopping-basket recommendation, to permit a fare comparison

with our proposed DRNN, we reimplement DREAM to treat a single

checkin as the shopping-basket purchase.

5.2.3 Deep Neural Network (DNN)-based approaches.

NeuMF. A state-of-the-art Neural Matrix Factorisation frame-

work5 proposed by He et al. [7], which consists of two components:

namely Generalised Matrix Factorisation (GMF) and Multi-Level

Perceptron (MLP) (see Section 3.3).

GMF. A component of the NeuMF framework that models the

user-venue interaction using the element-wise product of latent

factors (see Section 3.3.2).

MLP. A component of the NeuMF framework that models the

user-venue interaction using the concatenation of latent factors

(see Section 3.3.3).

We implement all baselines and our proposed approach using

Keras6, a deep learning framework built on top of �eano7. �e

choice of recurrent models is fixed to the RNN model proposed by

Zhang et al. [32], as used by Yu et al. [28]. Finally, we omit the

Markov Chain-based baselines (e.g. [21]), as experimental results

in [28] showed that RNN-based models are more effective than

Markov Chain-based ones. Similarly, we omit state-of-the-art MF-

based approaches (e.g. eALS [8]) as He et al. [7] showed that the

NeuMF framework significantly outperforms such approaches.

5.3 Recommendation Parameter Setup

Following [16, 17, 27, 29], we set the dimension of the latent factors

d of our proposed DRCF framework and all of the MF-based, RNN-

based and DNN-based baselines to be identical: d = 10 across three

datasets. Following He et al. [7], we randomly initialise all hidden,

embedding and RNN layers’ parameters, θr ,θe ,θh , with a Gauss-

ian distribution (with a mean of 0 and standard deviation of 0.01)

and apply the mini-batch Adam optimiser [10] to optimise those

parameters, which yields faster convergence than SGD and auto-

matically adjusts the learning rate for each iteration. We initially

set learning rate to 0.0018 and set the batch size to 256. Finally, to

permit a fair comparison between MF-based approaches that exploit

a Multi-Level Perceptron architecture to capture the user-venue

interactions using the concatenation of latent factors (i.e. the MLP

and MLRP models), we employ three hidden layers, L = 3. As the

impact of the hidden layer’s size L and dimension size d have been

explored in previous work [7, 8], we omit varying the size of the

hidden layers and the dimension of the latent factors in this work.

Indeed, the larger size of hidden layers and dimension may cause

overfi�ing and degrade the generalisation of the models [7, 8].

6 EXPERIMENTAL RESULTS

Tables 2 & 3 report the effectiveness of various approaches in term of

the HR@10 and NDCG@10 on the three used datasets. In particular,

Table 2 reports effectiveness for all users, while Table 3 reports re-

sults for Cold-Start users. We focus first on Table 2, which contains

four groups of rows: �e first group, denoted vs. Baselines, reports

the effectiveness of our proposed DRCF framework compared to

baselines, including the NeuMF framework as well as MF-based

and RNN-based approaches. �e second and third groups report

5 h�ps://github.com/hexiangnan/neural collaborative filtering
6 h�ps://github.com/fchollet/keras 7 h�p://deeplearning.net/so�ware/theano/
8 �e default learning rate se�ing of the Adam optimiser in Keras.

the results of the components of our proposed DRCF framework

(the GRMF and MLRP models) in comparison with components

of the NeuMF framework (the GMF and MLP models) as well as

state-of-the-art RNN-based approaches (Component Ablation of

GRMF and MLRP row, respectively). �e fourth group reports the

improvement of DRCF framework when incorporating either our

proposed dynamic or static geo-based negative sampling approach

that takes the geographical location of venues into account9.

Firstly, on inspection of the first group of rows of Table 2, we note

that the relative venue recommendation quality of the baselines on

the three datasets in terms of the two measures are consistent with

the results reported for the various baselines in the corresponding

literature [7, 28, 32]. For instance, NeuMF outperforms MF and BPR

across three datasets. Similarly, DREAM outperforms RNN and BPR

across the three datasets. Note that previous works [7, 28, 32] used

different datasets, while our reimplementations of their proposed

approaches obtain similar relative improvements.

