

Traditionally, the landing maneuver on a moving

platform has been approached by means of a wide variety

of techniques, which are able to solve the problem in an

analytic manner and to perform properly in some specific

conditions. Most of these strategies are mainly based on

perception and relative pose estimation [5, 6, 42], as well as

trajectory optimization and control [1, 15, 20, 29, 46].

Nevertheless, classical techniques have their limitations,

in terms of model design, non-linearities approximation,

disturbances rejection and efficiency of computation. In

this context, machine learning techniques have proven to

increasingly overcome most of these limitations, having

generated high expectations in the research community

since 1971, when Ivakhnenko [19] trained a 8-layer

neural network using the Group Method of Data Handling

(GMDH) algorithm. Nowadays, machine learning has

evolved to more complex techniques, such as deep learning

strategies which are capable of generalizing from large

datasets of raw data information. Deep learning has opened

up important research and application fields in the context

of unsupervised feature extraction, where Convolutional

Neural Networks (CNNs) were able to provide outstanding

results in comparison to traditional computer vision

techniques [26].

In the context of machine learning (and reinforcement

learning) for continuous control, there are uprising problems

to cope with, such as divergence of learning, temporal

correlation of data, data efficiency or continuous nature

of inputs and outputs. These issues have been limiting

machine learning and reinforcement learning strategies

for continuous control over the last years. However,

recent advances in the reinforcement learning field, such

as DeepMind Technologies Deep Q-Network (DQN)

[31], have unveiled a new set of possibilities to solve

complex human-level problems by means of novel deep

reinforcement learning strategies. The key advances of

DQN were the inclusion of an experience replay buffer (to

overcome data correlation), and a different approach for the

target Q-Network, whose weights change with the update

of the main Q-Network in order to break the correlation

between both networks (in contrast with the targets used

for traditional supervised learning, which are fixed before

learning begins) [31]. The state of the DQN algorithm is

the raw image and it has been widely tested with Atari

games. DQN established the base for a novel line of deep

reinforcement learning solutions, but it was not designed

for continuous states, which are deeply related to robotic

control problems.

Based on the key improvements of DQN and the actor-

critic paradigm established by Richard S. Sutton and

Andrew G. Barto in their renowned reinforcement learning

book [43], Lillicrap et al. proposed Deep Deterministic

Policy Gradients (DDPG) [28] as an algorithm to solve

continuous control problems by integrating neural networks

in the reinforcement learning paradigm. DDPG is able to

perform remarkably well with low dimensional continuous

states and actions, but is also capable of learning from raw

pixels [28].

In this work, the novel deep reinforcement learning

algorithm (DDPG) has been utilised to solve a complex

high level task, such as UAV autonomous landing on a

moving platform. This task has been solved in simulation

and real flights by means of a Gazebo-based reinforcement

learning framework. The training phase has been carried out

in Gazebo2 [48] and RotorS simulator [13], which provide

realistic simulations that are helpful for a quick transition to

real flight scenarios. The testing phase has been performed

in both simulated and real flights.

1.1 RelatedWork

The problem of UAV autonomous landing on both static

and moving platforms is of utmost importance for real

world applications [9, 33]. Given the complexity of the

challenge, a number of previous works focus mostly on

specific solutions for components such as perception and

relative pose estimation [5, 6, 42] or trajectory optimization

and control [1, 15, 20, 29, 46]. Other research lines

explore coupled methods mostly related to Image-Based

Visual Servoing (IBVS) [27] and, in this direction, novel

advanced algorithms which also incorporate constant force

disturbance estimation have been proposed [39].

Regarding the control maneuvers when the relative state

of the vehicles is assumed to be known, popular techniques

include different kinds of guidance and rendezvous laws

[15, 20] which sometimes are augmented with velocity con-

trollers for a faster approaching phase [3]. When a desired

meeting point is obtained, incorporating feedforward inputs

allows for a faster response against track following errors

[29] and the determination of optimal rendezvous trajecto-

ries can also take wind disturbances into account [1]. PID

controllers are the preferred option for aggressive landing

from relatively short distances [3, 5, 47], while an adaptive

control schema presents enhanced robustness [18, 24]. A

discrete-time non-linear model predictive controller which

optimizes both the trajectories and the landing time was

developed to address the difficult problem of landing on top

of moving inclined platforms [46].

Even if only tested on static platform landing tasks, inno-

vative bio-inspired strategies have proven to perform well in

the real world, employing a time-to-contact (TTC) indicator

[22]. Intelligent control and machine learning based meth-

ods are very promising too, since they provide the ability

2http://gazebosim.org

to deal with different system dynamics in different environ-

ments and landing circumstances [4]. Recent contributions

have proposed neural network backpropagation controllers

[4] for landing on top of a static platform and classical

discrete reinforcement learning approaches have also been

used in the literature, such as the approach proposed by

Shaker et al. [40], where an LSPI algorithm was used to

land on top of a static platform. Both state and actions were

part of a discrete space and the main sensor to estimate the

state was a camera. The UAV was able to perform a landing

maneuver on a static platform in a simulated environment.

The previously mentioned novel reinforcement learn-

ing methodologies are strongly related to deep learning

strategies, since their theory is intrinsically linked. Concern-

ing deep learning for UAV indoor navigation tasks, recent

advances have driven to a successful application of CNNs

in order to map images to high-level behaviour directives

(e.g. turn left, turn right, rotate left, rotate right) [23, 35]. In

[35], the Q function is estimated through a CNN, which is

trained in simulation and successfully tested in real exper-

iments. In [23], discrete actions are directly mapped from

raw images. In all stated methods, the learned model is run

offboard, usually taking advantage of a GPU in an external

laptop.

In [16], a Deep Neural Network (DNN) model was

trained to map image to action probabilities (turn left,

go straight or turn right) with a final softmax layer, and

tested onboard by means of an Odroid-U3 processor. The

performance is later compared to two automated methods

(SVM and a method in [38]) and two human observers.

