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A Deep Reinforcement Approach for Energy
Efficient Resource Assignment in Cooperative

NOMA Enhanced Cellular Networks
Yan-Yan Guo, Xiao-Long Tan, Yun Gao, Jing Yang and Zhi-Chao Rui

Abstract—In this paper, an energy efficiency (EE) maximiza-
tion problem of cooperative non-orthogonal multiple access
(CNOMA) network is proposed to jointly determine the user
pairing, subchannel assignment, and power control scheme. We
decompose it into two steps: In the first step, the optimal closed-
form expressions of the power control problem are derived. Based
on these, the EE optimization of whole system is formulated
as a self-play Go game with the maximum EE as the winner,
by constructing a virtual Go board with rows and columns
representing indices of users and subchannels, respectively. The
each move is to select a position on the Go board (i.e., select
a user that has not been assigned to any channel and then
assign a channel to it), until all users are assigned on the
subchannels. Then, a deep Monte Carlo tree search (MCTS)
model is proposed, where a MCTS guided by a neural network
simulates multiple possible trajectories to search each move by
evaluating its achievable EE reward, while the neural network
is trained by the training data generated from the searching of
MCTS to predict move selections and also the winner of games.
The simulation results show that the proposed method is superior
to a variety of conventional schemes in terms of EE in negligible
computational time.

Index Terms—Cooperative NOMA, deep reinforcement learn-
ing, energy efficiency, Monte Carlo tree search, deep neural
network, half-duplex, full-duplex, decode-and-forward

I. INTRODUCTION

A. Motivation

NOn-orthogonal multiple access (NOMA) has recently re-
ceived widespread attention for its promising application

in next-generation wireless networks [1]-[12]. The key feature
of NOMA is splitting multiple users into power domain to
simultaneously serving them on same radio resources block
(i.e., frequency, time) to improve spectral efficiency (SE).
In NOMA system, users with good channel conditions can
extract their own information from other users’ information
by using successive interference canceler (SIC). However,
this leads to an unavoidable limitation of NOMA that the
high power need be assigned to a user with poor channel
condition for successfully decoding the superimposed signal,
which will reduce the SE of system [4]. On the other hand,
cooperative communication is a key technology for future
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mobile communications due to its ability to provide diver-
sity gain through multiple-path user cooperative transmission,
thereby reducing the impact of fading [12]. Thus, cooperative
NOMA (CNOMA), which allows the users with good channel
conditions to relay the removed information through the SIC
to the users with weak channel conditions for enhancing
their performance gains, has sparked a great deal of research
interests [12]-[23].

For a practical CNOMA scenario where there exists a
direct link from the transmitter to each user, a user with
good channel, referenced as “strong user”, assists user with
weak channel, referenced as “weak user”, to communicate
with the transmitter as a half-duplex (HD) or full-duplex (FD)
relay. In HD mode, direct and relay links occur over two
consecutive time slots, whereas in FD mode, they can take
place simultaneously [5]. Due to enhanced system throughput
and ability to reduce the effect of fading, CNOMA has been a
effective solution to improve the SE and coverage of wireless
networks [1] [4]. Apart from the indicator of SE, energy
efficiency (EE) is also one of key performance requirements
for 5G system [24]. However, on one hand, in CNOMA
systems, strong user needs extra transmit power plus extra
circuit power to relay the weak’s signal [25]. On the other
hand, HD CNOMA requires an additional transmission time
slot for implementing cooperation and FD CNOMA applies
self-interference (SI) mitigation at the receiver of strong user.
Those will result in complicated EE optimization formula to
capture the characteristics of NOMA as well as the HD/FD
decode-and-forward (DF) procedures [4]. Therefore, achieving
a high EE in CNOMA systems remains challenging.

On the other hand, deep reinforcement learning (DRL) al-
gorithms, such as deep Q-network (DQN), deep deterministic
policy gradient (DDPG), etc., have attracted wide attention
[26], [27]. For these DRL algorithms with a neural network
trained by past experience transitions, the learned optimal
policy is usually represented to be the maximal expectation
of long-term cumulative reward. However, in the dynamic
network environment, some actions become unavailable or
obsolete by the reinforcement learning rules when suddenly
adding or removing devices. Recently, AlphaGo Zero, based
solely on a deep Monte Carlo tree search (MCTS) combined
with a tree search and a neural network, without human data
or guidance, has achieved superhuman performance in game
of Go [28]. In addition to exploit the past experience like the
existing DRL algorithms, the deep MCTS can simulate multi-
ple possible trajectories in the future and need not determine
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the reward of action taken at each state until the game is over.
Therefore, it is necessary to apply deep MCTS method to solve
the single time slot decision-based resource allocation issues
in CNOMA systems.

B. Literature Review

There have been extensive researches on CNOMA perfor-
mance analysis [6]-[9] and efficient performance optimization
schemes [6], [10]-[14], [20]. As a major aspect of CNOMA,
power allocation problems for the links from base station (BS)
to strong user and weak user are of great importance and have
been studied in [1], [6], [10]-[12]. In [6], authors discussed the
power allocation (PA) coefficient of BS and threshold (TS) se-
lection and proposed a joint PA-TS optimization to maximize
sum rate under the constraint of required bit error rate (BER).
In [12], authors applied proportional rate constraints to the
power allocation of FD-CNOMA system to maximize the sum
rate. However, these researches assumed that relaying power is
a given positive constant. In fact, apart from the links from BS
to user for signal transmission, the relay links between users
play a vital role in improving the performance of CNOMA
enhanced networks. Power allocation problems for two links
of BS-user and user-user have been studied in [4], [5], [13],
[14] and [20]. In [5], [13] and [14], maximizing the minimum
achievable user rate in HD CNOMA and FD CNOMA systems
was formulated as a non-concave power optimization problem
for a NOMA user pair. In [4], the power control closed-form
solutions to a given user pair for the HD and FD cases were
derived to maximize the sum rate.

