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A Deep Semantic Alignment Network for the

Cross-Modal Image-Text Retrieval in

Remote Sensing
Qimin Cheng , Yuzhuo Zhou , Peng Fu , Yuan Xu, and Liang Zhang

Abstract—Because of the rapid growth of multimodal data from
the internet and social media, a cross-modal retrieval has become
an important and valuable task in recent years.The purpose of the
cross-modal retrieval is to obtain the result data in one modality
(e.g., image), which is semantically similar to the query data in
another modality (e.g., text).In the field of remote sensing, despite
a great number of existing works on image retrieval, there has
only been a small amount of research on the cross-modal image-
text retrieval, due to the scarcity of datasets and the complicated
characteristics of remote sensing image data. In this article, we
introduce a novel cross-modal image-text retrieval network to es-
tablish the direct relationship between remote sensing images and
their paired text data. Specifically, in our framework, we designed
a semantic alignment module to fully explore the latent correspon-
dence between images and text, in which we used the attention
and gate mechanisms to filter and optimize data features so that
more discriminative feature representations can be obtained. Ex-
perimental results on four benchmark remote sensing datasets, in-
cluding UCMerced-LandUse-Captions, Sydney-Captions, RSICD,
and NWPU-RESISC45-Captions, well showed that our proposed
method outperformed other baselines and achieved the state-of-
the-art performance in remote sensing image-text retrieval tasks.

Index Terms—Convolutional neural network (CNN), cross-
modal remote sensing image-text retrieval, recurrent neural
network (RNN), semantic alignment.

I. INTRODUCTION

W
ITH the rapid development of Earth observation technol-

ogy, the quantity and quality of remote sensing data have

increased rapidly. Aiming at the complicated characteristics

such as diversity, complexity, and massiveness of remote sensing

image data, the predecessors have conducted a great number of
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Fig. 1. Here, we give an example to show that a single entity usually requires
data from multiple modalities to properly describe it.

researches on the remote sensing image retrieval task [1]–[6].

Besides, the types of data (such as text, images, and videos) are

manifold now, and these different types of data are referred to

as multimodal data. Data of different modalities can be used

to describe the same entity (see Fig. 1). Instead of retrieving

in unimodal data, people are more inclined to search for the

required information in multimodal data with richer semantics.

For instance, given a query textual description, people may want

to find out all the semantically similar hyperspectral images

or videos that are captured by satellite sensors. Furthermore,

cross-modal retrieval technology can mine effective information

and has broad application prospects in many fields, such as

early warning of disasters and resource management. In fact,

satisfactory accuracy has been observed in the cross-modal

retrieval of natural images [7]–[9]. However, it is difficult to

implement an effective and efficient cross-modal retrieval of

remote sensing images since these images have complicated

characteristics such as multiscale, small targets, high resolution,

and lack of annotated information.

In recent three years, there have been a small amount of

cross-modal retrieval researches in the field of remote sens-

ing. For example, Chaudhuri et al. [10] studied the remote

sensing cross-modal retrieval between multispectral images and

panchromatic images. Besides, based on label annotations, they

also researched on the cross-modal retrieval between very-high-

resolution (VHR) images and speech; Lu et al. [11] designed a
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deep visual-audio network (DVAN), which was used to find the

latent relationship between image and audio; Chen et al. [12]

proposed a deep image-voice retrieval approach in the field of

remote sensing, in order to explore the semantic information of

remote sensing images in the multiscale level, thereby generat-

ing hash codes that occupy little memory space and can achieve

rapid retrieval. However, in practical application scenarios, there

are still some unfavorable factors such as improper pronuncia-

tion and blurring of words that are difficult to overcome and can

directly reduce the accuracy of the image-voice retrieval. There-

fore, in order to express semantic information and implement

the cross-modal retrieval more accurately, text description is

still necessary. Hence, we aim to research on the remote sensing

cross-modal retrieval between images and text.

All of the aforementioned methods in the cross-modal re-

trieval in remote sensing have achieved an appealing perfor-

mance. However, these methods mapped the features of different

modalities into a latent embedding space, treating different kinds

of semantics (e.g., words with different parts of speech, such as

nouns, verbs, adjectives, etc.) equally, and then, implementing

semantic alignment without exploring the subtle difference be-

tween them. For example, the preposition “of” will be assigned

the same importance score as the noun “airport,” ignoring the dif-

ferent importance of semantics they contain. As a consequence,

it is difficult to model the fine-grained relationships between

different modalities, and thus, the properties such as accuracy

and efficiency of the cross-modal retrieval model are degraded.

Actually, in the field of natural images, many cross-modal

retrieval frameworks with an attention mechanism have been

proposed to explore the latent relationships of different modali-

ties. For example, Huang et al. [13] used a multimodal attention

mechanism based on context in order to generally explore the

object-level saliency maps between images and sentences. Gu

et al. [14] proposed a hashing method for the cross-modal

retrieval task, which is called AGAH. They used an attention

mechanism to generate discriminative features, guided by adver-

sarial learning, thus ensuring the robustness of the architecture.

These works have achieved a high retrieval accuracy on several

benchmark natural image datasets, and show that the attention

mechanism can quickly pick out and retain salient information

by distributing different attention scores to each word and image

region, and thus, can help implement the semantic alignment

more accurately.

Motivated by this idea, in this article, we proposed to use

the attention mechanism to explore fine-grained semantic cor-

respondence between remote sensing images and text. Besides,

inspired by [15], we also designed a gate function in our pro-

posed semantic alignment module (SAM), in order to make the

visual and textual features more discriminative. Moreover, since

the size of the available remote sensing image dataset is usually

much smaller than that of the natural image dataset, overfitting

will be seen if fine tuning the pretrained CNN on remote sensing

datasets. To solve this problem, a pretrained CNN to extract

visual features, without fine tuning, is highly recommended. The

experimental results on four benchmark remote sensing datasets

highlight the advantages of our method and well demonstrate

that our proposed method can achieve a high retrieval accuracy

between remote sensing images and text.