On the other hand, deep learning for low-level motion

control is challenging, since dealing with continuous and

multi-variable action spaces can become an intractable

problem. Nevertheless, some recent advances have pro-

posed novel methods to learn low-level control policies

from imperfect sensor data in simulation [21, 49]. In [49],

a Model Predictive Controller (MPC) was used to generate

data at training time in order to train a DNN policy, which

was allowed to access only raw observations from the UAV

onboard sensors. In testing time, the UAV was able to follow

an obstacle-free trajectory even in unknown situations. In

[21], the well-known Inception v3 model (pre-trained CNN)

was adapted in order to enable the final layer to provide six

action nodes (three transitions and three orientations). After

re-training, the UAV managed to cross a room filled with a

few obstacles in random locations.

On the side of deep reinforcement learning, some recent

algorithms are able to perform slightly better than DDPG, in

terms of training time and for low-dimensional continuous

tasks. In [17], Normalized Advantage Functions (NAF)

or continuous deep Q-learning algorithm is able to solve

continuous problems in simulation, by the use of a neural

network that separately outputs a value function V (x) and

an advantage term A(x, u) [17]. This representation allows

to simplify more standard actor-critic style algorithms,

while preserving the benefits of non-linear value function

approximation [17]. In [30], several agents (from 1 to

16) are run in parallel threads, enabling the possibility of

stable training of neural networks with both value-based

and policy-based methods, off-policy as well as on-policy

methods, and in discrete as well as continuous domains.

Also, Asynchronous Advantage Actor-Critic (A3C) shows

that stable online Q-learning is possible without experience

replay [30]. Both [17] and [30] have been tested in simulated

environments, such as MuJoCo [44] and/or TORCs [11].

Finally, concerning the framework for training and

testing novel deep reinforcement learning algorithms for

robotics, recent developments point to extend the OpenAI

Gym3 reinforcement learning training/test bench to a

widely-used robotics simulator, such as Gazebo simulator.

In [48], a complete open source test bench is released,

with simulation frequency up to real time and meant for an

specific model of UAV and UGV.

1.2 Contributions

Our proposed method differs from previous work in

the following aspects: (i) A Gazebo-based reinforcement

learning framework has been established. This framework is

versatile-enough to be adapted to other types of algorithms,

environments and robots. (ii) A novel deep reinforcement

learning algorithm (DDPG) has been adapted and integrated

into our Gazebo-based simulation framework. (iii) The

landing maneuver on a moving platform has been solved

by means of DDPG algorithm, in both simulated and real

flights.

Please note that we address the full problem, with

continuous state and actions spaces. Also, as an indirect

result, we have demonstrated the feasibility of a powerful

work flow, where robots can be trained in simulation and

tested in real operation environments. To the best of the

authors knowledge, this is the first work that addresses

the UAV landing maneuver on top of a moving platform

by means of a state-of-art deep reinforcement learning

algorithm, trained in simulation and tested in real flights.

The remainder of the paper is organized as follows:

Section 2 presents a brief introduction on the reinforcement

learning theory and a short explanation on the basics of

DDPG algorithm. Section 3 details the presentation and

description of our Gazebo-based reinforcement learning

framework and the design of the experiment which meets all

the constraints required in the deep reinforcement learning

paradigm for autonomous UAV landing on a moving

3Open test bench for reinforcement learning algorithms: https://gym.

openai.com

platform. Section 4 presents the simulated and real-flight

experiment results. Finally, Section 5 provides conclusions

and future work optimizations and research lines.

2 Background

In reinforcement learning, an agent is defined to interact

with an environment, seeking to find the best action for

each state at any time step. The agent must balance

exploration and exploitation of the state space in order to

find the optimal policy which maximizes the accumulated

reward from the interaction with the environment. In this

context, an agent modifies its behaviour or policy with

the awareness of the states, actions taken and rewards for

every time step. Indeed, reinforcement learning involves

an optimization process throughout the whole state space,

in order to maximize the accumulated reward. Robotic

problems are often task-based with temporal structure.

These type of problems are suitable to be solved by means

of a reinforcement learning framework [25].

The standard reinforcement learning theory states that an

agent is able to obtain a policy, which maps every state s ∈ S

to an action a ∈ A, where S is the state space (possible states

of the agent in the environment) and A is the finite action

space. The inner dynamics of the agent are represented

by the transition probability model p(st+1|st , at) at time

t . The policy can be stochastic π(a|s), with a probability

associated to each possible action, or deterministic π(s). In

each time step, the policy determines the action to be chosen

and the reward r(st , at) is observed from the environment.

The goal of the agent is to maximize the accumulated

discounted reward Rt =
∑T

i=t γ i−t r(si, ai) from a state at

time t to time T (T = ∞ for infinite horizon problems)

[43]. The discount factor γ is defined to allocate different

weights for the future rewards.

For a specific policy π , the value function V π in Eq. 1

is a representation of the expectation of the accumulated

discounted reward Rt for each state s ∈ S (assuming a

deterministic policy π(st)).

V π (st) = E[Rt |st , at = π(st)] (1)

An equivalent of the value function is represented by the

action-value function Qπ in Eq. 2 for every action-state pair

(st , at).

Qπ (st , at) = r(st , at) + γ
∑

st+1

p(st+1|st , at)V
π (st+1) (2)

The optimal policy π∗ shall be the one which maxi-

mizes the value function (or equivalently the action-value

function), as in Eq. 3.

π∗ = arg max
π

V π (st) = arg max
at

Q∗(st , at) (3)

A general problem in real robotic applications is that

the state and action spaces are often continuous spaces.

A continuous state and/or action space can make the

optimization problem intractable, due to the overwhelming

set of different states and/or actions. Reinforcement learning

methods, as a general framework for representation, are

enhanced through deep learning to aid the design for feature

representation, which is known as deep reinforcement

learning.

In the context of state-of-the-art deep reinforcement

learning algorithms, DDPG represents one successful

application of neural networks to the reinforcement learning

paradigm, and it is able to solve continuous control

problems. As previously stated, DDPG [28] is a policy-

based deep reinforcement learning algorithm designed

to work with both continuous state and actions spaces.

Policy-based reinforcement learning methods aim towards

directly searching the optimal policy π∗, which provides

a feasible framework for continuous control. If the target

policy π∗ is a deterministic policy µ, the Q function (see

Eq. 4) can be learned off-policy, using transitions (from

an environment E) which are generated from a different

stochastic behaviour policy β [28].