The aforementioned researches on CNOMA systems fo-
cused error probability [2], [7], [8], achievable rate [4], [12]-
[14], ergodic capacity and outage probability [3], [6], [9], [16],
[17]. Recently, the EE optimization strategies for CNOMA
with simultaneous wireless information and power transfer
(SWIPT)-aided transmission have been investigated [15]-[19],
[21]-[24]. For example, in [29], the near nodes harvest en-
ergy from radio frequency (RF) signals and use only their
harvested energy stored in energy buffers to relay symbols
to the far nodes. The optimization problem becomes param-
eter optimization regarding the power allocation coefficients
and the power splitting (PS) factor. Although the ability of
harvesting energy from RF signals can achieve low energy
consumption, the practical implementation of SWIPT-aided
CNOMA has been considered unfeasible due to performing
information demodulation and energy harvesting at the same
time, especially for small and light devices, such as Internet-
of-Things (IoTs) and biomedical sensors. Motivated by this,
A. K. Lamba et al. in [1] employed a Stackelberg game (SG)
for price-based power allocation based on charges per unit
power in HD CNOMA networks. However, in this research,
the strong user uses a constant power to relay message to
the weak user. In [25], Z. X. Wei et al. transformed the
EE maximization problem for a FD CNOMA system into a
standard semi-definite programming (SDP) problem, which
was implemented by Matlab’s CVX package. Besides, in
[30], authors formulated a stochastic-based EE optimization
problem in HD CNOMA-based networks by considering the

long-term queue stability. In this system, it was assumed that
the weak user cannot directly communicate with the BS. As
opposed to other goal optimization schemes, the EE research
on the power optimization of CNOMA is still far from mature.
One important issue is that the optimal power control closed-
form expression for case of HD or FD can not directly inherit
from conventional CNOMA.

To further improve throughput, EE, fairness of CNOMA
system, the user pairing and channel assignment schemes,
which determine which link should serve each user, are critical
[1], [4], [15], [20], [23], [31]-[36]. In [4], [20], [31]-[33] and
[36], authors investigated the user pairing problem of multiple
users in a subcarrier. For instances, in [33], it was converted
to a critical ratio based scheme and in [4], [20], [34] and
[36], it was solved by using Hungarian method. Besides, the
scenario with multi-user multi-subcarrier CNOMA has been
investigated in [1], [35] and [37]. In [1] and [35], the user
pairing process depends on all available users’ channel gains
on each available subchannel [1]. The disadvantage of this
method is that the order of available subchannels used for
pairing users will influence the final performance of system.
Thus, in [37], authors designed a two step pairing strategy that
jointly considers all users’ channel gains on all subchannel. In
fact, the joint user pairing and channel assignment problem is
clearly a combinatorial problem so that the traditional method
to solve this problem is impractical especially for the network
with large number of subchannels and users [1].

Recently, DRL algorithms have been extensively explored
for the complicated scenarios of communication systems. In
[26], C. Huang et al. solved the relay selection and power
allocation for cooperative hybrid NOMA/OMA networks by
the asynchronous deep Q-Learning network (ADQN) and the
asynchronous advantage actor-critic (A3C) network, respec-
tively. In [38], a DRL-based model is used to decide the relay
power from the near user (NU) in CNOMA system. Moreover,
the deep MCTS algorithm has been applied to the collaborative
resource optimization in the mobile edge computing (MEC)
network [39] and the topology optimization in self-organized
EE wireless sensor networks (WSNs) [40].

C. Contributions

In this paper, joint optimization problem of user pairing,
subchannel assignment and power control is investigated for a
CNOMA enhanced downlink cellular system, where users with
NOMA capability can assist the transmissions for users with
poor channel quality through DF cooperative communication
in HD or FD mode. We propose a new optimization problem,
whose goal is to maximize the EE of the whole CNOMA
system under the constraint of a certain QoS for all users.
The main contributions of this paper are given as follows:
• The optimal power control closed-form expressions are

derived for cases of HD and FD CNOMA, respectively,
which maximize the EE of a given pair under constraints
of users’ required QoS.

• Inspired by AlphaGo, for the first time, the user pairing
and subchannel assignment for CNOMA system is formu-
lated as a self-play game of Go by constructing a vitual
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Go board whose rows and columns denote indices of
users and subchannels in the network, respectively. Then,
a deep MCTS model combined with a MCTS module and
a neural network is proposed to achieve a near optimal
solution to the EE optimization problem for CNOMA
systems.

• The proposed resource assignment method can intelli-
gently learn the network environment and make decisions
in a dynamic environment to maximize the EE perfor-
mance of the CNOMA systems while satisfying the QoS
requirements of users. The action could be taken under
the guidance of a specific optimization goals, such as sum
rate of system, outage probability and so on.

• Numerical results also illustrate that our proposed method
achieves better EE performance on CNOMA systems
compared with existing schemes in negligible computa-
tional time.

The rest of the paper is organized as follows. Section
II demonstrates the system model and problem formulation.
The power control scheme for a given user pair is presented
in Section III. The user pairing and subchannel assignment
solution is shown in Section IV. Simulation results are given
in Section V. Finally, Section VI gives the conclusion of this
paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System model

We consider a downlink cellular system with one BS and a
set of 2M users, which has K subchannels of equal bandwidth
BK . Each user is equipped with a transmit antenna and a
receive antenna. Denoted U as the set of all users and K as
the set of all subchannels, respectively. In each subchannel, a
CNOMA pair communicates with the BS, in which a strong
user relays a weak user’s signal through DF in either HD
mode or FD mode. Additionally, the channels between users
on the same subchannel are assumed be to be asymmetric,
e.g., hki→j 6= hkj→i, where hki→j and hkj→i denote the channel
coefficients of links from user i to j and from user j to i on
the kth subchannel, respectively. For analytical simplicity, we
assume that the communications on the different subchannels
are based on the orthogonal frequency division multiplexing
(OFDM) mode. The channel coefficients on each subchannel
remain constant in each time slot and unaffected over each
transmission phase, but may change independently between
different time slots [41].

Consider a given pair of users, denoted as (m,n), where
m and n respectively represent the strong user and the weak
user within the pair. We define the channel coefficients of links
from the BS to the strong user m and the weak user n on the
kth subchannel,

∣∣hkB→m∣∣ > ∣∣hkB→n∣∣. The communication be-
tween the users and the BS includes direct transmission (first)
phase and cooperative transmission (second) phase. The BS
with the fixed transmit power pB transmits the superimposed
signals xk =

√(
1− αkm,n

)
pBxm +

√
αkm,npBxn on the kth

subchannel, where xm and xn represent the messages sent by
the BS to the strong user m and the weak user n, respectively,

and αkm,n ∈ [0, 1] is the power allocation coefficient of user
pair (m,n) on the kth subchannel.

