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Abstract

Background: Alternative splicing (AS) significantly enhances transcriptome complexity. It is differentially regulated in a

wide variety of cell types and plays a role in several cellular processes. Here we describe a detailed survey of alternative

splicing in grape based on 124 SOLiD RNAseq analyses from different tissues, stress conditions and genotypes.

Results: We used the RNAseq data to update the existing grape gene prediction with 2,258 new coding genes

and 3,336 putative long non-coding RNAs. Several gene structures have been improved and alternative splicing

was described for about 30% of the genes. A link between AS and miRNAs was shown in 139 genes where we

found that AS affects the miRNA target site. A quantitative analysis of the isoforms indicated that most of the

spliced genes have one major isoform and tend to simultaneously co-express a low number of isoforms, typically

two, with intron retention being the most frequent alternative splicing event.

Conclusions: As described in Arabidopsis, also grape displays a marked AS tissue-specificity, while stress conditions

produce splicing changes to a minor extent. Surprisingly, some distinctive splicing features were also observed

between genotypes. This was further supported by the observation that the panel of Serine/Arginine-rich splicing

factors show a few, but very marked differences between genotypes. The finding that a part the splicing machinery

can change in closely related organisms can lead to some interesting hypotheses for evolutionary adaptation, that

could be particularly relevant in the response to sudden and strong selective pressures.
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Background

Several reasons make grapevine particularly interesting: it

is the most cultivated fruit plant covering approximately

7.5 million hectares in 2012 (http://www.oiv.int), with a

long history of domestication, as well as a useful model

organism since it seems to have maintained the ancestral

genomic structure of the primordial flowering plants.

The complete genome sequence was obtained in 2007

by two independent projects [1,2]. The availability of

the genomic sequence gave the opportunity to conduct

several genome-wide studies focused on different aspects

of grape biology such as berry development and response

to different biotic and abiotic stresses [3-10].

However the eukaryotic transcriptome, and in particu-

lar the plant transcriptome, is far more complex than

previously believed, alternative splicing and non coding

transcripts being amongst the major causes contributing

to this complexity. Recent works pointed out the extensive

diffusion of these phenomena in plants and their import-

ance in gene expression and stress response [11-14].

Alternative splicing (AS) is one of the main mechanisms

that forge transcriptome plasticity and proteome diversity

[15]. Different studies based on computational analysis on

both expressed sequence tags and high-throughput RNA

sequencing provide an estimate of the frequency of these

events. For example, 20–30% of transcripts were found to
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be alternatively spliced in both Arabidopsis thaliana and

rice (Oryza sativa) by employing large-scale EST-genome

alignments [15,16]. Recently, deep sequencing of the

transcriptome using high-throughput RNA sequencing

(RNAseq) increased this estimate showing that more

that 60% of intron-containing genes in Arabidopsis are

alternatively spliced [12]. Although most AS events of

plants have not yet been characterized, there is a strong

evidence indicating that they are spatially and develop-

mentally regulated, playing important roles in many

plant functions such as stress response [17]. Moreover,

since AS events are different at intraspecific level in

several plant species, it was suggested that they may be

correlated with niche specialization resulting from do-

mestication in different geographical regions [18,19].

Recently, the human cell transcriptional landscape was

extensively investigated by the Encode Project [20] reveal-

ing that most genes tend to express several isoforms at the

same time, with one isoform being predominant across

different cell types. Moreover a recent study confirmed

these observations, showing that for 80% of the expressed

genes in primary tissue cultures, the major transcript is

expressed at a considerably higher level (at least twice)

than any other isoform [21]. Similar extensive studies are

still missing in plants.

Some emerging evidence indicates that a large fraction

of the eukaryotic genome is transcribed [22-24] and that

a considerable amount of the transcriptome is composed

by non-coding RNA (ncRNA) that may play a key role as a

regulator in many cellular processes. A poorly characterized

class of plant ncRNA is composed of long non-coding

RNA (lncRNAs), mRNA-like transcripts greater than 200

bases transcribed by RNA polymerase II, polyadenylated,

spliced and mostly localized in the nucleus [25]. In plants

a systematic identification of long non coding tran-

scripts has only been done for a few species [13,14,26,27].