Q(st , at) = Ert ,st+1∼E[r(st , at)+γQµ(st+1, µ(st+1))] (4)

A function approximator, parametrized by θQ, is

considered in DDPG to approximate the Q function. It is

optimized by minimizing the loss L(θQ) of Eq. 5.

L(θQ) = Est∼ρβ ,at∼β,rt∼E[(Q(st , at |θ
Q) − yt)

2] (5)

where

yt = r(st , at) + γQ(st+1, µ(st+1)|θ
Q) (6)

The key changes for this large non-linear approximators

to converge (in discrete spaces) were: the use of a replay

buffer, and a separate target network for calculating yt , as

firstly proven by DQN [31]. In order to deal with large

continuous state and action spaces, DDPG adapted the

actor-critic paradigm introduced in [41], with two neural

networks to approximate a greedy deterministic policy

(actor) and the Q function (critic). DDPG method learns

with an average factor of 20 times fewer experiences steps

than DQN [28].

The actor network is updated by following and applying

the chain rule to the expected return from the start

distribution J with respect to the actor parameters (see

Eq. 7).

∇θµJ ≈ Est∼ρβ [∇θµQ(s, a|θQ)|s=st ,a=µ(st |θµ)] (7)

An advantage of the off-policy methods is that explo-

ration can be treated independently from learning. In this

case, exploration is carried out throughout autocorrelated

Ornstein-Uhlenbeck exploration noise [45].

operation. It has been used to enable the operation of the

UAVs in both training and testing time, though its full

explanation is out of the scope of this work. For further

information, please refer to [37].

In this framework, the environment interface shown in

Fig. 1 implements an interface between Gazebo/Aerostack

and the agent, being in charge of parsing all the incoming

data, in order to adapt it to an intelligible structure which

the agent can use. Furthermore, taking into consideration

future extensions of either agents, environments, robots or

simulation systems, the framework has been designed in

a versatile manner at a programming level. Since all the

communication interfaces are standard and cross-language,

both the agent and the environment interface can be

implemented in a wide variety of programming languages,

such as C++, Python, or Java.

Finally, our framework is designed to be used with

Gazebo, but it can be adapted to any other simulation

systems (as well as simulated robots), due to the standard

nature of its communications. Also, the simulation time can

be speeded up or slowed down, in order to reduce training

times and to adapt the simulation to computationally-

expensive experiments, respectively.

3.2 Reinforcement Learning Based Formulation

In the context of reinforcement learning, the formulation

of the experiment can be decisive for the algorithm to

converge, since there are an increasing number of possible

designs which ideally would lead to the same result. In

practice, the formulation of the state and action spaces, as

well as the design of the reward function, determines the

speed of convergence and even the possibility of divergence

of the reinforcement learning algorithm. We have designed

the state, action and reward function in a way that it

minimizes information passed to the agent, speeds up

learning and avoids learning divergence.

As previously stated, a reinforcement learning experi-

ment is defined by the state space s ∈ S, the action space

a ∈ A and the reward function r . In our proposed approach,

the state space S is defined by Eq. 8.

S = {px, py, pz, vx, vy, C} (8)

Where px , py and pz are the positions of the UAV with

respect to the Moving Platform (MP) in x, y and z axes

respectively at time t , vx and vy are the velocities of the

UAV with respect to the MP in x and y axes respectively

at time t and C is the binary state of a pressure sensor

located on the top of the horizontal surface of the MP. All the

sensory information is retrieved from Gazebo simulator and

parsed by the environment interface component, as shown in

Fig. 2. Regarding the action space A, it is defined by Eq. 9.

A = {ax, ay} (9)

Where ax and ay are the reference velocities, input to

the velocity controller (see Fig. 2), in x and y axes at

time t . In this paper, the velocity reference in the z axis

has not been included in the action space. This is due

to the fact that we are tackling a complex problem with

continuous state and action spaces and the full behaviour

is completely self-learned in simulation, by means of a

deep reinforcement learning algorithm not previously tested

on this type of robotic tasks. Hence, the inclusion of z

axis has been left as future work since it involves a much

higher order of complexity out of the scope of this study.

Instead, a constant velocity reference is commanded in the

z axis in each time step. This fact simplifies the action

space, increasing the speed of convergence of the algorithm

without losing generality of the approach. The resulting

state and action spaces are a continuous 6-dimensional

space and a continuous 2-dimensional space respectively,

with normalized variables ranging from + 1 to − 1 values.

The reward function is one of the most important

components in the reinforcement learning framework. A

proper design of the reward function can lead to a faster

convergence of the algorithm and a better performance at

testing time. In our proposed approach, where the agent is

meant to generate continuous control actions, the reward

Agent
Env

Interface

Velocity

Controller

Gazebo + RotorS

x y z

x_uav y_uav z_uav x_mp y_mp z_mp

x_uav y_uav z_uav x_mp y_mp z_mp

x y z

x y z

x y x_ref y_ref

Fig. 2 Architecture of our proposed reinforcement learning framework for the case of the experiment of study

function shall be designed in such a way that it rewards

smooth actions with respect to time. The resulting reward

function r is defined by Eqs. 10 and 11.

shapingt = −100

√

p2
x + p2

y − 10

√

v2
x + v2

y −

√

ax
2 + ay

2

+ 10C(1 − |ax |) + 10C(1 − |ay |) (10)

r = shapingt − shapingt−1 (11)

As can be inferred from Eq. 10, the shaping function

explicitly differentiates between the importance of minimiz-

ing the position with respect to the MP, the velocity with

respect to the MP and the generated actions (each variable is

weighted by a different coefficient). Following this fashion,

the agent is able to coarsely learn to minimize its posi-

tion with respect to the MP and to subsequently optimize

its behaviour in order to generate smoother velocity refer-

ences, which leads to a less aggressive movement. Also, the

C coefficient rewards the agent as soon as the UAV lands

on the MP and the velocity references are decreased to their

absolute minimum.