1) HD CNOMA Mode: In the first phase, the received
signals at the strong user m and the weak user n are expressed
as ykm = hkB→m(

√(
1− αkm,n

)
pB xm +

√
αkm,npB xn) +ωkm

and ykn = hkB→n(
√(

1− αkm,n
)
pB xm+

√
αkm,npB xn)+ωkn,

respectively, where ωkm and ωkn denote the additive white
Gaussian noise (AWGN) at the strong user m and the weak
user n on the kth subchannel, respectively. Since more power
from the BS is allocated to the users with lower channel gain
[1], the strong user m first decodes the message xn of the
weak user n from its received signal, and then decodes its
own message xm from its rest interference free signal. The
achievable data rates of weak user n and the strong user m
decoded by the strong user m on the kth subchannel are,
respectively, expressed as

(
Rkn
)H−1

=
BK
2

log2

(
1 +

∣∣hkB→m∣∣2αkm,npB
σ2 +

∣∣hkB→m∣∣2(1− αkm,n)pB

)
(1)(

Rkm
)H

=
BK
2

log2

(
1 +

∣∣hkB→m∣∣2(1− αkm,n)pB
σ2

)
(2)

where σ2 is the variance of AWGN. Since each phase in the
HD mode utilizes the half time slot, the pre-log factors in (1)
and (2) are set to be 1

2 [10]. In the second phase, the strong
user m assigns the power pkm to relay the decoded message
xn of the weak user n. The weak user n merges the two
signals forwarded from the BS and the strong user m and
then, decodes its own message, expressed as

(
Rkn
)H−2

=
BK
2

log2

(
1 +

∣∣hkm→n∣∣2pkm
σ2

+

∣∣hkB→n∣∣2αkm,npB
σ2 +

∣∣hkB→n∣∣2(1− αkm,n)pB

) (3)

where hkm→n is the channel coefficient of link from the strong
user m to the weak user n on the kth subchannel. Therefore,
according to the two-phase transmission, the achievable data
rate of the weak user n on the kth subchannel is expressed as
[10] (

Rkn
)H

= min
{(
Rkn
)H−1

,
(
Rkn
)H−2

}
(4)

2) FD CNOMA Mode: The two communication phases are
simultaneously executed [10]. In the first phase, the strong user
m and the weak user n receive the superposition signal of the
BS. In the second phase, the strong user m relays the decoded
message xn to the weak user n, simultaneously. As a result,
the strong user m will suffer the residual SI from its own
input to output [10]. The received signals at the strong user
m and the weak user n on the kth subchannel are expressed
as ykm = hkB→m(

√(
1− αkm,n

)
pB xm +

√
αkm,npB xn) +

hkm→m

√
pkm xn+ωkm and ykn = hkB→n(

√(
1− αkm,n

)
pB xm+√

αkm,npB xn) + hkm→n

√
pkm xn + ωkn, respectively, where

hkm→m is SI channel coefficient of the strong user m on the
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kth subchannel. The achievable data rates of the weak user n
and the strong user m decoded by the strong user m on the
kth subchannel are respectively expressed as(

Rkn
)F−1

= BK log2

(
1+∣∣hkB→m∣∣2αkm,npB

σ2 +
∣∣hkB→m∣∣2(1− αkm,n)pB + |hkm→m|

2
pkm

)
(5)

(
Rkm
)F

= BK log2

(
1 +

∣∣hkB→m∣∣2(1− αkm,n)pB

σ2 + |hkm→m|
2
pkm

)
(6)

By the same way as HD CNOMA mode, the weak user n
merges the two signals forwarded from BS and the strong user
m [10] on the kth subchannel and hence, its own decoded rate
is achieved as(

Rkn
)F−2

=BK log2

(
1 +

∣∣hkm→n∣∣2pkm
σ2

+

∣∣hkB→n∣∣2αkm,npB
σ2 +

∣∣hkB→n∣∣2(1− αkm,n)pB

) (7)

Finally, the achievable data rate of the weak user n on the kth
subchannel is expressed as [10](

Rkn
)F

= min
{(
Rkn
)F−1

,
(
Rkn
)F−2

}
(8)

B. Problem Formulation

The joint optimization of user pairing, subchannel assign-
ment and power control for the EE problem of CNOMA
system can be given by

max
α,∂,P

η =
∑
k∈K

∑
m,n∈U

ϕkm,n

(
Rkm,n

pkm + pB

)
(9)

s.t. 0 ≤ αkm,n ≤ 1, ∀k ∈ K,∀m,n ∈ U (9a)

0 ≤ pkm ≤ pmax, ∀k ∈ K,∀m ∈ U (9b)

ϕkm,n = {0, 1}, ∀k ∈ K,∀m,n ∈ U (9c)

Rkm ≥ Rth, Rkn ≥ Rth, ∀k ∈ K,∀m,n ∈ U (9d)∑
k∈K

ϕkm,n = 1, ∀m,n ∈ U (9e)∑
m,n∈U

ϕkm,n = 1, ∀k ∈ K (9f)

where Rkm,n =
(
Rkm
)ζ

+
(
Rkn
)ζ

is the rate sum of the user
pair (m,n) on the kth subchannel, ζ = F and ζ = H
denote FD and HD modes, respectively, pmax is the maximum
relaying power of user, Rth denotes the user’s minimum rate
requirement, α =

{
αkm,n

}
denotes the power allocation vector

of the BS for user pairs on all subchannels, ϕkm,n is a factor
for channel assignment and user pairing, i.e., ϕkm,n = 1
indicates that the strong user m and the weak user n form a
CNOMA pair on the kth subchannel and ϕkm,n = 0, otherwise,
∂ =

{
ϕkm,n

}
indicates the vector of user pairing and channel

assignment in the network, and P =
{
pkm
}

denotes the
relaying power vector of strong users on all subchannels. (9b)

denotes the user’s relaying power threshold. (9d) denotes the
QoS requirement for a user to successfully decode its intended
message. (9e) and (9f) respectively indicate that one pair of
users is allocated only on one subchannel and one subchannel
is allocated only to one pair of users.

It is obviously a non-convex mixed-integer non-linear pro-
gram (MINLP) problem [4]. We can observe from (9) that
the EE expressions for given user pairs do not include the
subchannel assignment and user pairing variable, ∂. Thus,
the optimization problem (9) can be transformed into two
steps. In the first step, the power control to maximize the
EE of a given user pair on a subchannel is the optimization
problem regarding the BS’s power allocation coefficient and
the strong user’s relaying power within this pair. Then, based
on the achieved optimal power allocation, maximizing EE of
the whole system is converted into the optimization strategy
with respect to the channel assignment and user pairing.

III. THE POWER CONTROL FOR A CNOMA PAIR

In the section, we tackle the power control problem to
maximize EE for the case when a user pair is assigned on
a given subchannel, expressed as

max
αk

m,n, p
k
m

ηkm,n =
Rkm,n

pkm + pB
(10)

s.t. (9a), (9b), (9d)

where ηkm,n denotes EE of a given user pair (m,n) on the
kth subchannel. Obviously, the problem (10) is not convex.
According to equation (4) and (8), the lower decoded rate of
weak user during the two phases determines its final achieved
rate in cases of both HD and FD CNOMA. Therefore, if
the power allocation strategy for αkm,n and pkm makes the
achieved rates of weak user during the two phases unequal,
i.e.,

(
Rkn
)ζ−1 6=

(
Rkn
)ζ−2

, the higher achieved rate during the
two phases will waste the extra energy of system. Therefore,
the approach for solving the problem (10) is feasible if and
only if the weak user in a CNOMA pair during the two phases
achieves equal transmission rate, i.e.,

(
Rkn
)ζ−1

=
(
Rkn
)ζ−2

.
Based on this premise, we will derive the optimal power
control solutions of each CNOMA pair for HD and FD modes
in the following subsections.