Comparing DRCF with the various baselines in the first group

of rows of Table 2, we observe that DRCF consistently and signif-

icantly outperforms NeuMF, DREAM, BPR, RNN and MF, for HR

and NDCG, across all datasets. For instance, DRCF improves NDCG

by 23% over NeuMF for the Foursquare dataset. �ese results imply

that our proposed framework that takes both users’ dynamic and

static preferences as well as the dot products of latent factors into

account is more effective than the NeuMF framework [7] using the

same source of information.

Next, we note that unlike the Brightkite and Foursquare checkin

datasets, the Yelp dataset consists of only user-venue ratings, and

hence the sequential properties of visits to venues cannot be ob-

served. We observe that the RNN-based approaches (RNN and

DREAM) that consider the users’ dynamic preferences are more

effective than the traditional MF-based approaches (MF and BPR)

across the checkin datasets, while are outperformed by BPR for

Yelp dataset since those RNN-based approaches cannot leverage

the sequential properties of rating data. However, our proposed

DRCF, which considers both the users’ dynamic and static prefer-

ences, is still the most effective across the different type of datasets.

In addition, we observe that DRCF consistently and significantly

outperforms its two components GRMFrdb and MLRPrdb for both

measures across the three datasets, except for HR on the Brightkite

dataset, where GRMFrdb is statistically indistinguishable from

DRCF (difference in HR < 1%).

Within the second and third groups of rows in Table 2, we fur-

ther analyse the effectiveness of our proposed DRCF framework by

comparing its components (GRMF and MLRP) with the components

of NeuMF framework (GMF and MLP) as well as RNN-based ap-

proaches (RNN and DREAM). Since our proposed GRMF and MLRP

models both consists of three components: the RMF layer that in-

corporates the dot product of latent factors; the RNN layer that

models the users’ dynamic preferences; and BPR for pairwise rank-

ing optimisation (instead of using a pointwise loss function). To

determine the importance of the GRMF’s and MLRP’s components,

we follow an ablation methodology, by recording the effectiveness

of the GRMF and MLRP when each of those three components is

removed in turn. For simplicity, we denote d as the RMF layer, r as

the RNN layer and b as the BPR optimiser. For example, GRMFrb
denotes that RMF layer is removed from the model.

9 For the first three groups of rows, recall from Section 4.1 that DCRF does not sample
unvisited neighbouring venues during sampling.

https://github.com/hexiangnan/neural_collaborative_filtering
https://github.com/fchollet/keras
http://deeplearning.net/software/theano/


Overall, we observe similar tends as for DRCF framework, where

GRMF and MLRP consistently and significantly outperform the

RNN, DREAM, GMF and MLP models for the two measure across

the three datasets. In terms of the specific impacts of the three com-

ponents of GRMF and MLRP (c.f. RQ1), we observe that all three play

important roles in the effectiveness of GRMF and MLRP models as

significant decreases are o�en observed when each component is re-

moved. More specifically, for RQ1(a), w.r.t. the sequential properties

of checkins as modelled by the r RNN layers, significant decreases

of both GRMFrdb and MLRPrdb are consistently observed com-

pared to GRMFdb and MLRPdb , respectively. �ese results imply

that the user’s dynamic preference can significantly improve the

effectiveness of the GRMF and MLRP models. In particular, we

observe the largest decreases when the r RNN layers are removed

from the MLRP model (see MLRPdb in the third group).

For RQ1(b), concerning the dot product (d), similar trends are ob-

served as in RQ1(a) where significant decreases for both GRMFrdb
and MLRPrdb are consistently observed compared to GRMFrb and

MLRPrb . More specifically, we observe the largest decrease when

RMF layer (d) is removed from the GRMF model for the checkin

datasets. �ese results implies that RMF layers play an important

role to the GRMF model and combination of element-wise product

used in GRMF and dot-product used in the RMF layer can signifi-

cantly improve the effectiveness of the GRMF model.

For RQ1(c), viz. the BPR optimiser (b), similar trends are ob-

served as in RQ1(a) and RQ1(b) where significant decreases of both

GRMFrdb and MLRPrdb are consistently observed across three

datasets when these two models are degraded into pointwise-based

approaches (c.f. GRMFdr and MLRPdr ). �is can be explained by

the benefits of pairwise approaches in generating more effective

suggestions than pointwise approaches, discussed in Section 3.3.1.