In Arabidopsis for example, using a tailing-array based

method Liu et al. identified 6480 long intergenic non-

coding transcripts, 2708 of which were confirmed by RNA

sequencing experiments [13]. Based on their characteris-

tics, lncRNAs can be classified as natural antisense tran-

scripts (NATs), long intronic noncoding RNAs and long

intergenic noncoding RNAs (lincRNAs). Some of these

transcripts have been shown to be involved in important

biological processes such as developmental regulation

and stress response, although the detailed mechanisms by

which they operate are mostly unknown [25]. Moreover,

several lncRNAs were found to be involved in plant repro-

ductive development [28] and responses to pathogen inva-

sion [13,14]. Furthermore it has been observed both in

plant [13,14] and in vertebrate [29,30] that lncRNAs have

both tissue and temporal-dependent expression patterns.

The extent and complexity of the transcriptional land-

scape in plants is not yet well characterized. Recent

advances in high-throughput DNA sequencing technologies

applied to transcriptome analyses have opened new and

exciting possibilities of investigation [31]. RNAseq has

been successfully applied in several studies including

gene prediction improvement [32,33], isoform identifica-

tion [11,12,34], isoform quantification [35,36], non-coding

transcript discovery [29,30,37].

Here we present a deep survey on the grape transcrip-

tome, based on 124 RNAseq SOLiD libraries from leaf,

root and berry, from different genotypes under different

physiological and stress conditions.

The high coverage of our samples allowed us to review

the Vitis vinifera gene annotation and to extend it to

include alternative spliced isoforms. The impact of alter-

native splicing on miRNA target sites was also investigated.

Our data showed that alternative splicing is correlated to

tissue as well as genotypes. Finally, we developed a stringent

pipeline to identify long non-coding RNAs, that were

annotated based on their expression in different tissues

and stress conditions.

Results and discussion
Dataset

RNAseq data came from a parallel work (paper in prepar-

ation) aiming to study the response to water-deficiency

and salt stresses of two rootstocks, the widely used 101.14

and the experimental M4, kindly provided by prof. A.

Scienza, University of Milan (Italy). The commercial root-

stock 101.14 was derived from a cross of V. riparia x V.

rupestris, while M4 is an experimental rootstock derived

from a cross of (V. vinifera x V. berlandieri) x V. ber-

landieri cv. Resseguier n.1 [38]. It should be noticed

that although V. vinifera, V. riparia, V. rupestris and V.

berlandieri are generally classified as 4 different species,

they are all able to cross fertilize and to produce fertile

progenies; therefore, they are strongly related and should

be considered as the same biological species. As a back-

ground work of the project (data not shown) the two

rootstock genomes were resequenced. We found that

the average frequency of single nucleotide variants is

about 1/200 bases, very similar to what is found when

comparing different V. vinifera cultivars. Excluding pos-

sible gene family expansions, no private genes were found

in the rootstock genotypes. This further supports the idea

that we are working on the same biological species. In any

case, the aim of this work was not the annotation of a Vitis

“pangenome”, but the improvement of the Vitis vinifera

reference genome.

Some RNAseq analyses were also performed on Cabernet

Sauvignon, that is a well known cultivar of V. vinifera.

More details can be found in the materials and methods

section. A total of 124 samples from leaves, roots and ber-

ries were sequenced using SOLiD technology producing
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approximately 6 billion of directional 75/35 bases paired-

end RNAseq reads.

Improvement of the grape gene prediction

The grape gene prediction and annotation (http://genomes.

cribi.unipd.it/grape), available before the present work is

referred to as v1 and followed the v0 annotation soon after

the release of the grape PN40024 genomic sequence [1].

The v1 annotation improved to some extent the previous

annotation and now it represents the generally used gene

reference of grape. The new potential of RNAseq technol-

ogy is now revealing some weaknesses of the v1 annota-

tion and at the same time offering the opportunity for a

through and systematic study of the grape transcriptome.

Two recent works raised some concern about the v1

annotation. Firstly, a comparison between v1 and v0

showed that 6,089 genes annotated in v0 were not

present in v1 [39]. Although some of those genes may

be artefacts, others are certainly genuine grape genes

and should be reintegrated into the annotation. Secondly,

the v1 annotation did not attempt to describe alternative

isoforms. This was pointed out by a de novo transcrip-

tome assembly of RNAseq of V. vinifera cv. Corvina,

that allowed the identification of 19,517 splice isoforms

among 9,463 known genes and 2,321 potentially novel

protein coding genes [4].