A. HD CNOMA mode
1) Condition A: When the weak user’s decoded rate during

the first phase is lower than during the second phase, according
to (1) and (2), the EE optimization problem of the user pair
(m,n) on the kth subchannel in (10) is rewritten by

max
pkm

ηkm,n =
BK

2 log2(1+γB
∣∣hkB→m∣∣2)

pkm + pB
(11)

s.t. (9b), (9d)

where γB =
pB
σ2

. As illustrated in (11), it does not include

αkm,n. Obviously, to maximize ηkm,n in (11), the optimal
relaying power of the strong user,

(
pkm
)∗

, should be set to
be the minimum value in the feasible solutions, which is
determined by

(
Rkn
)H−2

. It will be solved after Condition B.
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2) Condition B: When the weak user’s decoded rate during
the first phase is higher than during the second phase, accord-
ing to (2) and (3), the EE optimization problem of the user
pair (m,n) on the kth subchannel in (10) is rewritten by

max
αk

m,n,p
k
m

ηkm,n=
Bk

2 (pkm + pB)

(
log2(1 +

∣∣hkB→m∣∣2(1− αkm,n)pB
σ2

)

+log2(1+

∣∣hkB→n∣∣2αkm,npB
σ2+

∣∣hkB→n∣∣2(1− αkm,n)pB
+

∣∣hkm→n∣∣2pkm
σ2

)

)
(12)

s.t. (9a), (9b), (9d)

To solve the optimal solution to αkm,n, the first-order deriva-
tives of equation (12) with respect to αkm,n is given by

∂ηkm,n
∂αkm,n

=
BK

ln(2) (pkm + pB)

(
G

γB
1∣∣hkB→n∣∣2 + γB(1− αkm,n)

− γB
1∣∣hkB→m∣∣2 + γB(1− αkm,n)

)

(13)

where

G=1−

∣∣hkm→n∣∣2P km
σ2

1+

∣∣hkB→n∣∣2αkm,npB
σ2+

∣∣hkB→n∣∣2(1−αkm,n)pB
+

∣∣hkm→n∣∣2pkm
σ2

. (14)

As illustrated in (13), because of G < 1 and
∣∣hkB→n∣∣2 <∣∣hkB→m∣∣2,

∂ηkm,n
∂αkm,n

< 0 and thus, ηkm,n in (12) is a monotoni-

cally decreasing function with respect to αkm,n. Consequently,
the optimal value of αkm,n should be set to be minimum in
the feasible solutions, which is determined by

(
Rkn
)H−1

. We
set
(
Rkn
)H−1

= Rth and according to (1), the optimal value
of αkm,n is obtained as(

αkm,n
)∗

=
C

1 + C
(1 +

1

γB
∣∣hkB→m∣∣2 ) (15)

where C = 22Rth/BK − 1. Similarly, the achieved rate of
strong user m should satisfy

(
Rkm
)H ≥ Rth. According to

(2), we have
(
αkm,n

)∗ ≤ 1 − C

γB
∣∣hkB→m∣∣2 . If

(
αkm,n

)∗
>

1 − C

γB
∣∣hkB→m∣∣2 , the strong user m and the weak user n

cannot form a HD CNOMA pair to communicate with the BS
on the kth subchannel.

According to Condition A, the optimal relaying power(
pkm
)∗

of the strong user m, which is determined by
(
Rkn
)H−2

,
is the minimum value in the feasible solutions. Consequently,
by setting

(
Rkn
)H−2

= Rth and putting
(
αkm,n

)∗
of (15) into

(3),
(
pkm
)∗

is given by(
pkm
)∗

=
σ2C(1 + C)

|hkm→n|
2

×
(
∣∣hkB→m∣∣2 − ∣∣hkB→n∣∣2)

γB
∣∣hkB→m∣∣2∣∣hkB→n∣∣2 + (C + 1)

∣∣hkB→m∣∣2 − C∣∣hkB→n∣∣2
(16)

If
(
pkm
)∗

> pmax , the strong user m and the weak user n
cannot form a HD CNOMA pair to communicate with the BS
on the kth subchannel.

B. FD CNOMA mode

1) Condition A: When the weak user’s decoded rate during
the first phase is lower than during the second phase, according
to (5) and (6), we obtain the EE optimization problem of the
user pair (m,n) on the kth subchannel in (10), written by

max
pkm

ηkm,n =
BK

pkm + pB

(
log2(σ2 +

∣∣hkB→m∣∣2pB
+
∣∣hkm→m∣∣2pkm)− log2(σ2 +

∣∣hkm→m∣∣2pkm)

) (17)

s.t. (9b), (9d)

As illustrated in (17), it does not include αkm,n. By differen-
tiating the objective function of (17) with respect to pkm, we
have

dηkm,n
dpkm

=− BK

(pkm + pB)
2

(∣∣hkm→m∣∣2 (pB + pkm
)

ln(2)

×(
1

σ2+|hkm→m|
2
pkm
− 1

σ2+|hkm→m|
2
pkm+

∣∣hkB→m∣∣2pB )

+ log2(
σ2 +

∣∣hkB→m∣∣2pB +
∣∣hkm→m∣∣2pkm

σ2 + |hkm→m|
2
pkm

)

)
(18)

where
1

σ2+|hkm→m|
2
pkm
− 1

σ2 + |hkm→m|
2
pkm +

∣∣hkB→m∣∣2pB > 0

and

log2(
σ2 +

∣∣hkB→m∣∣2pB +
∣∣hkm→m∣∣2pkm

σ2 + |hkm→m|
2
pkm

) > 0. Obviously,

dηkm,n
dpkm

< 0 and ηkm,n in (17) is a monotonically decreasing

function with respect to pkm. Therefore, the optimal relaying
power

(
pkm
)∗

of the strong user m should be set to be
minimum value in the feasible solutions. We will solve it after
Condition B.