The main contributions of this article can be summarized as

follows.

1) We proposed a cross-modal image-text retrieval network

for remote sensing to deal with the complexity of seman-

tics and refine the correspondence between remote sensing

images and text. To the best of our knowledge, this is the

first attempt to research on the cross-modal image-text

retrieval in the field of remote sensing.

2) The SAM introduced in this article is designed to discover

and strengthen the underlying semantic relationships be-

tween remote sensing images and text by updating the

visual and textual features. Specifically, in this module,

an attention mechanism is employed to enhance the corre-

sponding relationships between images and text, and then,

we design a gate function to filter out as much unnecessary

information as possible, and finally, obtain discriminative

visual and textual features.

The remainder of this article is organized as follows: In

Section II, we summarized the development and the related

works of this field in recent years. In Section III, we elaborated

the details of each process in our method. Experimental results

are shown and analyzed in Section IV. Finally, Section V

concludes this article.

II. RELATED WORK

In this section, we primarily summarize and analyze the

current research status from the following three aspects: 1)

deep learning and neural network; 2) cross-modal image-text

retrieval; and 3) semantic alignment between different modali-

ties.

A. Deep Learning and Neural Network

Before the advent of deep neural networks, the traditional

hand-crafted features have been used for the cross-modal re-

trieval. For instance, Michael et al. [16] proposed a method to

implement the distance learning. Specifically, they proposed to

map the input data of arbitrary modalities into a latent com-

mon Hamming space, thereby converting the problem of the

cross-modal retrieval into a problem of binary classification,

and the output of the binary classifier determined whether these

two query data were a positive pair or negative pair. Moreover,

Michael et al. [16] suggested that this model should be trained

by a boosting algorithm. In 2011, Kumar et al. [17] proposed

a principled method for the multimodal retrieval, which was

designed to encode the input data of different modalities into

similar codes, thus the similarity between the heterogeneous

data can be conveniently obtained. Zhang et al. [18] introduced

a method to explore the correspondences between heterogeneous

data by clustering data from the same modality with the help of

the affinity propagation clustering algorithm, and strengthen the

pair-wise corresponding relationships based on the canonical

correlation analysis. All of these aforementioned studies have

played an essential role in the field of computer vision. However,

compared with automatic features learned by deep convolutional

neural network (CNN), such hand-crafted features are incapable

of describing the full content of visual data, thus failing to obtain

satisfactory performance in computer vision tasks. Moreover,
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there are many defects of hand-crafted features, such as large

storage space and time cost.

Since 2006, deep CNNs have been widely used to solve

manifold problems of computer vision [19], mainly because the

CNN can imitate the human visual perception mechanism to ef-

fectively extract the visual features from the original images. For

example, a deep CNN that has been pretrained on a large dataset

(such as ImageNet [20]) can be used as a general feature extractor

and applied on other datasets, and then, the convolutional layer

features or fully connected layer features of the CNN model can

be extracted to implement image feature extraction. Or, in order

to achieve the best performance on the target dataset, the pre-

trained CNN model can also be migrated to the target dataset for

fine tuning, and this method can effectively update the network

weights in small increments, and thus, making the model more

suitable for the target dataset. As an example, Radoi et al. [21]

proposed a novel framework for multilabel classification of

multispectral remote sensing images, which used a pretrained

CNN to extract image feature. Yang et al. [22] proposed a

hashing method to implement the cross-modal retrieval, which is

called PRDH. They constructed an end-to-end architecture to ex-

tract features from heterogeneous data concurrently by applying

CNNs, and then, learned their corresponding hashing codes for

distance measurement and cross-modal retrieval. Particularly,

they used the VGG-F architecture to fine tune their CNN module.

Similarly, the CNN can also extract text features, and it has

gained great success in the natural language processing (NLP)

field. Zhang et al. [23] proposed a creative network for text

classification, in which they applied a character-level CNN to

learn the textual representation. Kim et al. [24] used a pretrained

CNN for sentence-level classification tasks. However, the ability

of the CNN to capture the key information of text is still limited.

Another commonly used neural network is recurrent neural

network (RNN). The RNN has a strong capacity to extract se-

quence features, so it has been widely used for text classification.

However, since the RNN is prone to gradient disappearance and

gradient explosion, in 1997, Hochreiter et al. [25] proposed

a method based on gradient, called long short-term memory

(LSTM), which was proved to be extremely convenient and

efficient. In 2014, Cho et al. [26] proposed a simpler gate

recurrent unit (GRU) network, which consists of two RNNs,

and they showed that the proposed GRU can learn semantically

smooth representations of text.

Benefiting from the prompt development of CNNs and RNNs,

there has been extremely significant progress in the cross-modal

retrieval. For example, Guo et al. [27] designed a DVAN for

the image-audio retrieval in the field of remote sensing. Cao

et al. [28] proposed to use the CNN and LSTM to obtain unified

hashing codes in a separate way from images and text, and then,

apply them into a cross-modal retrieval task. Niu et al. [29]

introduced a hierarchical structured RNN, which was called

hierarchical multimodal LSTM (HM-LSTM), to project the

complete sentences and images into the latent common space

by applying the dense visual-semantic embedding and project

the complete textual phrases and salient image regions into the

common space. Extensive experiments show that both CNN and

RNN have a strong ability to extract feature representations from

images and text, and prove capable of most computer vision

tasks.

