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ABSTRACT Recently, Satellite Internet of Things (SIoT), a space network that consists of numerous Low
Earth Orbit (LEO) satellites, is regarded as a promising technique since it is the only solution to provide 100%
global coverage for the whole earth, without any additional terrestrial infrastructure supports. However,
compared with Geostationary Earth Orbit (GEO) satellites, the LEO satellites always move very fast to cover
an area within only 5-12 minutes per pass, bringing high dynamics to the network access. Furthermore,
to reduce the cost, the power and spectrum channel resources of each LEO satellite are very limited, i.e.,
less than 10% of GEO. Therefore, to take fully advantage of the limited resource, it is very challenging to
have an efficient resource allocation scheme for SIoT. Current resource allocation schemes for satellites are
mostly designed for GEO, and these schemes do not consider many LEO specific concerns, including the
constrained energy, the mobility characteristic, the dynamics of connections and transmissions etc. Towards
this end, we proposed DeepCA, a novel reinforcement learning based approach for energy-efficient channel
allocation in SIoT. In DeepCA, we firstly introduce a new sliding block scheme to facilitate the modeling
of dynamic feature of the LEO satellite, and formulate the dynamic channel allocation problem in SIoT as
a Markov decision process (MDP). We then propose a deep reinforcement learning algorithm for optimal
channel allocation. To accelerate the learning process of DeepCA, we utilize the image form to represent the
requests of users to reduce the input size, and carefully divide an action into multiple mini-actions to reduce
the size of the action set. Extensive simulations show that our proposed DeepCA approach can save at least
67.86% energy consumption compared with traditional algorithms.

INDEX TERMS Energy efficient, channel allocation, artificial intelligence, reinforcement learning, Internet
of Things.

I. INTRODUCTION

As one of the most promising technologies, Internet of
Things (IoT) has developed a lot in recent years. IoT
embeds computational capabilities into each object [1].
It can be applied in many promising and key areas, such
as telemedicine, smart cities, and environmental monitor-
ing [2], [3]. To promote the development IoT, numerous
technologies and protocols have been designed to be used
in IoT. However, most of these technologies only focus on
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the terrestrial scenario, which are hard to provide valid global
connectivity. since at least 70% surface of the earth is unable
to be covered by terrestrial networks. Moreover, terrestrial
networks are easily destroyed by natural disasters, such as
earthquakes and tsunamis. To overcome the above challenges,
the LEO satellite network has been introduced to provide the
communication capability for the IoT, especially for the Inter-
net of Remote Things (IoRT), including the ocean, desert, etc.
Although at present, only two small LEO satellite systems,
named Orbcomm, and Argos are already deployed with tens
of satellites and few users, many upcoming IoT smallsat con-
stellations with thousands of satellites and billions of users
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have been planned and start to launch in recent few years,
including SpaceX Starlink, OneWeb, etc. They have shown
their ability in extending terrestrial networks to construct
global connections for IoT.
There are two kinds of links between satellite and IoT

devices on the ground: direct access and indirect access.
In direct access mode, ground terminals communicate with
satellites directly. For indirect mode, IoT devices communi-
cate with satellites through some relay nodes or sink nodes.
In this paper, we consider direct mode, which is used in
Direct-to-Satellite IoT (DtS-IoT). Compared with indirect
mode, direct connection is a more appealing way in some
specific scenarios [4]. For example, in some remote areas
with very low node density, it is not worth to set a gateway.
For IoT networks on the ground, some relative stud-

ies [5], [6] utilize the cellular networks (e.g., 5G technologies)
to build dedicated data gathering networks [7]. However,
these approaches are only fit for local networks where net-
work infrastructures are sufficient. When IoT devices are
distributed in remote areas, it is uneconomical to deploy base
stations in those regions. Thus, to establish a global commu-
nication network, more and more researches focus on IoT
systems combined with GEO satellites and LEO satellites.
To establish a global network, the LEO satellite has many