2) Condition B: When the weak user’s decoded rate during
the first phase is higher than during the second phase, accord-
ing to (6) and (7), the EE optimization problem of the user
pair (m,n) on the kth subchannel in (10) is rewritten by
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max
αk

m,n,p
k
m

ηkm,n =
BK

pkm + pB

(
log2(1 +

∣∣hkB→m∣∣2(1− αkm,n)pB

σ2 + |hkm→m|
2
pkm

)

+log2(1+

∣∣hkB→n∣∣2αkm,npB
σ2+

∣∣hkB→n∣∣2(1− αkm,n)pB
+

∣∣hkm→n∣∣2pkm
σ2

)

)
(19)

s.t. (9a), (9b), (9d)

To solve the optimal value of αkm,n, the first-order derivatives
of equation (19) with respect to αkm,n is given by

∂ηkm,n
∂αkm,n

=
BK

ln(2) (pkm + pB)

(
G

γB
1∣∣hkB→n∣∣2 + γB(1− αkm,n)

− γB∣∣hkm→m∣∣2pkm + 1∣∣hkB→m∣∣2 +γB(1− αkm,n)

)

(20)

In (20), obviously,
∣∣hkm→m∣∣2 · pkm � 1 and

∣∣hkB→n∣∣2 <∣∣hkB→m∣∣2. Consequently, by omitting
∣∣hkm→m∣∣2 · pkm, we can

rewrite (20) as

∂ηkm,n
∂αkm,n

≈ BK
ln(2) (pkm + pB)

(
G

γB
1∣∣hkB→n∣∣2 + γB(1− αkm,n)

− γB
1∣∣hkB→m∣∣2 +γB(1− αkm,n)

)

(21)

It is exactly the same as formula (13) and obviously,
∂ηkm,n
∂αkm,n

<

0, so that ηkm,n in (19) is a monotonically decreasing function
with respect to αkm,n. Therefore, the optimal solution of αkm,n
is the minimum value in the feasible solutions.

Considering Condition A and B, both of αkm,n and pkm
should be set to be minimum in the feasible solutions, which
are determined jointly by the two-phase transmission. There-
fore, we set

(
Rkn
)F−1

=
(
Rkn
)F−2

= Rth. According to (5)
and (7), we have the following equations.

∣∣hkB→m∣∣2αkm,npB
σ2 +

∣∣hkB→m∣∣2(1− αkm,n)pB + |hkm→m|
2
pkm

= c1

∣∣hkB→n∣∣2αkm,npB
σ2 +

∣∣hkB→n∣∣2(1− αkm,n)pB
+

∣∣hkm→n∣∣2pkm
σ2

= c1

(22)
where c1 = 2R

th/BK − 1. By solving equation (22), we omit
the value of αkm,n > 1 and obtain the optimal value of αkm,n
and pkm written as (23) and (24) on top of the next page, where
a1 = |hB→m|2pB , a2 = |hB→n|2pB , b1 = σ2 + |hB→m|2pB ,

b2 = σ2 + |hB→n|2pB , d1 = |hm→m|2 and d2 =
|hm→n|2

σ2
.

Note that
(
pkm
)∗ ≤ pmax and otherwise, the strong user

m and the weak user n cannot form a FD CNOMA pair to
communicate with the BS on the kth subchannel.

IV. JOINT RESOURCE ASSIGNMENT OF EE CNOMA
SYSTEM

After deriving the optimal EE of given CNOMA pair,(
ηkm,n

)∗
, the EE optimization problem of CNOMA system in

(9) is transformed into the user pairing and channel assignment
∂, written as

max
∂

∑
k∈K

∑
m,n∈U

ϕkm,n
(
ηkm,n

)∗
(25)

s.t. (9c), (9e), (9f)

It is clearly a combinatorial problem which requires an exhaus-
tive search [1]. To solve this obstacle, we construct a 2M×K
order user-subchannel matching matrix

[
xi,k

]
i∈U,k∈K

, where

row i and column k correspond to user i and subchannel k
in the network, respectively. xi,k = 1 represents that user i
is assigned on the kth subchannel and xi,k = 0, otherwise.
Therefore, if user pair (m,n) is assigned on the kth subchan-
nel, then ϕkm,n = xm,k ·xn,k = 1 and ϕkm,n = xm,k ·xn,k = 0,
otherwise.

A. Formation of Channel Assignment and User Pairing as a
Self-play Game of Go

We treat the user-subchannel matching matrix[
xi,k

]
i∈U,k∈K

as a Go board of size 2M × K. The

optimization problem for (25) is formulated as a self-play
game of Go as shown in Fig. 1.
• State s is the user-subchannel matching matrix[

xi,k

]
i∈U,k∈K

.

• Action a taken at each step is xi,k = 1, ∀i ∈ U, k ∈ K,
representing that user i is selected and then, assigned on
the kth subchannel.

First, we start the game at a root state, i.e., set every element
of the matching matrix to be zero, s0 = [ 0 ]2M×K . Then,
each state st ∈ S, is transfered to the next state st+1 by
taking an action at ∈ A according to a policy π (st, at), with
a probability matrix P (st+1|st) and a reward rt.
• The reward is not determined until the terminal state s2M

is reached (i.e., all users are assigned on the subchannels),
and then, a final reward according to optimization goal
in (25) defined as

r2M =


∑
k∈K

∑
m,n∈U

(xm,k · xn,k)(ηkm,n)∗ if ∀Rkm ≥ Rth

and ∀Rkn ≥ Rth
−1 otherwise

(26)
is propagated back along the state trajectory, as the reward
for every action on the path.

We can describe this procedure by a fully observable
finite-horizon Markov decision process (MDP) of a 4-tuple
(S,A, r, P ) [42].
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(am,n)∗ =
1

2a1a2d2(1 + c1)

(
a1b2d2(1 + c1) + a2c1(d1 + c1d1 + b1d2)

−
√(

a1b2d2(1 + c1) + a2c1(d1 + c1d1 + b1d2)
)2 − 4a1a2b2c1d2(1 + c1)(c1d1 + b1d2)

) (23)

(pkm)∗ =
1

2a2c1d1d2

(
a1b2d2(1 + c1) + a2c1(d1 + c1d1 − b1d2)

−
√(

a1b2d2(1 + c1) + a2c1(d1 + c1d1 + b1d2)
)2 − 4a1a2b2c1d2(1 + c1)(c1d1 + b1d2)

) (24)

s s ss
x x x

Fig. 1: The MDP of constructing a 4 × 2 user-subchannel
matching matrix starting at state 1 and completed after three
steps.

To implement the MDP, we propose a deep MCTS-based
model as shown in Fig. 2, consisting of two parts: a neural
network and a MCTS module. The neural network Pr =
fθ(s, Ĥ) with parameters θ takes the current state s as well as
the channel gains Ĥ of the corresponding slot as its input and
outputs a vector, Pr = {Pr (s, a) , a ∈ A (s)}, representing a
probability distribution of actions, where Pr (s, a) is a prior
probability taking action a from state s. The MCTS module
contains the value function αθ based on the latest neural
network fθ for actions search to generate self-play data by
running simulations.