B. Cross-Modal Image-Text Retrieval

Most existing image-text retrieval algorithms are instance-

based methods, that is, to retrieve the predefined instances. For

example, Wang et al. [30] proposed a novel network for the

image-text retrieval, named MTFN. Instead of learning a latent

common space for every image-sentence pair, they designed a

similarity function to measure the distance between the input

image and sentence accurately, and they trained this network

with a ranking-loss function. However, in actual application sce-

narios, there are various factors that can affect the visual effect

of instance objects, such as angle, illumination, and location. As

a result, images containing the same one object may look very

different, and consequently, the accuracy of the retrieval may

decrease.

Beyond that, there are some image-text retrieval algorithms,

which are based on class labels. For example, given a sentence

as query, people may expect to retrieve all the images that

are semantically similar to the query sentence in the dataset.

Although these images are not exactly the same, they have a

common label, which means they are similar to some extent. In

this way, the labels-based retrieval is more likely to give users

the desired results. Mason et al. [7] proposed a graphic retrieval

model, which regarded the task as a summary extraction task and

used scene attributes as the visual representation of the image,

and reranked candidate text descriptions based on information

of class labels to obtain the final textual retrieval result of the

test image.

Due to the application of deep vision features, the retrieval

accuracy was also greatly improved. Devlin et al. [31] proposed

a deep-learning-based image-text retrieval model, which used

a deep CNN to extract visual features of the query images and

retrieve similar images in the visual space. Then, the candidate

text descriptions were encoded by the RNN and reranked ac-

cording to the semantic features of the text, thereby obtaining

the final retrieval result. Socher et al. [8] used a Dependency

Tree RNN (DT-RNN) to construct the semantic representation

of text and a nine-layer neural network to extract the visual

feature representation from image. As a result, the semantic

features of text and the visual features of images were mapped to

the same cross-modal embedding space for semantic alignment.

In 2014, Karpathy et al. [9] extended and improved the model

proposed by Socher et al. [8]. Different from Socher et al. [8],

their study did not directly map the entire image and sentence

to the cross-modal embedding space, but rather mapped the

more fine-grained image features and text features to a latent

cross-modal embedding space. In other words, the target object

of image and the word of sentence were mapped to the same

cross-modal space so that the model proposed by Socher et al. [8]

was greatly improved. The all aforementioned methods involve

integrating deep learning in the cross-modal image-text retrieval

and suggest that deep learning can learn more abstract and

discriminative features.
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All of the aforementioned methods have achieved an ap-

pealing retrieval performance. However, due to the complicated

characteristics of remote sensing images such as diversity, com-

plexity, and massiveness, the methods that are proposed for nat-

ural images cannot well establish relationships between remote

sensing images and text, and thus, fail to get a satisfactory perfor-

mance on remote sensing datasets. Therefore, we mainly focus

on how to explore the intrinsic correlations between remote

sensing images and text descriptions, i.e., implement efficient

semantic alignment between these two different modalities.

C. Semantic Alignment

In recent years, most image-text retrieval algorithms have

been implemented based on joint cross-modal embedding space,

that is, the visual features of image and the semantic features of

text are aligned into a common cross-modal hamming space to

implement the cross-modal image-text retrieval in an accurate

way. Therefore, how to achieve the alignment between image

features and text semantic features in the cross-modal embed-

ding space is the key issue of the entire image-text retrieval

task. Recently, more and more image–text alignment models

introduced an RNN architecture to implement text encoding and

the construction of cross-modal embedding space. For example,

Lee et al. [32] proposed a model, named SCAN, to implement an

image-text retrieval. Specifically, in this method, the input region

of image and word of sentence were used as the context of each

other, and then, the semantic alignment relationship as well as

the similarity score between them were explored. Chen et al. [33]

proposed a model, called IMRAM, in which they creatively

proposed an alignment mechanism iterated by multiple steps,

in order to explore the correspondences between visual regions

and words. Kiros et al. [34] proposed a visual-semantic embed-

ding (VSE) model, which used an LSTM network to encode

sentences to obtain text semantic feature representation, and

used the CNN to extract visual feature representation of images.

Under the supervision of a two-way hierarchical loss function,

two mapping matrices are learned so that the two cross-modal

features can be mapped into the same one embedding space for

alignment. On the basis of the VSE proposed by Kiros et al. [34],

Faghri et al. [35] proposed the enhanced VSE (VSE++), which

improved a two-way loss function in the VSE model and intro-

duced the concept of the most difficult negative sample so that

the final image retrieval accuracy was greatly improved, and the

current optimal performance of the current image retrieval was

realized.

Besides, people have been attempted to introduce an attention

mechanism to learn an aligned cross-modal embedding space.

With the help of the attention mechanism, each region of the

image and word of the sentence are assigned different weight

scores, which depends on the importance of their semantic,

thereby allocating different attention to different image regions

or words. In 2014, the GoogleMind team first proposed to use

the content attention mechanism for image classification, which

effectively improved the accuracy of image recognition [36].

Subsequently, Bahdanau et al. [15] applied an attention mecha-

nism into the NLP task, and successfully improved the accuracy

of translation. Therefore, in addition to using the RNN to obtain

textual features, people also began to consider adding attention

mechanism to the semantic alignment models. Ba et al. [37]

proposed an attention mechanism model based on the RNN,

which focused on different regions related to image classification

at different moments, so as to achieve the detection of multiple

targets in the image. Huang et al. [13] also proposed an attention

mechanism model, which used context information for encoding

and decoding, and applied it to the image–text alignment model

to compute the similarity between image regions and words.

Nam et al. [38] applied the attention mechanism to both image

and text to capture the fine-grained correspondence between im-

age and text, that is, to achieve the semantic alignment between

regions of image and words of sentence. Thus, the visual seman-

tic alignment between different modalities could be realized.