In addition, shaping is a popular method for speeding

up reinforcement learning in general, and goal-directed

exploration in particular [10]. It increases the speed of

convergence of a reinforcement learning algorithm by

transferring knowledge about the current progress on the

task to be solved, in this case, with respect to the previous

state of the agent. Nevertheless, it requires significant

design effort, and results in less autonomous agents. Also,

it may alter the optimal solution, leading to unexpected

final behaviour. In this work, a shaping method is applied

in an non-invasive trend, by informing the agent about

its instantaneous progress and avoiding instability and

algorithm divergence.

Also, it is assumed that both the position and velocity of

the UAV and the MP are available at training time (ground

truth data). Nevertheless, as stated in this section, the agent

is only aware of its position and velocity with respect to

the MP, enabling this approach to work also in the absence

of absolute positioning systems, such as Global Navigation

Satellite Systems (GNSS). It has to be noted that even if the

agent has been trained with ground truth data, it is capable

of performing the landing maneuver with noisy simulated

and real data, as shown in Section 4.2.

The training procedure is based on an adapted implemen-

tation of stated DDPG algorithm included in our framework.

In our case, the actor and critic neural networks (and their

corresponding target networks) are feed-forward neural net-

works with two hidden layers of 200 and 100 units each.

The activation function of each unit of a hidden layer is a

Recified Linear Unit (ReLU). The input and output layer

dimensions of the actor network are based on the state

and action dimensions (6 and 2 units), respectively (see

4 Experiments and Results

This section aims to provide a full explanation about the

experiments designed and implemented to validate the

whole training and testing pipeline. A detailed description

of the training experiments in simulation, as well as the

testing experiments in both simulation and real flights, is

included. Results are shown and discussed, as well the

hardware and software specifications which have been used

to carry out the described experiments. A complete video

of the whole set of training and testing experiments can be

found in https://vimeo.com/235350807.

4.1 Experimental Setup

In this section, the proposed experimental setup for

simulated and real flights is described. The agent has been

implemented in Python 2.7, due to the availability of the

most common machine learning libraries. In this work, the

Tensorflow library [2] has been used as the main basis of

the algorithm and it can run on both Central Processing

Unit (CPU) and Graphical Processing Unit (GPU). The

GPU involved in the training phase was a Nvidia GeForce

GTX970 and in the testing phase was a Nvidia GeForce

GTX950M. In the case of the environment interface, it has

been implemented in C++ (under the standard C++11),

in order to take advantage of the benefits of our Aerostack

architecture [37]. ROS Kinetic has been used as the

communication framework. The operating system utilised

for running the processes involved in both simulated and

real flights is Ubuntu 16.04 LTS.

4.1.1 Simulated Training and Testing Phases

A simulated environment has been created in Gazebo 7

for both simulated training and testing phases. A UAV

model and a minimalistic model of a MP (see Fig. 3a) have

been included in an adapted version of RotorS simulator

[13]. RotorS simulator emulates the autopilot and all

the required sensors for a UAV to perform autonomous

maneuvers, such as Inertial Measurement Unit (IMU), lidar

and/or cameras (RGB or RGB-D). We have selected an

AsTec Hummingbird as the UAV to perform the landing

maneuver in simulation. A simulated pressure sensor has

been included on the surface of the MP, in order to inform

the agent about whether the UAV has properly landed or not.

Eqs. 8 and 9). The activation function of the output layer is

a tanh function, bounded to the range of [− 1, 1]. The out-

put layer of the critic network has one unit with a linear

activation function in order to provide an estimation of the

Q-function.

Fig. 3 Simulation and real

environment scenarios

(a) UAV and MP in the training and testing

simulation environment.

(b) UAV and MP in the testing real

 environment.

The environment interface, which is in charge of parsing

all the incoming data, receives position and velocity ground

truth data from the Gazebo simulator and sends the

velocity references to the Aerostack velocity controller

via ROS topics. The state and reward is sent back to

the agent via ROS services. The whole simulated training

and testing phases have been carried out in a real-time

Gazebo simulation, with an agent frequency of 20 Hz, an

asynchronous environment interface, a velocity controller

frequency of 30 Hz and Gazebo ground truth frequency of

100 Hz. The main differences between simulated training

and testing phases are:

1. Simulated training phase The trajectory of the MP

is linear and periodic with a maximum velocity of

1 m/s. The measured position and velocity of both the

UAV and the MP are ground truth data with no noise.

The permitted horizontal area for the UAV to fly is a

rectangle of 3 m × 6 m (it has been empirically set

to provide the minimum feasible area which allows to

learn the landing maneuver).

2. Simulated testing phase The trajectory of the MP can be

linear and periodic with a maximum velocity of 1 m/s or

non-linear and non-periodic with a maximum velocity

of 1 m/s. The measured position and velocity of both the

UAV and the MP are ground truth data with Gaussian

noise (µ = 0 and σ = 1) in every variable of the agent

state. The permitted horizontal area for the UAV to fly

is a rectangle of 5 m × 9 m.

4.1.2 Real-Flight Testing Phase

A replica of the simulated environment has been created for

the real-flight testing phase. The MP, which was designed

and built for previous works on autonomous landing [34,

36], is able to move in linear periodic trajectories (with

rails) and in arbitrary trajectories. The selected UAV

platform was a Parrot Bebop4 due to its small size, robust

4http://global.parrot.com/mx/productos/bebop-drone/

control and higher flight velocity (see Fig. 3b). This UAV

platform is provided with an on-board autopilot which can

be commanded throughout a wireless WiFi channel. The

remaining processes, such as the agent, the environment

interface and the Aerostack components are run off-board.

Tensorflow library calls are computed on a laptop GPU

(Nvidia GTX950M). The rest of the required routines

are computed on the CPU. The UAV and MP position

and velocity information is provided by an OptiTrack

Motion Capture system (MoCap) which covers an area of

approximately 4 m × 6 m. The frequency of the agent is 20

Hz, the environment interface is asynchronous, the velocity

controller runs at 30 Hz and the motion capture system

frequency is 100 Hz. The communication with the UAV is

carried out trough WiFi at 2.4 GHz.

4.2 Results and Discussion

In this work, the full landing maneuver has been trained in

simulation throughout 4500 episodes (approximately 720k

training steps over 10 h). In this setup, an episode consists

of a full landing trial on top of the MP and it is composed

of a maximum of 900 training steps. As previously stated,

the agent interacts with the environment every 0.05 s (at

a frequency of 20 Hz), which corresponds to one training

step. In each training step both actor and critic network

weights are being optimized by means of Adam optimizer

and with a base learning rate of 10−4 and 10−3, respectively.