B. Collecting Training Datasets by Using a MCTS

Fig. 2 (a) illustrates a search tree of MCTS. Each node
represents the observed state s of the environment. Each
edge (s, a) in the search tree denotes an action, a ∈ A (s),
taken from state s. Each edge (s, a) or node represents a 5-
tuple data

(
s, a,N(s, a), P r (s, a) , Q(s, a)

)
, where N(s, a) is

a visit number of node and Q(s, a) is a state-action value,
representing the expected reward taking action a from state s,
defined as [42]

Q (s, a)
∆
= E

[
2M∑
τ=t

rτ |st = s, at = a

]
(27)

A self-play game (corresponding to performing resource
allocation for a time slot ) uses Nt simulations of MCTS
for selecting each node in the search tree. As shown in Fig.
2 (a), each simulation of MCTS repeatedly performs three
sequential steps [40]: selection, expansion and evaluation, and
backup. The procedure of the MCTS subroutine is illustrated
in Algorithm 1.

Selection: Each simulation guided by the neural network
fθ starts at the root node with state s0 and iteratively chooses
the best child node s′ from the node s that have been
fully expanded according to maximizing the upper confidence
bound (UCB) [28], i.e.,

s′ = arg max
a∈A(s)

(Q (s, a) + U(s, a)) (28)

In (28), U(s, a) = cP (s, a)

√∑
a∈A(s)N(s,a)

1+N(s,a) where c is a con-
trolling hyper-parameter for the exploration level. To ensure
that all nodes of the searching tree may be tried, Dirichlet
noise is added to the prior probability Pr (s, a) to achieve
P (s, a) = (1− ε)Pr (s, a) + εµ, where µ ∼ Dir(0.03) and ε
= 0.25 [28].

Expansion and evaluation: Once the selection procedure
in the searching tree reaches a leaf node with state sL,
we will expand and evaluate this node according to prior
probabilities, Pr = fθ(sL, Ĥ), generated only once by the
neural network. And its each child node is initialized by
(s, a,N(s, a) = 0, P r (s, a) , Q(s, a) = 0). These child nodes
are added to the searching tree (see line 13 to 15 in Algorithm
1).

Backup: The two above steps will be iterative until the
termination state or t = 2M is reached. Then, the final reward
in (26) is propagated along the trajectory back to the root
state. Each node (s, a) traversed is performed by increasing
its visiting number N(s, a), and updating its state-action value
Q(s, a) (see line 27 to 29 in Algorithm 1).

Algorithm 1
1: Input: root node v0, slot id, ResNet fθ
2: Output: A trajectory of states and policies E: s0, π0, s1,
π1, . . ., s2M−1, π2M−1, s2M

3: Function MCTS(v0, slot id)
4: while within Nt:
5: vend, r = TreeSearch(v0, slot id)
6: Save vend with the best reward so far
7: BackUp(vend, r) //backup
8: end while
9: Propagated along the search path with the best reward

back to the root node, and get E
10: return E
11: Function TreeSearch(v, slot id)
12: if v is vL //has not been expanded
13: Read sL from v and the normalized channel gains Ĥ

of slot id
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Fig. 2: Proposed deep MCTS-based model

14: Pr of node v ← ResNet(sL, Ĥ)
15: Initialize all child nodes of node v and added them

to tree
16: TreeSearch(v, slot id) // Continue search until end

node
17: else if v is end node
18: Read s from v and channel gains of slot id
19: Get reward r according to formula (26)
20: return r and v
21: else //select a best child
22: Get best child v′ by formula (28)
23: TreeSearch(v′, slot id) // Continue search until end

node
24: end if
25: Function BackUp(v, r)
26: while v 6= the root node
27: N(v)← N(v) + 1

28: Q(v)← Q(v)N(v)+r
N(v)+1

29: v ← the parent node of v
30: end while

C. Approximating Policy Functions Using a Neural Network

A deep residual network (ResNet) architecture is adopted
in order to improve the representational capacity of the neural
network while maintaining its training feasibility.

Input layer: The neural network takes the current matching
matrix s as well as the channel gains Ĥ as inputs. Ĥ is a
one-dimensional vector with the length of (4M2 + 2M)×K,
which is achieved by reshaping all links’ channel gains from

the BS to users and between users in the corresponding time
slot. It’s calculation formula can refer to formula (4) in [43].
The current matching matrix s is a 2M ×K image consisting
of binary values.

Hidden layers: The input features s and Ĥ are fed into
a convolutional block followed by W1 residual blocks. The
convolutional block consists of a convolution of 32 filters of
kernel size 3, no padding, batch normalization and a Rectified
Linear Unit (ReLU) activation. Each residual block adopts
the following modules [28]: (1) A convolution of 16 filters
of kernel size 3, no padding; (2) Batch normalization; (3) A
ReLU activation; (4) A convolution of 16 filters of kernel size
3, 2 paddings; (5) Batch normalization; (6) A skip connection
that adds the input to the block; (7) A ReLU activation.

Output layer: The outputs of the hidden layers are pro-
cessed by a fully connected (FC) layer with 256 neurons
followed by a Softmax activation for the probabilities distri-
bution, Pr.

Loss function: The neural network’s parameters are up-
dated in a self-supervised learning manner to make the action
probabilities, Pr = fθ(s, Ĥ), more closely approximate the
enhanced search policies π from the MCTS by Adam gradient
descent [44] with a loss function:

L = −πT logPr + ∆‖θ‖2 (29)

where ∆ is a weight regularization to prevent overfitting [28].
Algorithm 2 illustrates the self-training process of the pro-

posed model. We set the minimum size of training dataset to
be Nb. Once the size of training dataset in memory D is more
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than Nb, the neural network are continually optimized every
Nc time slots by randomly extracting Ng data samples from D
(see line 6 to 10). Based on new neural network parameters θ,
the MCTS will start subsequent games of self-play and return
a trajectory of states and policies E, which will be stored as
{(si, Ĥ, πi)}, i = 0, · · · , 2M − 1 for one time slot, sampled
uniformly among all time-steps in memory (see line 11 to 13).

Algorithm 2
Input: Number of slots Nslot

2: Output: ResNet fθ
Training dataset D=∅; slot id=0

4: while slot id within Nslot:
Read Ĥ of slot id

6: if size of D ≥ Nb and slot id modNc = 0
Randomly extract Ng data samples from D

8: Train ResNet
θ ← formula (29)

10: end if
Create a root node v0

12: E ← MCTS(v0, slot id)
D ∪

{
(si, Ĥ, πi)

}
// a slot includes 2M data samples

14: slot id++
end while

D. Robustness and Convergence Analysis of the Neural
Network Framework

To distinguish between the contributions of network ar-
chitecture and algorithm, three neural networks were cre-
ated as benchmarks, using a convolutional network (CNN)
architecture, a FC network (DNN) architecture and a ResNet
architecture in which we use the FC blocks with 256 neurons
to replace the convolutional blocks of the proposed ResNet.
The CNN and DNN configured with W2 hidden layers have
the same input and output layers as the proposed ResNet. Each
hidden layer of the CNN has a convolution of 16 kernels of
size 3, no padding and a ReLU activation. Each FC hidden
layer of the DNN contains 256 neurons followed by a ReLU
activation. Moreover, we will verify whether the change of the
number of the hidden layers (or residual blocks in the ResNet
architecture) would impact on the performance of the different
schemes, respectively. The parameters of the deep MCTS
algorithm are illustrated in TABLE I. In our experiment, we
introduce 104 independent channel generations. To evaluate
the learning error of neural networks, we define the test
accuracy as the ratio of the number of correct predictions to
total number of predictions [45].