Overall, the strong results for GRMF and MLRP demonstrate the

effectiveness of GRMF and MLRP models in comparison with the

state-of-the-art approaches. Moreover, our DRCF framework com-

bined with the GRMF and MLRP components provides a significant

benefit across various datasets and measures, compared to various

existing state-of-the-art approaches.

With respect to research question RQ2, we observe that the

GRMF model that uses the element-wise products of latent factors

to capture both users’ dynamic and static preferences consistently

and significantly outperforms DREAM across three datasets, while

significant differences between MLRP models and DREAM are

observed in Brighkite and Foursquare. However, there is no sig-

nificant difference between MLRP models and DREAM in the Yelp

dataset because, as discussed above, these models cannot leverage

sequential properties of ratings from the Yelp dataset.

From the fourth group of rows in Table 2, we demonstrate that

the effectiveness of DRCF can be further enhanced with our pro-

posed dynamic geo-based negative sampling approach10. In partic-

ular, we observe that our proposed dynamic negative sampling ap-

proach can significantly improve the effectiveness of DRCF in term

of NDCG for the Brightkite and Foursquare datasets. In addition,

DRCFdдeo consistently and significantly outperforms GeoBPR, the

state-of-the-art BPR model that considers the geographical location

of venues, across all three datasets. However, for the Yelp dataset,

where the sequential properties of checkins cannot be obtained,

the static sampling approach (DRCFsдeo ) significantly outperforms

10 Recall that DRCF results in the first three groups of rows do not use the dynamic
geo-based negative sampling approach proposed in Section 4.1.

Figure 3: Test recommendation HR & NDCG of various ap-

proaches with respect to the number of iterations.

the dynamic sampling approach (DRCFdдeo ). Overall, the proposed

dynamic geo-based sampling approach can significantly improve

the effectiveness of DRCF across three datasets. In addition, Fig-

ure 3 reports the test performance of DRCFdдeo and the baselines

on Brightkite dataset with all users, with respect to the number of

iterations. From the figure, we observe that DRCFdдeo outperform

the baselines at every iteration and converges faster than others11.

Finally, we address the third research question, by reporting the

effectiveness of DRCF and state-of-the-art approaches for cold-start

users. Indeed, within the first group of rows in Table 3, we observe

that DRCF consistently outperforms all of the baselines for NDCG

across three datasets (significantly so for all baselines except RNN,

and DREAM for Foursquare). In addition, by incorporating our

proposed dynamic geo-based sampling approach into the DRCF

framework (DRCFdдeo ), DRCF can be significantly improved (for

both measures, across all datasets). �erefore, in response to re-

search question RQ3, we find that our proposed dynamic geo-based

sampling approach that takes the geographical location of venues

into account can enhance the effectiveness of DRCF framework as

well as alleviate the cold-start problems.

7 CONCLUSIONS

In this paper, we proposed a novel Deep Recurrent Collaborative

Filtering (DRCF) framework with a pairwise ranking function for

venue recommendation, positioned within six elicited limitations in

the state-of-the-art approaches. In particular, the proposed frame-

work consists of two components (GRMF and MLRP models) that

aim to capture both the users’ dynamic and static preferences from

their sequences of their checkins. In addition, we proposed a novel

sequential-based negative sampling approach that takes the geo-

graphical location of venues into account to alleviate the cold-start

problem. Our comprehensive experiments on three large-scale

datasets from the Brightkite, Foursquare and Yelp LBSNs demon-

strate the significant improvements of our proposed DRCF frame-

work and its components as well as the sequential-based sampling

approaches for venue recommendation in comparison with various

state-of-the-art venue recommendation approaches in both normal

and cold-start se�ings. Indeed, on the Foursquare dataset, DRCF

improves NDCG by 23% over the recent NeuMF framework [7]. For

future work, we plan to extend DRCF framework to incorporate

additional neural network layers such as Convolutional Neural

Networks which would allow to capture the semantic properties

11 We observed similar trends for the other datasets – we omit those figures for brevity.



Table 2: Performance in terms of HR@10 and NDCG@10

between various approaches. �e best performing result is

highlighted in bold; − and ∗ denote a significant difference

compared to the best performing result, according to the

paired t-test for p < 0.05 and p < 0.01, respectively.