The selected minibatch size has been 64. In every episode,

the UAV and the MP are initialized at a random position

of the horizontal plane (x and y axes). The experiment

finishes when the UAV touches the ground or the number of

training steps exceeds the maximum per episode. Following

this trend, the experiment is repeated in a wide variety

of conditions to provide a complete range of experiences

which the agent can learn from in order to maximize its

accumulated reward over time.

In Fig. 4, the moving average and standard deviation

of the accumulated reward for the full simulated training

and testing phase are depicted. In the training phase, an

(a) Partial state and actions signals of episode 500 (test). (Top) Position of the UAV with

respect to the MP, in x and y axes. The final position of the UAV with respect to the MP

is 0.44 m and 0.42 m, in x and y axes respectively. (Middle) Velocity of the UAV with

respect to the MP, in x and y axe. (Bottom) Velocity reference commands (actions)

generated by the agent, in world coordinates and in x and y axes.

(b) Partial state and actions signals of episode 4500 (test). (Top) Position of the UAV with

respect to the MP, in x and y axes. The final position of the UAV with respect to the MP

is 0.14 m and -0.37 m, in x and y axes respectively. (Middle) Velocity of the UAV with

respect to the MP, in x and y axes. (Bottom) Velocity reference commands (actions)

generated by the agent, in world coordinates and in x and y axes.

Fig. 5 Partial state and actions signals of two test episodes (simulated testing phase)

infer the performance in the x and y axes (parallel to the

ground plane), since the performance in the z axis remained

constant in these experiments (refer to Section 3.2). Also,

the actions provided by the agent (ax, ay) are determinant

to validate the performance for a real application. As shown

in Fig. 5a, the actions generated by the agent in the episode

500 are not optimum, since it keeps on generating velocity

reference commands even when landed. Nevertheless, as

suggested by Fig. 4a, after episode 400, the behaviour of the

agent is close to the optimum, being able to perform a full

landing maneuver in most of the testing episodes, but with

oscillating control actions when touching the MP.

In Fig. 5b, both position and velocity with respect to

the MP converge to approximately zero (exact zero is

not practically possible either in the context of a realistic

simulation or in a real flight), and in a continuous and

smooth trend, which is the desired behaviour. Furthermore,

the velocity reference commands generated by the agent

converge approximately to zero as well. Figure 5b

represents the optimum performance of the agent in the

absence of noise for the setup presented in this work. Note

that due to the lack of friction of the simulated MP, the UAV

is able to land on approximately the center of the MP, but

it slightly slides from this position over time and the agent

has learned to compensate this effect (see supplementary

video provided in the beginning of Section 4). Nevertheless,

the UAV is still on top of the MP, which is considered a

successful landing.

Table 1 Mean and standard deviation metrics over 150 landing trials

in two different simulated scenarios (for our selected actor network of

episode 4500)

Scenario tland (s) x (m) SR (%)

y (m)

Slow 13.5 ± 1.56 −0.01 ± 0.38 90.6

0.06 ± 0.47

Fast 17.76 ± 1.52 0.04 ± 0.42 73.3

−0.11 ± 0.49

On the other hand, in order to test the capability of

generalization and robustness of the DDPG algorithm in

simulation, a test experiment with added noise has been

performed. In this experiment, a Gaussian random variable

(µ = 0 and σ = 1) has been added to every component of

the agent state, resulting in the plots of Fig. 6. As shown,

both the position and velocity of the UAV with respect to the

MP are signals with a high level of gaussian noise, but the

agent is still able to perform a proper landing maneuver (the

position of the UAV with respect to the MP still converges

to the origin). The velocity reference commands generated

by the agent are notably noisy, which can be problematic in

some other velocity control strategies (it may lead to over

oscillation). However, in the context of a linear velocity

controller, the final behaviour is more erratic but does not

become unstable.

Fig. 6 Partial state and actions signals of episode 4500 (simulated test-

ing phase). (Top) Position of the UAV with respect to the MP with

Gaussian noise, in x and y axes. The final position of the UAV with

respect to the MP is 0.15 m and 0.42 m, in x and y axes respectively.

(Middle) Velocity of the UAV with respect to the MP with Gaus-

sian noise, in x and y axes. (Bottom) Velocity reference commands

(actions) generated by the agent, in world coordinates and in x and y

axes

Additionally, in order to further validate our selected

network from episode 4500, an extensive evaluation in

two different scenarios has been performed over 150 test

episodes (see Table 1). Both the UAV and the MP start at a

random position in each episode (see testing phase area of

Section 4.1). Two scenarios have been designed and several

metrics have been provided. Slow scenario corresponds

to a rectilinear periodic trajectory of the MP with a

maximum velocity of 0.4 m/s. Fast scenario corresponds to

a rectilinear periodic trajectory of the MP with a maximum

velocity of 1.2 m/s. tland represents the required time to

perform the full landing maneuver (until the UAV touches

the MP); x and y represent the final position of the UAV

with respect to the center of the MP in x and y axes,

respectively; and the Success Rate (SR) represents the

percentage of successful landing trials with respect to the

whole set (over 150 episodes). A landing trial is considered

successful whether the UAV touches the surface of the

moving platform within an area of 1.0 m × 1.0 m (platform

of size 1.2 m × 1.2 m). A failure in the landing maneuver

is mostly due to the fact that velocity in z axis is constant

and the target MP can become out of range, from where the

agent is not able to recover the MP position. Nevertheless,

the SR suggests that this approach has succeeded in learning

the landing maneuver. Also, both the tland and the final

position of the UAV with respect to the MP shows a proper

performance.

The robustness of DDPG algorithm can be further val-

idated in real flights, due to the difference in sensors and

dynamics of the UAV used. It has to be noted that no addi-

tional tuning of the actions provided by the actor network

was required when moving from simulation to real flights.