Fig. 3 shows the convergence comparison of the proposed
ResNet architecture with W1 = 2, the CNN and DNN
architectures with W2 = 2 during self-play reinforcement
learning for M = 3. From Fig. 3, the probability loss of
proposed ResNet architecture very quickly converges to almost
zero and enters a stable status once the count of training
iterations reaches about 6000, while both of CNN and DNN
architectures converge to about 1.5 and then fluctuate in the
range of about 0.5. The performance of CNN is slightly better
than that of DNN.
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Fig. 3: Convergence of the proposed neural network

TABLE I: Parameter Settings of Deep MCTS Algorithm
Parameter Value

Minimum size of training dataset (Nb) 100*2M

Simulations of MCTS (Nt)

M=5 500
M=4 300
M=3 100
M=2 50

Minibatch size of data (Ng) 128
Number of interval slots for training (Nc) 100

Learning rate (β) 0.0001
Weight regularization (∆) 0.0001

c 2

Moreover, after 104 training iterations of all neural net-
works, we test 6000 data samples, and the test accuracy is
demonstrated in TABLE II. It is observed that using a residual
network achieves lower error and better performance. Also, we
can see that a small number of the residual blocks does not
make the test accuracy being much degraded, which implies
that the ResNet architecture is robust and efficient. Specially,
it is witnessed that using the convolutional blocks can improve
the test accuracy of ResNet architecture.

E. Complexity Analysis and Application of the Deep MCTS
approach for a Practical Network

Over the course of self-play reinforcement learning, to
balance performance and complexity, we adjust the simu-
lations of MCTS according to the size of the network as

TABLE II: Test Accuracy for Different Neural Networks
Number of Hidden
Layers (Residual

Blocks)
Method Test Accuracy(%)

8 CNN-ResNet 99.9
4 CNN-ResNet 99.7
2 CNN-ResNet 99.6
8 DNN-ResNet 99.5
4 DNN-ResNet 99.5
2 DNN-ResNet 99.4
3 DNN 45
2 DNN 37.5
3 CNN 48.5
2 CNN 38.4
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shown in TABLE I. For example, completing one simulation
requires 6 steps for M = 3, and hence, each game needs 600
steps when simulations of MCTS are set to 100. 104 games
(104 independent channel generations) require 6*106 steps,
corresponding to approximately 0.248s per step (run in the
computer configured with 4 CPU and 8192MB RAM).

This self-play reinforcement learning will converge to a
solution with a sufficient number of training iterations of the
neural network (about 6000 for M = 3), which corresponds
to approximately 8.23s per iteration. Once the neural network
Pr = fθ(s, Ĥ) is trained, to obtain an optimal policy, we start
with the root state s0 and then, at each state st, select an action
at ∼ πt predicted by the neural network and sequentially
update the state st+1 = T(st, at) until all users are paired
on each subchannel. Due to the offline training, the training
complexity of the deep MCTS model can be neglected and
thus, the optimal policy can be obtained within milliseconds.

V. NUMERICAL RESULTS

In this section, we will validate the performance of the
proposed HD and FD CNOMA schemes. We assume that
2M users are randomly distributed in a cell with a radius
of 250m and the BS is located at the center of this cell. For
simplicity, we set K = M in the simulation. The channel gains
of all links follow independent Rayleigh fading with CN(0, 1)
distribution. The path-loss exponent is χ = 2. BK = 2Hz,
σ2 = −80dBm, pmax = 27dBm and all strong users are
assumed to have the same SI channel coefficient, |hm→m|2
= λSI, ∀m ∈ U. Furthermore, the parameters of the proposed
deep MCTS model are set as shown in TABLE I and W1 = 8.
In the simulation, 1000 independent slot channel gains are
generated and as long as one user in a pair can not satisfy its
minimum rate requirement, Rth, the EE of this pair is set to
be 0.

A. Performance Comparison of Different Power Control
Schemes

Throughout this subsection, we present the analytical and
numerical average EE of the proposed power control schemes
for one CNOMA pair. We compared them with the two
existing CNOMA power control schemes. One is the price-
based power allocation for case of HD CNOMA in [1], termed
as “HD CNOMA with full relaying power”, which assigns the
full relaying power, pkm = pmax, to the strong users and fixes
the total transmit power budget of the BS on one subchannel,
so as to optimize the power allocation coefficient of BS-user
link. The other is the CVX-based scheme for case of FD
CNOMA in [25], termed as “FD CNOMA CVX unfixed”,
in which the total power budget of the BS on one subchannel
is not fixed to optimize the power allocation of both BS-user
link and user-user link. Besides, based on the CVX algorithm
proposed in [25], we fixed the total power budget of the BS
on each subchannel and presented a termed as “FD CNOMA
CVX fixed” scheme for case of FD CNOMA. Moreover,
similar to the two FD CNOMA schemes based on CVX, two
CVX-based schemes for case of HD CNOMA, termed as “HD
CNOMA CVX fixed” and “HD CNOMA CVX unfixed”, were
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Fig. 4: Average EE achieved by the power control schemes of
FD CNOMA vs. λSI for Rth=1.5bit/s and pB=20dBm.

also illustrated as benchmarks, respectively. Note that for all
schemes of fixing the total power budget of the BS on each
subchannel, we assign the full transmit power of the BS, pB ,
whereas, for all schemes that do not fix the total transmit power
budget of the BS, the total power of the BS is set to be lower
than or equal to pB .

We set Rth = 1.5bit/s and pB = 20dBm. Fig. 4 shows
the average EE achieved by the power control schemes of FD
CNOMA versus λSI. It is shown from Fig. 4 that the average
EE decreases when the SI channel coefficient increases. This
observation indicates, when λSI increases, decreasing the
relaying power is the only way to relieve the effect of SI,
which is the same as the conclusion of [4].