Normal Users Experiments

Brightkite Foursquare Yelp

Model HR NDCG HR NDCG HR NDCG

vs. Baselines

MF 0.6206* 0.3470* 0.6656* 0.3818* 0.3539* 0.1734*

RNN 0.6368* 0.3824* 0.8040* 0.5459* 0.3814* 0.1891*

BPR 0.6890* 0.4333* 0.7550* 0.4834* 0.4963* 0.2676*

DREAM 0.7041* 0.4839* 0.8147* 0.6081* 0.4349* 0.2235*

NeuMF 0.7073* 0.5358* 0.8361* 0.5842* 0.4934* 0.2729*

GRMFrdb 0.7363 0.5670* 0.8805* 0.6814* 0.5209* 0.2890*

MLRPrdb 0.7291* 0.5790* 0.8873* 0.7046* 0.4771- 0.2652*

DRCF 0.7419 0.6048 0.8952 0.7223 0.5162 0.2963

Component Ablation of GRMF

RNN 0.6368* 0.3824* 0.8040* 0.5459* 0.3814* 0.1891*

DREAM 0.7041* 0.4839* 0.8147* 0.6081* 0.4349* 0.2235*

GMF 0.7072* 0.4500* 0.7753* 0.4874* 0.4809* 0.2570*

GRMFdr 0.7380* 0.5199* 0.8523* 0.6126* 0.4383* 0.2232*

GRMFdb 0.7460 0.5326* 0.8281* 0.5765* 0.5164- 0.2864-

GRMFrb 0.6704* 0.4772* 0.8273* 0.5984* 0.5210 0.2841*

GRMFrdb 0.7363* 0.5670 0.8805 0.6814 0.5209 0.2890

Component Ablation of MLRP

RNN 0.6368* 0.3824* 0.8040* 0.5459* 0.3814* 0.1891*

DREAM 0.7041* 0.4839* 0.8147* 0.6081* 0.4349* 0.2235*

MLP 0.6780* 0.4805* 0.7638* 0.4846* 0.4656* 0.2492*

MLRPdr 0.7185* 0.4536* 0.8755* 0.5627* 0.4121* 0.2131*

MLRPdb 0.6851* 0.4923* 0.8012* 0.5326* 0.4740* 0.2604*

MLRPrb 0.6985* 0.5390* 0.8709* 0.6737* 0.4917 0.2705

MLRPrdb 0.7291 0.5790 0.8873 0.7046 0.4771* 0.2652*

Geographic Negative Sampling

DRCF 0.7419* 0.6048* 0.8952* 0.7223 0.5162* 0.2963*

GeoBPR 0.7339* 0.4672* 0.8216* 0.5395- 0.5570* 0.3032*

DRCFsдeo 0.7847 0.6047* 0.9086 0.7217 0.5682 0.3134

DRCFdдeo 0.7852 0.6210 0.9095 0.7214 0.5618* 0.3064*

Table 3: As per Table 2, but only for Cold-Start users.

Brightkite Foursquare Yelp

Model HR NDCG HR NCDG HR NDCG

vs. Baselines

MF 0.6768* 0.3913* 0.6623* 0.3650* 0.3748* 0.1868*

BPR 0.7519 0.4907* 0.7792- 0.4961* 0.5273- 0.2946*

RNN 0.6486* 0.3694 0.5909 0.4041* 0.3856* 0.1901*

DREAM 0.7452 0.4969* 0.7987 0.5379* 0.4523* 0.2239*

NeuMF 0.7160* 0.5894- 0.7922 0.6227- 0.5102* 0.2734*

GRMFrdb 0.7409- 0.5618* 0.8442 0.6542 0.5399 0.3083

MLRPrdb 0.7418- 0.5779* 0.8377 0.6138* 0.4928* 0.2788*

DRCF 0.7526 0.5980 0.8377 0.6645 0.5330 0.3136

Geographic Negative Sampling

DRCF 0.7526* 0.5980* 0.8377- 0.6645- 0.5330* 0.3136*

GeoBPR 0.8093 0.5262* 0.7468- 0.4717* 0.5802- 0.3202*

DRCFsдeo 0.8041 0.6009* 0.8636 0.6748- 0.5948 0.3410

DRCFdдeo 0.8094 0.6199 0.8896 0.7074 0.5877 0.3318-

of textual content of comments and thereby further enhance the

quality of venue recommendations.
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