Furthermore, as previously stated, the AscTec Humming-

bird included in simulation training and testing phases, and

the Parrot Bebop used in real-flight testing have a simi-

lar size but the simulated dynamics differ from the real

ones. The dynamics of the AscTec Hummingbird were not

required to be adjusted in simulation to fit Parrot Bebop

dynamics. The explanation of this fact is twofold. First,

our approach aims to prove a powerful workflow, where a

robot can be trained in simulation and tested in real flights,

even when the robot is not being precisely simulated (e.g.

different dynamics or autopilot). In this context, the gen-

eralization capability of the DDPG algorithm was enough

to overcome stated differences. Second, our approach per-

forms high level control (velocity reference control), so

that differences in dynamics can be partially absorbed by a

proper tuning of the velocity and autopilot controllers.

In Fig. 7, two real-flight plots are shown. In these real-

flight experiments, the UAV is automatically commanded to

land when the altitude with respect to the MP is lower than

a certain threshold th (th = 35 cm), in order to avoid unsafe

maneuvers that do not add value to the final performance.

Also, the UAV is commanded at constant velocity in z

axis. However, due to the Parrot Bebop autopilot design

it can sometimes have sudden altitude changes due to

missestimation of the UAV altitude in a certain instant (see

supplementary video). Figure 7a, shows the performance of

the UAV when the MP follows a linear periodic trajectory.

This experiment seeks to replicate the scenario which has

been used to train the agent in simulation, in order to prove

that it is possible to describe a similar behaviour in a real

flight. As seen in Fig. 7a, the position of the UAV with

respect to the MP converges to the origin and the velocity

reference commands generated by the agent are stable with

respect to time. Furthermore, in order to test the capability

of generalization of the DDPG algorithm, a more complex

experiment has been designed. In this new experiment, the

MP describes a random trajectory in both x and y axes of

the horizontal space (ground plane). This scenario has never

been experienced by the agent, so that the approach can

be proven to be robust and generic enough to overcome

the uprising differences, as shown in Fig. 7b. The results

shown in Fig. 7b depict a similar convergence, compared

to previous results, leading to a proper landing of the UAV

on the MP and with a stable generation of actions. The

final high level performance of the UAV remains stable,

smooth and robust against new experiences. Regarding

these results, we can conclude that DDPG algorithm is

capable of learning a complex and continuous landing

maneuver task. In addition, it is feasible for a UAV to be

trained in simulation and tested in the real world without

further parameter tuning in a diverse range of conditions.

5 Conclusions and FutureWork

In this paper, the problem of autonomous landing of a

UAV on a moving platform has been solved by means

of a deep reinforcement learning algorithm. The state-of-

the-art DDPG algorithm was integrated and adapted into

our novel Gazebo-based reinforcement learning simulation

framework, enabling the possibility of training complex

continuous tasks in a realistic simulation. The UAV landing

maneuver task was trained in simulation, and tested in

simulation and real flights. This fact has validated a

powerful work flow for robotics, where robots can learn

in simulation and properly perform in real flights. The

experiments have been run in a wide variety of conditions,

demonstrating the generalization capability of the approach.

To the best of the authors knowledge, this is the first

work that addresses the UAV landing maneuver on top

of a moving platform by means of a state-of-the-art deep

reinforcement learning algorithm, trained in simulation and

tested in real flights. Concerning the complexity of the

landing problem (and other type of robotic problems),

other continuous deep reinforcement learning algorithms

can be integrated in our reinforcement learning simulation

framework, since there is an ongoing innovation in this

type of algorithms. As an immediate future work, the

altitude (z axis) can be included in the states and actions

spaces and some prediction-based solution can be tested.

Furthermore, the input to the algorithm can be changed from

a continuous space of variables to raw pixels, in order to test

its generalization capability from a higher amount of noisy

information.

Acknowledgements This work was supported by the Spanish

Ministry of Science (Project DPI2014-60139-R). The LAL UPM

and the MONCLOA Campus of International Excellence are also

acknowledged for funding the predoctoral contract of one of the

authors.

An introductory version of this paper was presented in the 2017

International Conference on Unmanned Aircraft Systems (ICUAS),

held in Miami, FL USA, on 13–16 June 2017.

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

References

1. Rucco, A., Sujit, P.B., Aguiar, A.P., Sousa, J.B., Pereira, F.L.:

Optimal rendezvous trajectory for unmanned aerial-ground vehicles.

arXiv:1612.06100 (2016)

2. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro,

C., Corrado, G.S., Davis, A., Dean, J., Devin, M., et al.: Tensor-

flow: Large-scale machine learning on heterogeneous distributed

systems. arXiv:1603.04467 (2016)

3. Borowczyk, A., Nguyen, D.-T., Phu-Van Nguyen, A., Nguyen,

D.Q., Saussié, D., Ny, J.L.: Autonomous Landing of a multirotor

micro air vehicle on a high velocity ground vehicle. In: IFAC

World Congress (2017)

4. Ananthakrishnan, U.S., Akshay, N., Manikutty, G., Bhavani, R.R.:

Control of quadrotors using neural networks for precise landing

maneuvers (2017)

5. Araar, O., Aouf, N., Vitanov, I.: Vision based autonomous landing

of multirotor uav on moving platform. J. Intell. Robot. Syst. 85(2),

369–384 (2017)

6. Arora, S., Jain, S., Scherer, S., Nuske, S., Chamberlain, L.,

Singh, S.: Infrastructure-free shipdeck tracking for autonomous

landing. In: 2013 IEEE International Conference on Robotics and

Automation (ICRA), pp. 323–330 (2013)

7. Blösch, M., Weiss, S., Scaramuzza, D., Siegwart, R.: Vision based

mav navigation in unknown and unstructured environments. In:

2010 IEEE International Conference on Robotics and Automation

(ICRA), pp. 21–28. IEEE (2010)

8. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman,

J., Tang, J., Zaremba, W.: Openai gym. arXiv:1606.01540 (2016)

9. Cantelli, L., Mangiameli, M., Melita, C.D., Muscato, G.: Uav/Ugv

cooperation for surveying operations in humanitarian demining.