advantages over the GEO satellite. For example, compared
with the GEO satellite, the LEO satellite provides better
signal strength and less propagation delay due to a shorter dis-
tance to the IoT devices. Thus, in this paper, we also focus on
the LEO satellite IoT. However, compared with GEO Satel-
lites, the LEO satellite has limited on-board resource. For
example, due to a small size of the LEO satellite, the energy
of the LEO satellite is limited [8]. On the other hand, billions
of devices need to be served around the world [9]. Current
satellite resource (e.g., energy resource, channel resource,
etc.) capability can no longer satisfy such a big number of
demands. To address the problem of satellite communica-
tion resources shortage, it is important to derive an efficient
resource scheduling scheme to take fully use of the limited
resources.
By introducing the High-throughput satellite (HTS),

a much larger communication capacity is achieved by fre-
quency reuse and spot beam technology. However, different
from GEO satellite communication system, LEO satellite
moves fast relative to the ground. Beam hopping technol-
ogy [10], which helps to increase the capacity of broad-
band satellite communication under the constraint of satellite
power resource, cannot be used in such a dynamic environ-
ment directly. In this paper, the dynamic feature of the LEO
satellite is also well considered and modeled when deriving
the channel allocation scheme.
To this end, we first define the system model of LEO satel-

lite communication system and analyze the problem of allo-
cating the limited channel resource to nodes on the ground.
Note that the long-term profit of the network is maximized
in the formulated problem. Since the formulated problem is
too complex to obtain a closed-form result, we convert the

formulated problem as an MDP [11]. Then, reinforcement
learning (RL) technique is introduced to derive the optimal
channel allocation scheme. The RL method can deal with the
real-time and dynamic environment. In addition, the satellite-
nodes system is complex and difficult to accurately model
with pure mathematical expressions. Meanwhile, the RL
method does not need to obtain the accurate and prior infor-
mation of the environment. Therefore, we introduce the RL
method in this work. Inspired by model-free RL approaches
which can achieve a good performance without knowing the
dynamics of network environment, we select a model-free
method for this sequential decision-making problem.

The main contributions of this paper are described as
follows:

1. Compared with the existing channel allocation work,
the dynamic feature of the LEO satellite is well mod-
eled by introducing a sliding block scheme in our work.
Thus, our proposed channel allocation scheme is suit-
able for the practical scenario.

2. Considering the conflict between the limited resource
of the LEO satellite and massive data transmission
demands, the channel allocation problem with green
communication for the Direct-to-Satellite IoT is for-
mulated. In addition, the long-term profit of the LEO
satellite IoT system is maximized in the formulated
problem. To the best of our knowledge, this paper is
the first to study the energy-efficient communication
problem for the Direct-to-Satellite IoT.

3. Considering the complicated environment of the LEO
satellite IioT system, the formulated problem is much
complex. In addition, the prior information of the
system is unknown to the LEO satellite. Thus, the for-
mulated problem is hard to solve. To address this chal-
lenge, we formulate this problem to an MDP, and then,
a deep RL algorithm is proposed to derive the optimal
channel allocation scheme.

4. In the proposed algorithm, we propose two tricks to
speed the learning process. The first one utilizes the
image form to represent the requests of users, and thus,
the size of the algorithm input is decreased. To reduce
the large size of the action set, another trick is proposed
by deriving each action of the MDP to multiple mini-
actions.

5. The proposed channel allocation scheme is evaluated
by extensive simulation. It shows that our proposed
scheme can largely improve the performance compared
with the classic schemes.

The remainder part of this paper is organized as follows.
Part II briefly reviews the related work. In Part III, the model
of LEO satellite communication system is presented. Part IV
describes our proposed DeepCA scheme. Part V presents
experiment results and analyses. Part VI concludes our work.

II. RELATED WORK

Several studies have focused on energy-saving resource allo-
cation methods in satellite-based IoT. Related work can be
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broadly categorized into three parts: physical layer, link layer,
and network layer.