Fig. 5 depicts the average EE with respect to pB/σ
2 for

Rth = 1.5bit/s and λSI = −110dB. First, when the value of
pB/σ

2 is small, it is shown that with increase in pB/σ2, the
average EE for all schemes increases. This can be attributed
to the fact that as pB/σ

2 increases, more available power
is allocated to the users, thereby, improving their respective
EE. Another important observation is that the HD CNOMA
scheme proposed in [1] achieves the highest average EE
compared with the other three HD CNOMA schemes. The
observation shows that the strong user with a full relaying
power can enhance cooperative gain of weak user when the
BS power budget pB is lower. Then, the average EE does not
always increase as pB/σ2 increases, and there exists an upper
limit on EE for all schemes. After reaching the upper limit,
the EE curves of the schemes that fix the total power of the
BS on each subchannel begin to fall, while the EE values of
the schemes that don’t fix the total power of the BS on each
subchannel no longer change. This shows that there exists an
optimized total transmit power of the BS for maximizing the
EE of user pair on each subchannel.

Fig. 6 presents the average EE versus the minimum rate
requirement Rth for pB = 27dBm and λSI = −110dB. From
Fig. 6, wc can see that when Rth increases, the average EE
of all schemes decreases. An important observation is that
when the minimum rate requirement is low, e.g., Rth = 1bit/s,
the “FD CNOMA CVX unfixed” scheme obtains the best
performance. The reason is that in this case, the FD CNOMA

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3253129

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



11

92 94 96 98 100 102 104 106 108

P
B

2
(dB)

0

50

100

150

200

250

300

350

A
v
e
ra

g
e
 E

E
(b

it
/j
o
u
le

)
HD CNOMA with full relay power

Proposed HD CNOMA

Proposed FD CNOMA

HD CNOMA CVX unfixed

HD CNOMA CVX fixed

FD CNOMA CVX unfixed

FD CNOMA CVX fixed

Fig. 5: Average EE vs. pB/σ2 with different power
control schemes (Rth=1.5bit/s and λSI=-110dB)
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Fig. 6: Average EE vs. Rth with different power control
schemes (pB=27dBm and λSI=-110dB)

schemes require very low transmit power of the BS for strong
and weak users so that not fixing total power of the BS may
not cause energy waste. Besides, we observe that with increase
in Rth, the average EE of the HD CNOMA scheme proposed
in [1] becomes closer and surpasses that of our proposed HD
CNOMA scheme. The reason is that, for case of HD CNOMA,
the increase in Rth requires more power budget of the BS than
pB and thus, the full relaying power of strong user can enhance
cooperative gain of CNOMA, which confirms the conclusion
of Fig. 5.

It is clearly observed from the above figures that with
the proper total power budget of the BS, pB , the proposed
HD CNOMA power control scheme generally outperforms
the HD CNOMA scheme proposed in [1]. We also witness
that the proposed HD and FD CNOMA schemes outperform
the optimal CVX-based HD and FD CNOMA methods, re-
spectively. This is because the CVX-based method in [25]
relaxes the constraint of EE maximization problem so that it
is formulated as a standard semi-definite programming (SDP)
problem. Besides, for the CVX-based schemes, the cases of
not fixing the total power budget of the BS outperform the
cases of fixing the total power budget of the BS.
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Fig. 7: Average EE vs. the number of users, 2M ,
with different pairing schemes (Rth=1.5bit/s)

B. Performance Comparison of Different User Pairing and
Subchannel Assignment Schemes

In this subsection, we set pB = 27dBm and validate the
performance of the proposed deep MCTS-based user pairing
and subchannel assignment policy. It was compared with
the three existing pairing schemes termed as “subchannel-
based user pairing” [1], [35], “two step user pairing” [37]
and “CCUC” [46], respectively, and the DQN algorithm.
Moreover, we illustrated the exhaustive search scheme as an
optimal solution, where strong and weak users are grouped by
their distances from the BS. Note that for all schemes, the EE
of each CNOMA pair is computed according to the proposed
HD CNOMA power control algorithm.

Fig. 7 and 8 respectively illustrate the average EE of system
versus the number of users for Rth = 1.5bit/s and the
minimum rate requirement for M = 3. Fig. 7 shows that
increasing the number of users improves the average EE of
system, while Fig. 8 shows that increasing of the minimum
rate requirement decreases the average EE of system. We
observe from Fig. 7 and 8 that the average EE of system
achieved by the proposed deep MCTS scheme is very close
to the EE curve of the exhaustive search scheme, which is
much higher than those of the proposed baseline schemes. It
is noted that the worst performance is obtained by the DQN
algorithm. The reason is that the DQN scheme to maximize
the long term cumulative reward over time slots is not suitable
in the dynamic network environment when the channel states
changing independently from one time slot to another. From
Fig. 7, when the number of users becomes 10, a small gap
exists between the proposed scheme and the exhaustive search
scheme. The reason is that 500 simulations of MCTS for
M = 5 is not enough to search the optimal policy. Particularly,
the exhaustive search scheme, since grouping strong and weak
users according to their distances from the BS, may result in
some small gap from the proposed method in some cases, e.g.,
Rth = 2bit/s in Fig. 8.
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(M = 3)
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C. Performance Analysis of Proposed Joint Optimization
Schemes

Since the joint EE optimization scheme of user pairing,
subchannel assignment and power control for the FD CNOMA
system has not been involved in the existing literature, we
verified the performance of the proposed joint optimization
schemes only compared with the existing joint optimization
scheme for case of HD CNOMA in [1]. We set pB = 27dBm
and λSI = −110dB.

Fig. 9 and 10 plot the average EE of system against the
number of users for Rth = 1.5bit/s and the minimum rate
requirement for M = 3, respectively. It is shown from Fig.
9 and 10, for all schemes, the increasing number of users
improves the average EE of system, while with the increasing
of the minimum rate requirement Rth, the average EE of
system decreases. We can clearly observe from Fig. 9 and 10
the better performance of the proposed two joint optimization
schemes in comparison with that of the joint optimization HD
CNOMA scheme proposed in [1]. For example, the average
EE of system achieved by the proposed HD and FD CNOMA
schemes improves roughly by 88.17% and 280.64% of the
HD CNOMA scheme proposed in [1] when M = 3 and
Rth = 1.5bit/s, respectively.
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Fig. 10: Performance of the joint optimization CNOMA
schemes vs. Rth for M =3

VI. CONCLUSION

In this paper, the joint optimization problem of user pairing,
subchannel assignment and power control for CNOMA was
formulated and solved to maximize the achievable EE of
the whole system as well as guarantee a certain required
QoS of each user. Firstly, the optimal power control closed-
form expressions that maximize the EE of a given pair of
users were derived for FD and HD CNOMA, respectively.
Then, a joint resource optimization model based on the deep
MCTS that combines a MCTS and a neural network was
proposed. Simulation results have demonstrated the efficacy
of the proposed CNOMA scheme over the existing NOMA
schemes proposed in [1], [25], [35], [37] and [46] in terms of
average EE of system.
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