In: 2013 IEEE International Symposium on Safety, Security, and

Rescue Robotics (SSRR), pp. 1–6. IEEE (2013)

10. Dorigo, M., Colombetti, M.: Robot Shaping: an Experiment in

Behavior Engineering. MIT Press, Cambridge (1998)

11. Espié, E., Guionneau, C., Wymann, B., Dimitrakakis, C., Coulom,

R., Sumner, A.: Torcs-the open racing car simulator. Available at:

http://torcs.sourceforge.net (2005)

12. Falanga, D., Zanchettin, A., Simovic, A., Delmerico, J., Scara-

muzza, D.: Vision-based autonomous quadrotor landing on a

moving platform

13. Furrer, F., Burri, M., Achtelik, M., Siegwart, R.: Robot

operating system (ROS): the complete reference (Volume 1),

chap. RotorS—A Modular Gazebo MAV Simulator Framework,

pp. 595–625. Springer International Publishing, Cham (2016).

https://doi.org/10.1007/978-3-319-26054-9 23

14. Gautam, A., Sujit, P.B., Saripalli, S.: A survey of autonomous

landing techniques for uavs. In: 2014 International Conference on

Unmanned Aircraft Systems (ICUAS) (2014)

15. Gautam, A., Sujit, P.B., Saripalli, S.: Application of Guidance

Laws to Quadrotor Landing. In: 2015 International Conference on

Unmanned Aircraft Systems (ICUAS) (2015)

16. Giusti, A., Guzzi, J., Cireşan, D.C., He, F.L., Rodrı́guez, J.P.,

Fontana, F., Faessler, M., Forster, C., Schmidhuber, J., Di Caro,

G., et al.: A machine learning approach to visual perception of

forest trails for mobile robots. IEEE Robotics and Automation

Letters 1(2), 661–667 (2016)

17. Gu, S., Lillicrap, T., Sutskever, I., Levine, S.: Continuous

deep q-learning with model-based acceleration. In: International

Conference on Machine Learning, pp. 2829–2838 (2016)

18. Hu, B., Lu, L., Mishra, S.: Fast, safe and precise landing of a

quadrotor on an oscillating platform. In: 2015 American Control

Conference (ACC) (2015)

19. Ivakhnenko, A.G.: Polynomial theory of complex systems. IEEE

Trans. Syst. Man Cybern. 1(4), 364–378 (1971)

20. Kai, W., Chunzhen, S., Yi, J.: Research on adaptive guidance

technology of uav ship landing system based on net recovery.

Procedia Engineering 99, 1027–1034 (2015)

21. Kelchtermans, K., Tuytelaars, T.: How hard is it to cross

the room?–training (recurrent) neural networks to steer a uav.

arXiv:1702.07600 (2017)

22. Kendoul, F., Ahmed, B.: Bio-inspired taupilot for automated aerial

4d docking and landing of unmanned aircraft systems. In: 2012

IEEE/RSJ International Conference on Intelligent Robots and

Systems (2012)

23. Kim, D.K., Chen, T.: Deep neural network for real-time

autonomous indoor navigation. arXiv:1511.04668 (2015)

24. Kim, J., Jung, Y., Lee, D., Shim, D.H.: Landing control on a

mobile platform for multi-copters using an omnidirectional image

sensor. J. Intell. Robot. Syst. 84(1–4), 529–541 (2016)

25. Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in

robotics: a survey. Int. J. Robot. Res. 32(11), 1238–1274 (2013)

26. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classifica-

tion with deep convolutional neural networks. In: Advances in

Neural Information Processing Systems, pp. 1097–1105 (2012)

27. Lee, D., Ryan, T., Kim, H.J.: Autonomous landing of a vtol uav

on a moving platform using image-based visual servoing. In:

2012 IEEE International Conference on Robotics and Automation

(2012)

28. Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y.,

Silver, D., Wierstra, D.: Continuous control with deep reinforce-

ment learning. arXiv:1509.02971 (2015)

29. Ling, K., Chow, D., Das, A., Waslander, S.L.: Autonomous

maritime landings for low-cost vtol aerial vehicles. In: 2014

Canadian Conference on Computer and Robot Vision (2014)

30. Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T., Harley,

T., Silver, D., Kavukcuoglu, K.: Asynchronous methods for deep

reinforcement learning. In: International Conference on Machine

Learning, pp. 1928–1937 (2016)

31. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou,

I., Wierstra, D., Riedmiller, M.: Playing atari with deep

reinforcement learning. arXiv:1312.5602 (2013)

32. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs,

J., Wheeler, R., Ng, A.Y.: Ros: an open-source robot operating

system. In: ICRA Workshop on Open Source Software, vol. 3, p.

5. Kobe (2009)

33. Rezelj, A.: Autonomous charging of a quadrocopter by landing at

a mobile platform (2013)

34. Rodriguez-Ramos, A., Sampedro, C., Bavle, H., Milosevic, Z.,

Garcia-Vaquero, A., Campoy, P.: Towards fully autonomous

landing on moving platforms for rotary unmanned aerial vehicles.

In: 2017 International Conference on Unmanned Aircraft Systems

(ICUAS), pp. 170–178. IEEE (2017)

35. Sadeghi, F., Levine, S.: rl: real single image flight without a single

real image. 12, arXiv:1611.04201 (2016)

36. Sampedro, C., Bavle, H., Rodrı́guez-Ramos, A., Carrio, A.,

Fernández, R.A.S., Sanchez-Lopez, J.L., Campoy, P.: A fully-

autonomous aerial robotic solution for the 2016 international

micro air vehicle competition. In: 2017 International Conference

on Unmanned Aircraft Systems (ICUAS), pp. 989–998. IEEE

(2017)

37. Sanchez-Lopez, J.L., Fernández, R.A.S., Bavle, H., Sampedro, C.,

Molina, M., Pestana, J., Campoy, P.: Aerostack: an architecture

and open-source software framework for aerial robotics. In:

2016 International Conference on Unmanned Aircraft Systems

(ICUAS), pp. 332–341. IEEE (2016)

38. Santana, P., Correia, L., Mendonça, R., Alves, N., Barata, J.:

Tracking natural trails with swarm-based visual saliency. J. Field

Rob. 30(1), 64–86 (2013)