Wang et al. [39] proposed a model named PFAN to explore the

relationship between the image region and blocks, then they used

an attention mechanism to generate a particular feature, called

position feature, which contains valuable spatial information of

the image region. Furthermore, the position feature is capable

to strengthen the correspondence between the image-sentence

pair. Generally speaking, all of the aforementioned methods have

achieved significant performance improvements in experiments,

which demonstrated the effectiveness of the attention mecha-

nism in semantic alignment models. Inspired by this idea, we

proposed to use the attention and gate mechanism to implement

semantic alignment between remote sensing images and text.

III. METHODOLOGY

In this article, we intend to solve the issue of the cross-modal

retrieval for the remote sensing image and text. We show the

whole structure of our proposed deep image–text semantic align-

ment network in Fig. 2, which mainly includes the following

three parts: 1) extraction of remote sensing image features; 2)

extraction of text features; and 3) an SAM. For each input remote

sensing image, we extract the high-level image representation

by an image subnetwork, and as for the text part, we extract

the word-level semantic feature of each sentence by an RNN.

Throughout the whole architecture, our proposed SAM plays a

role similar to the fusion layer in filtering out information that

may reduce the discrimination of visual or textual features, and

thereby, optimizing the representations, which is beneficial to

improve the performance of the cross-modal retrieval.

And the whole retrieval process can be roughly divided into

the following four steps:

1) enter the query image (or query text);

2) input the query image (or query text) into the trained model

to obtain the visual feature (or text feature) of the query

image (or query text);

3) use the obtained feature to calculate the similarity score

between the query image (or query text) and all the sam-

ples in the test set; and

4) the samples in the test set are ranked according to the

similarity score and returned as the search result.

Next, we will provide details of our proposed model for

the cross-modal image-text retrieval in remote sensing. First,
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Fig. 2. Intuition of our proposed deep image-text semantic alignment network. The visual feature fi is extracted from a CNN, and the textual feature tj is
extracted from an RNN. In our proposed SAM, we use the attention mechanism to distribute different attention score to each word, with which the intermediate
representation eF

i
can be generated. Besides, we design a gate function to filter out as much unnecessary information as possible, and finally, we can obtain the

updated feature f̃i, which has become more discriminative than fi.

we introduce the image feature encoding in Section III-A, and

we introduce text feature encoding in Section III-B. Then, we

describe in detail about our proposed SAM in Section III-C.

Finally, we discuss the objective function in Section III-D.

A. Image Feature Representation

To implement the cross-modal image-text retrieval in the field

of remote sensing, first we need to extract the image features.

We choose to use a multilayer network architecture to extract

features layer by layer from raw images. It has been proven that

the CNN is capable to extract discriminative image features,

because it expresses the high-level semantic information of

images better than traditional hand-crafted features. Suppose

that a set of training images are available: I = {x1, x2, . . . , xP }.

Each image x in I is fed to the deep CNN that is pretrained

on ImageNet, and F = {f1, f2, . . . , fK}, fi ∈ R
D is the set of

resulting visual features from the input remote sensing image.

B. Text Feature Representation

After a sentence with N words is input, each word is encoded

into a one-hot vector that indicates the index in the vocabulary,

denoted as wi. Then, the one-hot vector wi is embedded into a

300-dimensional vector yi by a linear mapping function yi =
Wywi, i ∈ {1, . . . , N}, where the Wy is the embedding matrix.

Then, the word vector yi is fed into a bidirectional GRU [40] to

summarize the context information of sentence from the forward

and the backward directions, respectively. Therefore, we can

map the word vector into the word-level feature. Particularly,

one bidirectional GRU contains a forward GRU, which reads

the sentence word by word forwards from w1 to wN as

−→
h i =

−−→
GRU(

−→
h i−1, yi) (1)

as well as a backward GRU, which reads the sentence backwards

from wN to w1 as

←−
h i =

←−−
GRU(

←−
h i+1, yi) (2)

where
−→
h i represents the hidden state and is generated by the

forward GRU, and
←−
h i is the hidden state generated by the

backward GRU. Then, we average these two hidden states of

GRU, in order to obtain the textual feature ti as

ti =

−→
h i +

←−
h i

2
, i ∈ {1, . . .N} (3)

Finally, we obtain the word-level feature set for the sentence

T = {ti|i = 1, . . ., N, ti ∈ R
D} (4)

where each ti contains the context information of the corre-

sponding word wi, and the dimension D of the text feature is

2048, which is the same as the image feature.

C. Semantic Alignment Module (SAM)

Our SAM expects two inputs: one is the image feature set

F = {f1, . . . , fK}, fi ∈ R
D, in which each region of the input

remote sensing image is encoded into the image feature fi; and

the other one is the textual feature set T = {t1, . . . , tN}, ti ∈
R

D, in which each word of the sentence is encoded into the tex-

tual feature ti. The output of our SAM is a similarity score, which

is derived from the similarity of the input image-text pair. While

computing the similarity score, our SAM summarizes context

information in sentence for each feature fi in image, or vice
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versa. We introduce two different forms of semantic alignment

below: the image–text semantic alignment and the text–image

semantic alignment. We summarize the learning process of the

image–text semantic alignment network in Algorithm 1.

1) Image-Text Semantic Alignment: The overview of the

image-text semantic alignment is shown in Fig. 2. First of all,

for each region of the input remote sensing image, our SAM

pays attention to words of the sentences, which are semantically

associated with the image region. Then, the SAM calculates the

attention score of each word. The higher the attention score is,

the more semantically related the word is to the image region.