A. PHYSICAL LAYER

Studies on physical layer mainly try to improve the spectrum
efficiency [12], [13]. Huang et al. [12] presented a real-time
algorithm for energy-efficient data uploading in a terrestrial
distributed sensor networks, which aims to improve the net-
work throughput and also save the energy consumption for
gateways. However, it only focuses on uplinks with data
gathering gateways, and does not support energy saving in
the satellite. Fu et.al discussed the problem of optimal power
allocation and admission control for satellite networks using
a dynamic programming approach [13]. However, the energy
consumption of each user is produced with a prior known
probability distribution, while in reality, it is a stochastic
event and usually unknown in advance. Thus, the proposed
approach is not feasible in the above-mentioned scenarios.
Deep reinforcement learning (DRL) has emerged as a

promising technique to deal with optimization problems.
Accordingly, resource allocation in satellite systems by DRL
receive more and more attention. In [14], a novel DRL-based
Dynamic Channel Allocation (DRL-DCA) algorithm, which
focuses on decreasing the service blocking probability, was
proposed for GEO satellite communication. However, it only
considers a GEO satellite, which remains fixed in the same
position from the perspective of the earth. Different from the
GEO satellite, the LEO satellite moves fast, resulting in a fast
variation of channel condition.

B. LINK LAYER

To improve the energy efficiency, TDMA is a widely adopted
multiple channel access scheme. However, in satellite IoT
which deploys a huge number of devices, only a lim-
ited number of devices have data transmission demands
at any moment. Thus, a fixed-allocation multiple access
scheme (e.g., TDMA) can no longer satisfy transmission
demands. Therefore, some novel protocols suitable for satel-
lite IoT are proposed recently, including contention-free
direct access protocols [15] and contended direct access pro-
tocols [16], [17]. Although these algorithms can achieve a
higher using efficiency of bandwidth compared with TDMA-
based schemes or slotted ALOHA schemes, the energy
constraint of the satellite is seldom considered in these
algorithms.

C. NETWORK LAYER

Since the infrastructure of LEO constellation is moving with
respect to nodes on the ground, the context of communica-
tions on the network layer is changing all the time. Con-
sequently, to minimize energy consumption in the complex
environment of satellite networks on the IP level is chal-
lenging. Authors in [18] dealt with the routing problem in
satellite networks. A green satellite routing scheme to save
power and extend the lifetime of satellite was proposed.
By switching proper nodes into sleeping mode and distribute

the network traffic properly, the lifespan of battery cells
can be extended. On the other hand, there are also studies
on applying information-centric networking (ICN) [19] to
integrated satellite networks. [20] shows that combining ICN
paradigm with geostationary satellite networks can enhance
the utilization efficiency of the bandwidth, whose effect is
more significant than those achieved by HTTP ways.

Compared with existing studies, we particularly focus on
the energy-efficient resource allocation problem for the glob-
ally distributed IoT networks in LEO satellite system.

III. DESIGN OF DEEP REINFORCEMENT LEARNING BASED

CHANNEL ALLOCATION METHOD

In this section, we will firstly build the system model on LEO
satellite system and describe the channel allocation problem.
Thereafter, we formulate the problem as an MDP.

A. SYSTEM MODEL

Considering a modern LEO satellite network such as SpaceX
Starlink, the altitude of each satellite is generally around
1000 km, and one LEO satellite can cover thousands of kilo-
meters on the ground. The coverage area of a satellite, which
is also called footprint, is a circular area located directly
below it. To realize frequency reuse and avoid interference
among different transmissions, the footprint is covered by
small cells.

FIGURE 1. Spot beams in a footprint.

Figure 1 shows a geographical footprint of a satellite,
in which the green circle is the footprint. The same frequen-
cies can be ‘reused’ in multiple spot beams if the distance
between the spot beams is far enough [21]. Each red point
refers to one user node on the ground. The geographical
distribution of users is unknown for the satellite. Some parts
of the coverage area are crowded with users while some other
spot beams contain few nodes.