39. Serra, P., Cunha, R., Hamel, T., Cabecinhas, D., Silvestre, C.:

Landing of a quadrotor on a moving target using dynamic image-

based visual servo control. IEEE Trans. Robot. 32(6), 1524–1535

(2016)

40. Shaker, M., Smith, M.N., Yue, S., Duckett, T.: Vision-based

landing of a simulated unmanned aerial vehicle with fast

reinforcement learning. In: 2010 International Conference on

Emerging Security Technologies (EST), pp. 183–188. IEEE

(2010)

41. Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., Ried-

miller, M.: Deterministic policy gradient algorithms. In: Proceed-

ings of the 31st International Conference on Machine Learning

(ICML-14), pp. 387–395 (2014)

42. Skoczylas, M.: Vision analysis system for autonomous landing of

micro drone. Acta Mechanica et Automatica 8(4), 199–203 (2015)

43. Sutton, R.S., Barto, A.G.: Reinforcement Learning: an Introduc-

tion, vol. 1. MIT Press, Cambridge (1998)

44. Todorov, E., Erez, T., Tassa, Y.: Mujoco: a physics engine for

model-based control. In: 2012 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), pp. 5026–5033. IEEE

(2012)

45. Uhlenbeck, G.E., Ornstein, L.S.: On the theory of the brownian

motion. Phys. Rev. 36(5), 823 (1930)

46. Vlantis, P., Marantos, P., Bechlioulis, C.P., Kyriakopoulos, K.J.:

Quadrotor landing on an inclined platform of a moving ground

vehicle. In: 2015 IEEE International Conference on Robotics and

Automation (ICRA) (2015)

47. Wenzel, K.E., Masselli, A., Zell, A.: Automatic take off, tracking

and landing of a miniature uav on a moving carrier vehicle. J.

Intell. Robot. Syst. 61(1–4), 221–238 (2011)

48. Zamora, I., Lopez, N.G., Vilches, V.M., Cordero, A.H.: Extending

the openai gym for robotics: a toolkit for reinforcement learning

using ros and gazebo. arXiv:1608.05742 (2016)

49. Zhang, T., Kahn, G., Levine, S., Abbeel, P.: Learning deep control

policies for autonomous aerial vehicles with mpc-guided policy

search. In: 2016 IEEE International Conference on Robotics and

Automation (ICRA), pp. 528–535. IEEE (2016)

Alejandro Rodriguez-Ramos is a Telecommunication Engineer

(major in electronic and microelectronic) graduated from Universidad

Politécnica de Madrid (UPM, Spain). Currently, he is working as a

researcher in the Centre for Automation and Robotics of UPM-CSIC.

His PhD major is Artificial Intelligence (AI) applied to aerial robotics,

mainly focused on Deep Learning and Deep Reinforcement Learning

techniques. He has participated in international competitions, being

awarded with the 2nd prize in the 2017 International Micro Aerial

Vehicles competition (IMAV 2017). Previously, he has been working

for more than a year in the aerospace sector, contributing to projects

of the European Space Agency (ESA). He has broad international

experience, since he has worked as a researcher assistant at Aalto

University (Espoo, Finland) for a year.

Carlos Sampedro received the Master’s degree in Automation and

Robotics from the Technical University of Madrid, Madrid, Spain,

in July 2014. He is currently working toward the PhD degree in the

Computer Vision and Aerial Robotics Lab belonging to the Centre

for Automation and Robotics (UPM-CSIC). His research interests

include object detection and recognition using machine learning and

deep learning techniques and the development of Deep Reinforcement

Learning algorithms applied to aerial robotics. Mr. Sampedro has

received a pre-doctoral grant from the Technical University of Madrid

in January 2017.

Hriday Bavle is a Ph.D. student at Computer Vision and Aerial

Robotics Group (CVAR), Universidad Politecnica de Madrid (UPM),

Spain. He received his Bachelors in Aerospace and Masters in

Avionics from Amity University, India. Aerial robotics being his core

research field, his specialization includes Localization and Mapping

techniques applied to UAVs in unknown indoor environments using

several computer vision and sensor fusion techniques. He is one of lead

developers and testers of the Aerostack software framework developed

in the CVAR group. He is also responsible of the entire UAV hardware

assembly and maintenance and the lead pilot of the all UAVs within

the CVAR group. He has been an active team member in several events

of the CVAR group, namely European night of researchers (2015) and

the Internationale Micro Aerial Vehicles Competition (IMAV 2016)

and team captain at IMAV 2017, where incredible autonomous UAV

capabilities using the Aerostack were demonstrated.

Paloma de la Puente obtained her engineering degree in Automatic

Control and Electronics in November 2007 and her Ph.D. in Robotics

and Automation in December 2012, both from Universidad Politecnica

de Madrid (UPM). She enjoyed a research stay as pre-doctoral

visitor at Caltech. After finishing her PhD she was a post- doctoral

researcher at DISAM-UPM and at ACIN Institute of Automation and

Control-Vienna University of Technology. She also had professional

experience at Ixion Industry and Aerospace and she is currently

Assistant Professor at UPM. Her main research interests are related to

navigation, mapping, SLAM, spatial cognition, sensor data processing,

human-robot interaction for service robotics and systems engineering.

She has participated in several national and European projects and also

in international robotics competitions.

Pascual Campoy is Full Professor on Automatics at the Universidad

Politécnica Madrid UPM (Spain) and visiting professor in TUDelft

(The Netherlands), he has also been visiting professor at Tong Ji

University (Shanghai-China) and Q.U.T. (Australia). He currently

lectures on Control, Machine Learning and Computer Vision.

He is leading the Research Group on “Computer Vision and Aerial

Robotics” at U.P.M. within the Centre of Automatics and Robotics

(C.A.R.), whose activities are aimed at increasing the autonomy of the

Unmanned Aerial Vehicles (UAV) by exploiting the powerful sensor of

Vision, using cutting-edge technologies in Image Processing, Control

and Artificial Intelligence.

He has been head director of over 40 R&D projects, including R&D

European projects, national R&D projects and over 25 technological

transfer projects directly contracted with the industry. He is author of

over 200 international scientific publications and nine patents, three

of them registered internationally. He is awarded several international

prices in UAV competitions: IMAV12, IMAV13, IARC14, IMAV16

and IMAV17.