Specifically, given a sentence withN words and a remote sensing

image with K regions, first, we calculate the cosine similarity

score for all possible region-word pairs as

sim(i, j) =
fT
i tj

‖fi‖ · ‖tj‖
∀i ∈ [1,K] ∀j ∈ [1, N ] (5)

where the sim(i, j) means the similarity between the ith image

region and the jth word. In order to speed up the process of

training and enable our algorithm to rapidly get the best solution,

we further normalize the similarity score sim(i, j) as

sim(i, j) =
[sim(i, j)]

+
√

∑

i = 1K [sim(i, j)]2
+

(6)

[sim(i, j)]
+
= max{[sim(i, j)], 0}. (7)

In order to get a feature representation with more valuable

information and explore the fine-grained correspondence be-

tween image regions and words, we construct different attention

weights according to the similarity between them, and then,

distribute them to each word-level textual feature tj , thereby

obtaining the sentence-level attended textual feature ewi , where

the subscript i indicates that the sentence feature ewi is related

to the ith image region

ewi =

N∑

j=1

tj ·

(

exp(α · sim(i, j))
∑N

j=1
exp(α · sim(i, j))

)

(8)

Fig. 3. Specific architecture of our designed SAM.

where i ∈ [1,K], ewi ∈ R
D. The hyperparameterα is the inverse

temperature parameter of the softmax function to control the

distribution of feature attention.

In order to filter out as much information as possible that

may reduce the discrimination of features, after constructing

the attended representation ewi , we propose to make further

improvements in the image features.

First of all, we define a function as an intermediate represen-

tation, which concatenates two inputs fi and ewi as following:

lri (W, b) = concat(fi, e
w
i ) ·W + b. (9)

The intermediate representation lri (W, b) will be used later

to generate the update gate and the new memory cell, and the

superscript r indicates the region of an image.

Then, inspired by the gate mechanism in GRU, we design a

feature updating function to further optimize the visual feature,

which contains an update gate gri and a new memory cell cri as

f̃i = (1− gri ) · fi + gri · c
r
i (10)

the gri and cri are defined as following according to (9):
{
gri = sigmoid[lri (W1, b1)]
cri = sigmoid[lri (W2, b2)]

(11)

where W1, b1,W2, and b2 are hyperparameters to be learned

during the process of training, and f̃i is the updated image region

feature. gri performs as the update gate to discard the trivial

information, and cri performs as the new memory cell to retain

the discriminative information. Specifically, the expression (1−
gri ) · fi represents the “selectively forgetting” of the original

feature fi. The closer gri is to 1, the more original information

in fi is forgotten. And correspondingly, the expression gri · c
r
i

represents the “selectively remembering” of cri . Thereby, the

updated visual feature f̃i is obtained. The detailed structure of

the image-text SAM is shown in Fig. 3.

Finally, we define a similarity metric function S(F, T ) to

calculate the matching score between the image and sentence

as following:

S(F, T ) =
1

K

K∑

i=1

f̃T
i ewi

||f̃i|| · ||ewi ||
. (12)

Specifically, if the ith image region is not relevant to the text,

the updated region feature f̃i will contribute little to the similarity

score S(F, T ), and vice versa. Therefore, the similarity score
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determines how important the remote sensing image is to the

sentence.

2) Text–Image Semantic Alignment: Similar to the image–

text semantic alignment, we first compute the attended image

representation erj with respect to the related word-level textual

feature tj as following:

erj =

K∑

i=1

fi ·

(

exp(α · sim(i, j))
∑K

i=1
exp(α · sim(i, j))

)

(13)

where the subscript j indicates that the attended image feature

erj is related to the jth word in sentence. We design the tex-

tual intermediate function lwj (W, b) and further get the updated

textual feature t̃j as following:

lwj (W, b) = concat(tj , e
r
j) ·W + b (14)

t̃j = (1− gwj ) · tj + gwj · cwj (15)

and the definitions of gwj and cwj are

{
gwj = sigmoid[lwj (W3, b3)]
cwj = sigmoid[lwj (W4, b4)].

(16)

And likewise, the similarity score S(F, T ) should be com-

puted by the following expression:

S(F, T ) =
1

N

N∑

j=1

t̃Tj e
r
j

||t̃j || · ||erj ||
. (17)

Similarly, if the jth word is not relevant to the image, the

updated textual feature t̃j will contribute little to the similarity

score S(F, T ).

D. Objective Function

The loss function we utilized to train our model is the triplet

loss [8],[34], which is based on the idea that instances with the

same label (i.e., sharing the same semantics) should lie closer

to each other than those having different labels in the learned

common space. Triplet loss is a common and popular objective

function in a cross-modal retrieval. For a query instance, there

will be several mismatched samples in a minibatch, which are

called negative samples. We select the one that is closest to

the query instance among these negative samples, that is, the

hardest negative. It is very common to train the model with

the hardest negatives to improve the performance of the model,

and thus, we suggest employing the triplet loss function with

emphasis on the hardest negatives. By minimizing the triplet

ranking loss function, the model is trained to ensure that the

ground-truth positive image-sentence pairs always keep higher

similarity scores than negative pairs. The loss function is defined

as

L =

M∑

i=1

{relu[β − S(Fi, T
p
i ) + S(Fi, T

n
i )]

+ relu[β − S(F p
i , Ti) + S(Fn

i , Ti)]}

(18)

where relu[x] ≡ max(x, 0). The S(Fi, T
p
i ) and S(F p

i , Ti) are

positive pairs, and the S(Fi, T
n
i ) and S(Fn

i , Ti) are the hardest

TABLE I
STATISTICS OF THE DATASETS USED IN OUR EXPERIMENTS

negative pairs. β is the margin threshold for triplet loss. For

a certain anchor point Fi (and Ti), the positive sample T
p
i (and

F
p
i ) is the sample that has the same class label as the anchor, and

the label of the negative sample Tn
i (and Fn

i ) is different from

the anchor. For computational efficiency, we divide the training

data into M minibatches, and find the hardest negatives in each

minibatch instead of selecting in the entire dataset. For training

the network, we suggest choosing the minibatch gradient descent

mechanism [41]. Compared with batch gradient descent [42] and

stochastic gradient descent [43], the minibatch gradient descent

mechanism can update parameters faster and make the model

converge more robustly.