LEO satellites move at very high speeds with respect to
the communication nodes on the earth. Due to this dynamic
characteristic, the footprint of a LEO satellite changes con-
tinuously. In the geo-distributed network system, all channel
resources can be utilized by each user. In general, the number
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of requests is larger than that of the channel resources.
In addition, the energy of the LEO satellite is also limited.
Thus, to improve the spectrum efficiency, the satellite needs
to allocate its resource to each beam according to the number
of requests in the beam.
We consider the total energy supply as the critical resource

for the satellite that limits the power allocation scheme. The
main constraint of the throughput of satellite is Co-channel
Interference (CCI). When the adjacent beams use the same
frequency, these beams will interfere with each other, conse-
quently decreasing the transmitting rate. Thus, we use beam
hopping, which illuminates cells with a small number of
active beams.
As shown in Figure 2, since the LEO satellite coverage area

is moving, it is divided into rectangle blocks in a row [8],
in which every block is a region. For the tractability of
modelling, we assume that the coverage area is rectangle.
Each region i is an area of nodes where the satellite covers
for a duration of Tr at each time when the satellite passes
overhead. Tr denotes the time when a communication node
on the earth stays in the coverage area of a satellite, which
means that the terminal can communicate with the satellite
directly. The requests in each region is randomly distributed.

FIGURE 2. Satellite coverage area division [8].

As shown in Figure 3, we divide each footprint into a num-
ber of rectangular blocks. The blocks of each footprint form
a matrix with I rows and J columns. Each block illuminated
by a spot beam is denoted as blk ij. Similarly, to simplify the
model, we assume that the shape of each beam is rectangle,
and the size of each beam is that of one block. Although some
small overlaps exist between beams, this kind of approxima-
tion reduces the complexity of the model greatly, which does
not affect the effectiveness of our method in general. Our
future work might investigate how to modify the model for
the scenario where the coverage area is circle or oval.

FIGURE 3. A footprint divided into blocks [8].

B. PROBLEM DEFINITION

We describe the channel allocation scenario as follows:
an LEO satellite creates Nb beams which are denoted as

FIGURE 4. Levels of transmission power.

B= {n|n= 1, 2, . . . ,Nb}. Available channels are denoted as
C= {c|c= 1, 2, . . . ,Nc}. Resource allocation state of beam n

is described as a vector−→vn = [vn,1, vn,2, . . . ,vn,M ]T , in which
vn.M ∈ {0, 1} indicates whether beam n is using channel
M . vn.M = 1 means channel M is under occupancy in
beam n. Otherwise, channel M is not utilized in beam n.
Channel allocation vectors of all beams constitute the channel
allocation matrix of the satellite, which is denoted as V =
[−→v1 ,

−→v2 , . . . ,
−→vN ].

Since the channel state information (CSI) relates to the
transmission distance, the transmission power for the nodes in
different beams should be different under a constant transmis-
sion rate. For example, in Figure 4, the power consumption of
the data transmission between the satellite and the nodes that
locates in the centre of the footprint is assumed as the lowest.
Since the nodes at the edge of the footprint are much far away
from the satellite, intuitively, the satellite needs to cost a large
amount of energy for the transmission to these nodes.

Important notations are explained in TABLE 1.

TABLE 1. Notations and variables.

Our target is to serve as many as possible users under
the energy constraint. Thus, the constraints limited by power
supply of satellite and CCI are described as follows:

1) Total transmitting power of the satellite is limited to
Ptot .

2) Power allocated to beam b is limited to Pb.
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3) Adjacent beams are not allowed to utilize the same
channels.