IV. EXPERIMENT

In order to prove the effectiveness of our proposed method, we

evaluate our SAM on four public datasets: UCMerced-LandUse-

Captions, Sydney-Captions, RSICD, and NWPU-RESISC45-

Captions. We compare our method with several state-of-the-art

methods impartially and objectively, and we fully observe the

performance of our SAM. The deep CNN we employ to extract

visual feature is Inception V3 [44], and the RNN we use to

extract text semantic feature is Bi-GRU [40].

A. Dataset and Metric

1) Datasets: We perform experiments on four benchmark

remote sensing datasets for the cross-modal image-text retrieval:

UCMerced-LandUse-Captions, Sydney-Captions, RSICD, and

NWPU-RESISC45-Captions. We evaluate the performance of

the SAM and validate the effectiveness of our network by

comparing with other state-of-the-art methods. Here, we give

the statistics of these four benchmark remote sensing datasets in

Table I.

a) UCMerced-LandUse-Captions: This dataset is con-

structed by Qu et al. [45], and it is based on the UCMerced-

LandUse dataset [46]. It contains land use images in 21 classes,

including agricultural, airplane, baseball diamond, beach, build-

ings, chaparral, dense residential, forest, freeway, golf course,

harbor, intersection, medium residential, mobile home park,

overpass, parking lot, river, runway, sparse residential, storage

tanks, and tennis court, with 100 images for each class. Each

image has 256 × 256 pixels. The pixel resolution of these

images is 0.3048 m. The images in UCMerced-LandUse dataset

were manually extracted from a large amount of remote sensing

images from the United States Geological Survey National Map

Urban Area Imagery. Based on [45], five different sentences

were exploited to describe every image.
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Fig. 4. Here, we give two examples in the NWPU-RESISC45-Captions
dataset. These two image-text pairs belong to different classes that are not
collected in other three datasets: (a) basketball court and (b) cloud, respectively.

b) Sydney-Captions: Sydney-Captions dataset is also pro-

vided by [45], which is based on the Sydney dataset [47]. The

image of Sydney, Australia, at 18 000 × 14 000 pixels, was

got from Google Earth. The pixel resolution of each image is

0.5 m. Similar to the UCMerced-LandUse dataset, five different

sentences were given to describe each image [45].

c) RSICD: RSICD dataset is used for remote sensing im-

age captioning task [48]. More than ten thousand of remote

sensing images are collected from Google Earth, Baidu Map,

MapABC, and Tianditu. The images are fixed to 224 × 224 pix-

els with various resolutions. The total number of remote sensing

images are 10 921, with five sentences of descriptions per image.

d) NWPU-RESISC45-Captions: This dataset is provided

by Prof. Z. Shao [6],[49], [50] and his Urban Remote Sensing

team from Wuhan University based on the NWPU-RESISC45

dataset [51], which is a publicly available benchmark for Re-

mote Sensing Image Scene Classification (RESISC), created by

Northwestern Polytechnical University (NWPU). This dataset

contains 31 500 images, covering 45 scene classes with 700

images in each class. Each image in the NWPU-RESISC45

dataset is annotated with five sentences, and each sentence is not

shorter than six words. To the best of our knowledge, this is the

largest dataset for remote sensing captioning. Thus, this dataset

provides the scientific community a data resource to advance

the task of remote sensing captioning. We show two example

image-text pairs in Fig. 4.

2) Evaluation Metric: We conduct two kinds of image–text

matching tasks: 1) sentence retrieval, i.e., retrieving ground-truth

sentences related to the query image (I2T); and 2) image re-

trieval, i.e., retrieving ground-truth images related to the query

text (T2I). The commonly used evaluation metric for retrieval

tasks is Recall at K (R@K), which is defined as the percentage

of queries in which the ground-truth matchings are contained in

the first K retrieved results. The higher value of R@K means

better performance. Based on [52], we use two rank metrics to

evaluate our proposed method, i.e.,MedR andMeanR.MedR

is the median rank of the first retrieved ground-truth sentence

or image. The lower its value, the better. And correspondingly,

the Mean Rank (MeanR) is used as a metric in our experiment.

Both of these two rank metrics are statics over the position of the

ground-truth term in the retrieval order. We also compute another

score, denoted as “R@sum,” to evaluate the overall performance

for the cross-modal retrieval, which is the summation of allR@1,

R@5, and R@10 scores defined as follows:

R@sum = R@1 +R@5 +R@10
︸ ︷︷ ︸

Image-to-Text

+R@1 +R@5 +R@10
︸ ︷︷ ︸

Text-to-Image

.

(19)

B. Experimental Settings

For the UCMerced-LandUse-Captions dataset, we randomly

select 1 680 images as the training set and the rest 420 images

as the testing set. For the Sydney-Captions dataset, we collect

490 images for training, and the rest 123 images for testing. In

the RSICD dataset, we randomly select 8 737 images for train-

ing and 2 184 images for testing. For the NWPU-RESISC45-

Captions dataset, we randomly choose 25 200 images as the

training set and the rest 6 300 images as the testing set. Before

extracting visual features, we resize the raw images into 224 ×
224 as a fixed size.

In the experiment, we set the learning rate to 0.0005, the

batch size to 16, the temperature parameter α to 9.0, the margin

threshold β to 0.2, and the number of epochs to 120. We use the

Inception V3 network, which has been pretrained on ImageNet

to extract 64 visual features for each remote sensing image,

and we set the dimension of visual feature to 2 048. For each

sentence, we initialize the word vector by random weights (the

dimension of word vector is 300), and then, fed them into the

Bi-GRU whose hidden dimension is set to 2048.