To take fully advantage of the satellite energy and serve as
many as possible ground users, we define a utility function
that relates to the transmission power. On the other hand,
we also consider the basic quality of service (QoS) for all
users by guaranteeing the block rate. Blocking rate is defined
as the ratio of requests that are rejected by the satellite due
to limited resource and the total number of requests on the
ground. Thus, the utility function is defined as follows:

maximize
∑T

t=1
rt (1)

s.t.
∑N

b=1
Pb < Ptot , (2)

0 ≤ Pbi ≤ Pb, i = 1, . . . ,Nb, (3)

0 ≤ Pcj ≤ Pch, j = 1, . . . ,Nc, (4)

rblo < brmax (5)

For modelling tractability, we assume that the duration of
satellite scanning the diameter of one beam is a time step.
This is also practical in real LEO satellite networks. In the
formulas above, rt is an immediate reward at time step t ,
which is defined by prior regulation. The value of rt depends
on the power consuming and the number of node services
rejected by the satellite. Pbi is the allocated power to beam i,
which should not exceed Pb. For each channel, the sum of the
power allocated to all beams in a certain channel j (i.e. Pcj)
is assumed to be smaller than a certain amount Pch, which is
the constraint (4). To guarantee the QoS of users, the blocking
rate, denoted as rblo, is set as smaller than a threshold brmax .
The value of brmax is determined by the QoS requirement
of users. The total bandwidth of the network is set as Btot .
Therefore, the bandwidth of each channel is Bf = Btot/Nc.
In this scenario, the energy efficient problem is defined as

finding the optimal channel allocation strategy, which allo-
cates the limited number of channels to nodes on the ground
with the goal of saving transmitting power in the long term.
We consider that a demand resource is properly allocated if
there is enough available capacity for it in the beamwhere the
demand is located, i.e., there is a free channel for the request
in that beam. The channel demand does not expire until the
end of the current time step. This implies a challenging task
for the DRL agent because it has to not only identify critical
resource (channels) but also deal with the uncertainty in the
generation of future channel demands.

C. MDP FORMULATION

Conventional channel allocation approaches usually utilize
a prior knowledge to make a decision and do not performwell
in a complex system. In contrast, RL solves these problems
very well. Unlike existing solutions that allocate channels in
a fixed way or a heuristic way, we design a learning-based
approach. Specifically, we investigate reinforcement learning
technique, which is one branch of machine learning (ML) that
focuses on decision making. RL studies how to teach an agent
to find an optimal behavior for a specific target in a complex

FIGURE 5. State representation.

environment [22]. An agent observes previous state-action
pairs and rewards, and then takes an action that is thought
to be the best. Recently, RL has shown its ability in many
environments with the development of deep neural networks
(DNN). Inspired by these results, we take RL technique to
solve the above formulated energy-saving channel allocation
problem.

MDP provides a mathematical framework to model serial
decision-making problems [23]. It is used to describe an
environment in RL. In MDP, an agent selects the best action
based on current state. The history of states that agent has
experienced does not affect the decision to be made. Mathe-
matically, a decision process has the Markov property when
it follows the formula:

P[St+1|St ] = P[St+1|S1, . . . , St ] (6)

where St+1 denotes the state at time step t + 1, P[St+1|St ] is
the transition probability from state St to St+1 when given the
information St . The formula shows that the previous state St
contains all necessary information from history (S1, . . . , St )
for next decision. The current state contains three fundamen-
tal elements in general: a set of state S, action A, and reward
R. Specifically, at time step t , the agent observes state st ,
and takes an action at . Then, the agent can receive reward
rt and the state transits to st+1 at the next time step (i.e., step
t + 1)[24]. The target of training the agent is to maximize
the expected cumulative discounted reward E[

∑∞
t=0 γ trt ] by

taking an appropriate action for each step, where γ ∈ (0, 1]
is the discounting factor [22], rt is the immediate reward at
time step t .
Themain idea of our solution is to translate themodel into a

MarkovDecision Process. Since the channel allocation action
at each time step depends on the current state of channel
resource instead of the history of states, it can be formalized
as an MDP. In our approach, an LEO satellite is an agent,
and the target of the agent is to maximize the utility function
Eq. (1).
Now we define the state space, action space, and reward

function to formulate the problem.
State space: In our setting model, we divide the footprint

of beams into a X ∗ Y grid area. The value of each grid
represents the number of task requests at each time step.
Since we only consider whether there is a task request in
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the area, the state space simply includes information about
user tasks, such as the size and location of tasks. Moreover,
some space relevance between nodes on the ground may do
effect on decision. Thus, to take fully consideration of the
whole information of a state, we take a creative way to deal
with the state input, which is stated as follows. The state
input is taken as the form of matrices, which is similar to
the image. As is shown in Figure 5, n+ 1 images make up a
state representation, where n refers to the number of channels.
Each image is a matrix of size X ∗ Y , where X and Y are the
width and height of the image respectively. The values of X
and Y depend on the coverage area of the satellite. Note that,
matrix k(k = 1, 2, . . . , n) gives the allocation information of
channel k in each beam. Values in the grid in the first n images
are limited to ‘1’ and ‘0’. ‘1’ means the channel is under use
and ‘0’means the channel is free in that grid. Apart from these
n images, an extra image (i.e., matrix n+ 1) is used to show
new node tasks that request for channels. In other words, this
image represents the geographical distribution of new user
requests. Therefore, the state representation at time step t is
denoted as:

st = [−→v1 ,
−→v2 , . . . ,

−→vn ,
−→
R ] (7)

where ER refers to the allocation request of time step t (i.e.,
matrix n+ 1).

Action space: The action is a mapping from newly coming
node tasks to channels to be allocated. For each coming
task k , satellite allocate channel n ∈ [0,Nc] to it, where n= 0
denotes that no channel is allocated to serve task k . At each
time step, since the number of users is large, the size of the
action space may be too large, which makes the learning to
be challenging. To reduce the size of the action space, the
action is divided to several mini-actions at each time step.
The action set at each decision is 1, 2, 3, . . . ,N , ∅. For each
decision, satellite allocate channel ck (ck ∈ [1,Nc]) for node
k in its footprint, or deny service (∅), which is a mini-action.
Rewards: The reward is the feedback an agent gets after it

takes an action. It can be obtained after each time step. The
objective of this paper is to learn a power-efficient channel
allocation policy to maximize the long-term reward of the
satellite. Since the energy is a critical source for the satellite,
the total energy consumption is the main criterion to find
a successive action. To guarantee the QoS of ground users,
the service blocking rate still needs to be considered in the
reward function. Therefore, we split the power efficiency
and service blocking rate criteria into two normalized reward
function components.

First, we define a normalized reward to maintain the power
consumption. The objective is to reach a minimum value of
total power cost. The following function represents the power
efficiency reward:

rP = α ∗

∑Nt
i=1 (Pi,t − P∗

i,t )∑Nt
i=1 P

∗
i,t

(8)

where α is a weighting factor, Pi,t is the power set up by
the agent at time step t, P∗

i,t is the optimal power which is

decided by the location of the beam. The optimal power is
defined as the allocation scheme in which each node request
can be satisfied in the optimal location where it consumes the
minimum power, i.e., node on the ground is allocated with a
channel when it moves to the nearest area to the satellite. The
agent decides to allocate power to Nt nodes at time step t .
The design of reward function is critical in the training stage
of the agent. The better it represents the goal of the problem,
the better performance it will achieve.

Second, the normalized value of the service blocking rate is
used to guarantee the QoS for all users, which is represented
by:

rb = β ∗ (

∑T
i=1 Ni∑T
i=1 N

∗
t

) (9)

where β is a weighting factor of satisfactory rate, Ni is the
number of served nodes that are to be out of date at time step i.
In other words, the demands of the number (i.e., Ni) of nodes
cannot be satisfied. N ∗

t denotes the total number of nodes that
are to be out of service at time step i.
Last, the overall reward r is defined as:

rt = rp + rb (10)

IV. IMPLEMENTATION

In this section, we focus on the procedures of utilizing our
method to operate in the LEO satellite IoT network. Based
on the model described above, we proposed DeepCA, a DRL
solution to allocate channels.

FIGURE 6. The proposed DeepCA system architecture.