C. Results on Benchmark Datasets

To assess the effectiveness of the proposed method, we con-

duct experiments and compare our proposed model with several

published state-of-the-art models on four benchmark datasets.

Results: Comparison results are reported in Tables II–V for

UCMerced-LandUse-Captions, Sydney-Captions, RSICD, and

NWPU-RESISC45-Captions, respectively. Compared with the

state-of-the-art methods, the developed method not only fused

the visual and textual features by the concatenate function to

establish a direct correspondence between two different modal-

ities, but also filtered and optimized the features by the gate

function, which further strengthened the interaction between

different modalities and improved the retrieval accuracy. Exper-

imental results on these four benchmark datasets well demon-

strate that our proposed method is capable to achieve a superior

performance over other state-of-the-art methods. Particularly,

our t-i model performs better than i-t model in general.
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TABLE II
COMPARISON OF THE CROSS-MODAL IMAGE-TEXT RETRIEVAL PERFORMANCE IN TERMS OF R@K AND RANKS ON UCMERCED-LANDUSE-CAPTIONS DATASET

The best results are marked in bold font.

TABLE III
COMPARISON OF THE CROSS-MODAL IMAGE-TEXT RETRIEVAL PERFORMANCE IN TERMS OF R@K AND RANKS ON SYDNEY-CAPTIONS DATASET

The best results are marked in bold font.

TABLE IV
COMPARISON OF THE CROSS-MODAL IMAGE-TEXT RETRIEVAL PERFORMANCE IN TERMS OF R@K AND RANKS ON RSICD DATASET

The best results are marked in bold font.

TABLE V
COMPARISON OF THE CROSS-MODAL IMAGE-TEXT RETRIEVAL PERFORMANCE IN TERMS OF R@K AND RANKS ON NWPU-RESISC45-CAPTIONS DATASET

The best results are marked in bold font.

As shown in Table II, on the UCMerced-LandUse-Captions

dataset, our model can surpass other methods on metrics in-

cluding R@5, R@10, MedR, and MeanR. It can be seen that

SCAN [32] performs the best among all these state-of-the-art

methods, but our method can even outperform SCAN [32].

Specifically, compared with SCAN [32], our model can exhibit

an increase of 2.4% (R@10) for the text retrieval and 5.7%

(R@5) for the image retrieval, respectively. Although for the

text retrieval, the proposed method SAM t-i is only second to

SCAN [32] in terms of R@1 for the text retrieval, it displays a

significantly better performance than the other techniques.

As shown in Table III, on the Sydney-Captions dataset, it

can be seen that our model is able to achieve outstanding

result on all metrics. In particular, compared with the best

baseline SCAN [32], our model can achieve the remarkable

improvements of 13.4% (R@10) and 11.5% (R@10) for the text

retrieval and the image retrieval, respectively. Besides, on this

dataset, we find that the MTFN [30] method performs slightly

better than SCAN [32] in terms of R@sum, and our model can

even surpass the MTFN [30] method in the text retrieval by

15.3% (R@10) and in the image retrieval by 5.8% (R@10),

respectively.
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Fig. 5. Visual results of the image-to-text retrieval on four datasets. (a) UCMerced-LandUse-Captions. (b) Sydney-Captions. (c) RSICD. (d) NWPU-RESISC45-
Captions. For each query image, we show the top-three ranked sentences.

As shown in Table IV, on the RSICD dataset, our model

still provides the best numbers on all metrics. Compared with

SCAN [32], our model can obtain an increase of 6.6% in R@5
for the text retrieval and an increase of 10.9% in R@5 for the

image retrieval.

As is shown in Table V, on the NWPU-RESISC45-Captions

dataset, our model can also surpass other methods on all metrics.

Our model can surpass the best baseline SCAN [32] in the text

retrieval by 3.3% (R@10) and in the image retrieval by 1.3%

(R@10), respectively.

For both the image-query-text and the text-query-image tasks,

our proposed method has achieved the best performance in

almost all metrics on four remote sensing datasets except for

the metric R@1. It is worth noting that all methods including

our method have not achieved satisfactory performance on this

metric. This can be probably explained by the fact that remote

sensing images generally present much more complex spectral

and structure information compared with natural images, and

thus, restrict the robustness of cross-modal retrieval models.

D. Ablation Study

In order to evaluate the performance of each module in our

proposed SAM method, we compare our current model (built

using Inception V3 features) with several variants, which are as

follows:

1) SAM-1 is built using the SIFT [53] features;

2) SAM-2 is constructed using the BoVW [54] features;

TABLE VI
RESULTS OF ABLATION STUDY ON NWPU-RESISC45-CAPTIONS DATASET

The best results are marked in bold font.

3) SAM-3 is configured using the ResNet-152 [55] network

to extract visual features;

4) SAM-4 is established using the fine-tuned Inception V3

to extract visual features;

5) SAM-5 is assembled as the current model but without the

attention mechanism; and

6) SAM-6 is composed as the current model but without the

gate mechanism.

SIFT and BoVW are both handcrafted image features.

Table VI shows the performance of each model variant on the

NWPU-RESISC45-Captions dataset. R@5 and R@10 provided

by the SAM method are almost twice as much as those provided

by SAM-1 and SAM-2, which demonstrates that CNN features

can represent high-level semantic much better than handcraft
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Fig. 6. Visual results of text-to-image retrieval on four datasets. (a) UCMerced-LandUse-Captions. (b) Sydney-Captions. (c) RSICD. (d) NWPU-RESISC45-
Captions. For each query sentence, we show the top-three ranked images, ranking from left to right. We outline the true results in green boxes and false matches
in red boxes.

features. Our model also achieves better performance than SAM-

4, which proves that overfitting can be avoided by not fine tuning

the CNN on remote sensing datasets. The performance of SAM-

6 is better than that of SAM-5 but still less well than our proposed

SAM method. The results of SAM-3 are very close to ours,

indicating that using different CNNs to extract visual features

have little effect on the results, which means that our SAM model

has great robustness.

E. Result Visualization

Fig. 5 shows the qualitative results of the text retrieval with

given query images on four datasets. For each query image, we

show the top-three retrieved sentences ranked by the similarity

scores predicted by our model.

Fig. 6 shows the qualitative image retrieval results with given

query sentences on four datasets. Each sentence corresponds to

a ground-truth image, and for each query sentence, we show the

top-three retrieved images, ranking from left to right. We outline

the true results in green and false results in red.

From these results, we find that our method can return the

correct results in the top-ranked sentences even for cases of

clutter scenes. The model outputs some reasonable mismatches,

for example, in Fig. 5, there are incorrect results such as (b.1)

because the bushes in this picture look very similar to the green

river. From the overall visualized results, we can see that our

model is capable to discover the comprehensive and fine-grained

correspondence between images and sentences by enhancing

cross-modal interactions.

F. Further Analysis

We show the classification accuracy of Inception V3 on four

remote sensing datasets in Figs. 7, 8, 10, and 11, respectively.

We can see from Fig. 7 that the classification accuracy of

Inception V3 can reach more than 90% in most categories.

However, the classification accuracy on buildings, dense resi-

dential, and intersection are slightly lower. The images in these

categories are similar in appearance (see Fig. 9), and thus,

they are often misclassified. This phenomenon also appears in

Figs. 10 and 11. In Fig. 8, the classification accuracy of the
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Fig. 7. Classification result on UCMerced-LandUse-Captions dataset. The
categories from left to right are as follows: 1) agricultural; 2) airplane; 3) baseball
diamond; 4) beach; 5) buildings; 6) chaparral; 7) dense residential; 8) forest; 9)
freeway; 10) golf course; 11) harbor; 12) intersection; 13) medium residential;
14) mobile home park; 15) overpass; 16) parking lot; 17) river; 18) runway; 19)
sparse residential; 20) storage tanks; and 21)tennis court.

Fig. 8. Classification result on Sydney-Captions dataset. The categories from
left to right are as follows: 1) airport; 2) bushes; 3) industrial; 4) residential; 5)
river; 6) runway; and 7) sea.

Fig. 9. Here, we take three images, for example, from the categories of
buildings, dense residential, and intersection in UCMerced-LandUse-Captions
dataset, respectively, which show that images from these three different cate-
gories are similar in appearance.

category 5 (river) is 0.5, which is significantly lower than that

of other categories. This low accuracy should be attributed to

the relatively small number of images (45 images in total) in

this category that may easily lead to overfitting. In the future,

we may focus on solving this issue by data augmentation [56].

In general, Inception V3 is capable of achieving satisfactory

Fig. 10. Classification result on RSICD dataset. The categories from left to
right are as follows: 1) airport; 2) bare land; 3) baseball field; 4) beach; 5)
bridge; 6) center; 7) church; 8) commercial; 9) dense residential; 10) desert; 11)
farmland; 12) forest; 13) industrial; 14) meadow; 15) medium residential; 16)
mountain; 17) park; 18) parking; 19) play fields; 20) playground; 21) pond; 22)
port; 23) railway station; 24) resort; 25) river; 26) school; 27) sparse residential;
28) square; 29) stadium; 30) storage tanks; and 31) viaduct.

Fig. 11. Classification result on NWPU-RESISC45 dataset. The categories
from left to right are: 1) airplane; 2) airport; 3) baseball diamond; 4) basketball
court; 5) beach; 6) bridge; 7) chaparral; 8) church; 9) circular farmland; 10)
cloud; 11) commercial area; 12) dense residential; 13) desert; 14) forest; 15)
freeway; 16) golf course; 17) ground track field; 18) harbor; 19) industrial area;
20) intersection; 21) island; 22) lake; 23) meadow; 24) medium residential; 25)
mobile home park; 26) mountain; 27) overpass; 28) palace; 29) parking lot; 30)
railway: 31) railway station; 32) rectangular farmland; 33) river; 34) roundabout;
35) runway; 36) sea ice; 37) ship; 38) snow berg: 39) sparse residential; 40)
stadium; 41) storage tank; 42) tennis court; 43) terrace; 44) thermal power
station; and 45) wetland.

classification accuracy on these four remote sensing datasets,

which demonstrates that we can use the image features extracted

by Inception V3 for the cross-modal image-text retrieval task.

V. CONCLUSION

In this article, we proposed a deep semantic alignment net-

work for the cross-modal image-text retrieval in the field of

remote sensing. Specifically, in order to sufficiently discover the
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latent correspondences and preserve the semantic similarities be-

tween two different modalities, we designed an SAM to optimize

the visual and textual features and strengthen the interaction

between remote sensing images and text. We conducted exten-

sive experiments on four benchmark remote sensing datasets,

i.e., UCMerced-LandUse-Captions, Sydney-Captions, RSICD,

and NWPU-RESISC45-Captions, to validate the effectiveness

of our proposed method. It can be well demonstrated by exper-

imental results that our proposed SAM is capable to improve

the performance substantially on the cross-modal image-text

retrieval task and outperform the state-of-the-art methods in the

field of remote sensing. In the future work, we will extend our

semantic alignment network to more cross-modal retrieval tasks,

such as integrating VHR images and LiDAR data to implement

the cross-modal image-text retrieval task and the 2D–3D image

retrieval task.
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