The proposed DeepCA architecture is shown in Figure 6,
which takes the specifically designed structure of training
samples to implicitly learn and predict the future. It is based
on the example scenario in Figure 4. We depict our training
algorithm as follows.
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First, at time step t , the agent (satellite) gets the observa-
tion, which includes the bandwidth resource requests of all
nodes and the current state of channel allocation.
Once obtaining the observation, the agent takes power allo-

cation action based on the state through neural network. The
parameters in neural network represent an allocation policy
π (at , st ). As is illustrated in prior section, for simplicity,
we treat the power and demand per beam as discrete variables.
Therefore, the state and action space are also discontinuous.
This is impractical for agent to train a model using neural
network, so we normalize the state space as input to neural
networks.

FIGURE 7. State space normalization example.

As is shown in Figure 7, we give an example of the nor-
malization of the state space. Suppose that the satellite can
serve no more than 10 nodes in each beam. The matrix on the
left is the initial number of node requests in a footprint. The
process of normalization is that each of the matrix numbers is
divided by the maximum capability (i.e. 10). After doing this
operation, the value of all the elements is between 0 and 1,
which can be seen on the right matrix. Then the matrix can
be put into the neural networks as a continuous variable.
After allocating power to beams, the agent can get a

reward rt and observe the current state of channels and
bandwidth demands of nodes (i.e., state st+1). The tuple of
(st , at , rt , st+1) is called an experience. To fully utilize the
experience, we use experience replay to use these experiences
more than once.
The map of node requests is presented in Figure 8, satellite

moves one column of nodes at each time step. In this exam-
ple, the area whose number of node requests are 4, 3, 4, 2,
0 respectively (i.e., the left column) will be out of the scope at
the next time step and the area whose number of node requests

FIGURE 8. Node requests on the ground.

are 4, 5, 3, 5, 4 (i.e., the right column) will come into the
footprint of satellite.

V. EVALUATION

A. ENVIRONMENT MODEL

A comprehensive evaluation is conducted to evaluate the per-
formance of our proposed DeepCA scheme. The simulation
parameters used in the experiment are listed in TABLE 2.

TABLE 2. Simulation parameters.

FIGURE 9. Distribution of bandwidth demands.

Distribution of bandwidth demands is plotted in Figure 9.
We simulate the generation of node tasks with Gaussian
distribution, whose pattern is unknown for satellite.

We compare our method with two traditional satellite
channel allocation methods: random power allocation (RPA)
algorithm and the greedy algorithm (GA). Random power
allocation is a naïve channel allocation scheme where all the
channels are randomly allocated to each beamwhile avoiding
CCI.

GA is a class of algorithms. In this scenario, it aims at
either of the two targets: optimizing the power consuming
of satellite or maximizing the satisfaction rate of all nodes,
which is called greedy-1 and greedy-2 algorithm respectively.
Specifically, with the given demands at a time slot, agent that
focuses on demand satisfactory always allocates communi-
cation power to those nodes that are to be out of date priorly,
while for agent that targets at the necessity of reducing power,
minimizing power has a higher priority than satisfying all
customers at one time step.
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In the experiment setting, we train and test DeepCA in
different demand densities to improve its ability under vari-
ous ground situation, while keeping total power, number of
beams, number of channels and some other parameters of
satellite unchanged. We set the maximum training time steps
to 3 million in practice. In the training phase, one episode
comprises the process of moving of 1000 blocks.
We train our learning model on a computer with an Intel

Core i7-8550U CPU and a Nvidia GeForce MX150 GPU.
Based on the learning curve, 3 million time steps are used
for training in total.

B. EVALUATION RESULTS

This part focuses on different analyses that account for the
performance of each algorithm using models presented in
the previous section. We consider the cumulated power con-
sumption and satisfaction rate as performance metrics. The
satisfaction rate is defined as the ratio of nodes that have been
allocated channels to sum of nodes.
Figure 10 shows the reward-episode curve in training

phase. We can see that the mean episode reward increases
rapidly during the first one hundred episodes, and then gets
very close to zero.

FIGURE 10. Reward in training phase.

Due to the variety of demand distribution, agent may come
across some situations where its model does not address
well, so there are still some uncertainties of the reward it
gets. That is the reason why fluctuation exists after many
episodes. However, it does no significant matter to the perfor-
mance of the model for it can deal with most of the demand
distributions.

1) POWER CONSUMPTION

Results of the four schemes are shown in Figure 11. The
data shows advantages of our DRL-based algorithm over the
other algorithms. The reason for this is that agent has learned
how to allocate channels with the aim of minimizing power
consumption in a long term instead of a short period of time.
The power consumption rate that reflects the degree of

power efficiency is calculated as follows:

Rp =

∑T
t=1 Pt − Po

Po
(11)

where Pt is actual power consumption at time step t ,
∑T

t=1 Pt
is the total power consumption in one episode. Po denotes
optimal power consumption in one episode, which is decided
by the demand distribution and the location where they are
served the most energy-efficiently.

FIGURE 11. Power consumption under different demand distributions.

As shown in Figure 11, the power consumption rate of
greedy-2 almost equals to zero. Which means that, it always
selects the most energy-efficient area to serve at each time
step. It minimizes the power consumption on one hand.
On the other hand, it causes a low satisfaction rate for it
neglects the nodes to be out of date, results of which can
be seen in the next part. We also see that the power use
of DeepCA decreases 78.41% and 83.96% compared with
greedy_1 algorithm and random select algorithm respectively
when average demand desity is 9. And when demand density
increases, the decrease amount is 67.86% and 74.60%.

2) SATISFACTION RATE

In our experiment, the satisfaction rate is reflected through
blocking rate, and sum of both equals to 1. It is surprising
that the service blocking rate of DeepCA in Figure 12 is
lower than that of the other algorithms, even greedy_1 algo-
rithm which aims at maximizing the satisfaction rate. The
superiority of DeepCA is also evident over the other two
schemes. As a matter of fact, this result reveals that the goal

FIGURE 12. Demand blocking rate under different demand distributions.
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FIGURE 13. One of the scenarios where greedy algorithm performs bad.

of an agent is to minimize power consumption while keeping
satisfaction rate in a long period instead of achieving optimal
satisfaction rate or power consumption scheme at one time
step.
This phenomenon can be explained by the foresight abil-

ity of the model. As is shown in Figure 13, when the number
of channels are very limited, considering the lasting effect
of current channel allocation decision, DeepCA model may
deny some service requests that are becoming invalid at the
next time step, while satisfying requests in the other grids
which has high density of nodes. However, for greedy_1 algo-
rithm, it will choose the nodes that are to be invalid firstly.
Following this policy, at the next time step, the grid that has
12 units of requests will probably not be satisfied due to
power and channel restrictions.
As the most critical objective metric in this paper, satisfac-

tion rate is themost excellent performance of DeepCA among
those channel allocation algorithms. As is inferred before,
due to the advantage of model-free learning method, agent
can learn how to take action to maximize cumulative reward
in a long term. For channel allocation in LEO satellite system,
which aims at minimize power consumption while securing
coordinative satisfaction rate with the other algorithms or
better, it can learn the latent pattern of the state-action pair
that achieve the best rewards.

VI. CONCLUSION

In this paper, we proposed DeepCA, a novel approach for
dynamic channel allocation in SIoT. We introduced a new
sliding block scheme to facilitate the modeling of dynamic
feature of the LEO satellite, and formulated the dynamic
channel allocation problem in SIoT as an MDP. A deep
reinforcement learning based algorithm is proposed for opti-
mal channel allocation. To accelerate the learning process of
DeepCA, we utilized the image form to represent the requests
of users to reduce the input size, and carefully divided an
action into multiple mini-actions to reduce the size of the
action set. Simulation results showed that DeepCA consis-
tently outperforms classic channel allocation algorithms. For
future research work, we hope to address the energy saving
problem by designing a novel battery model, which takes the
battery load and constraints into consideration.
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