Motivated by these observations we improved and up-

dated the grape gene prediction, integrating the information

derived from the considerable amount of newly available

data and setting up rigorous bioinformatic procedures

based on several filtering steps, to limit the number of

artifactual genes.

A detailed workflow describing the different steps of

the analysis is presented in Figure 1. The general analysis

of the RNAseq data was based on the “align-then-assem-

ble” strategy. Firstly, the RNAseq reads from 124 libraries

were aligned onto the reference grape genome using PASS

[40]. Then the spliced reads that were not sufficiently

supported were discarded as described in the Methods

section. Secondly, we used three different software to

reconstruct the transcripts: Cufflinks [36], Isolasso [41]

and Scripture [37]. Since the 124 RNAseq libraries corre-

sponded to 62 different replicated samples, we merged

together the alignments from each replica, thus obtaining

62 datasets. We obtained an average number per dataset

of 57,000, 36,000 and 61,000 reconstructed transcripts

respectively for Cufflinks, Isolasso and Scripture (Figure 1,

panel B). Finally, in order to reduce the number of misas-

sembled transcripts and artefacts, we removed all the

assemblies that were not predicted by at least two of

the three programs. To reconstruct the transcripts, all

the datasets were clustered with PASA [42] producing

133,483 individual isoforms, belonging to 57,127 genes

(Figure 1, panel C).

The gene prediction was performed in two different

steps. Firstly, we updated the v1 gene prediction incorp-

orating the RNAseq reconstructed transcripts using the

PASA software [42] (Figure 1, panel D). PASA is a tool

designed to model and update gene structures using align-

ment evidence and it is able to correct exon boundaries,

Figure 1 Gene prediction workflow. (A) RNAseq samples are

aligned on the reference genome. (B) Biological replicate alignments are

merged together into 64 different datasets. Transcript reconstruction was

performed independently on each dataset using three different

programs: Cufflinks, Scripture and Isolasso. The Venn diagram shows the

percentage of reconstructed transcripts in common among the three

software while the numbers between brackets indicates the average

number of reconstructed transcripts per sample. We selected only those

transcript models predicted by at least two programs and with a length

higher than 150 bases. (C) The selected transcripts were assembled

using PASA software. (D) PASA assemblies were used to update v1 gene

predictions. (E) A new gene prediction was performed integrating with

EvidenceModeler (EVM) software different sources of evidence such as

PASA transcripts, ESTs and proteins alignments and Augustus prediction

trained with PASA assemblies. The produced gene set was compared to

v1 gene prediction and only the new gene loci were selected for further

analysis. After applying different filtering criteria, we obtained a final

dataset of 2,258 new genes. (F) The final v2 gene prediction integrates

genes generated by the steps described in D (v1 update) and E

(new gene prediction).
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add UTRs and model for alternative splicing. Secondly, we

performed a new gene prediction integrating evidence

from ESTs, proteins and RNAseq (Figure 1, panel E, see

Methods). This second step identified 2,258 new genes,

80% of which were found to have at least one gene

ontology annotation (see Methods, Additional file 1).

Gene enrichment analysis revealed that the addition of

these new genes endowed the list of functional categories

with functions that were previously under-represented

(Additional file 2: Figure S1). Among the most significant

categories, we found terms related to nucleotide binding

site such as “ADP binding”, “adenyl ribonucleotide binding”

or “purine ribonucleotide binding”. Interestingly, most

genes associated with this domain are annotated as “disease

resistance” [43].

The new gene prediction, called v2, contains 31,922

genes and 55,649 transcripts (Figure 1, panel F). The v2

gene prediction showed several differences from the pre-

vious prediction, such as longer transcripts and coding

sequences (CDS) and a higher number of exons per

gene. As reported in Table 1, the incorporation of the

RNAseq information led to an important improvement

in the prediction of the untranslated regions (UTRs). The

v1 UTRs prediction was based on EST data and suffered

from the lack of information at the 5′ and 3′ end of tran-

scripts, due to the scarce yield of full length cDNAs in the

EST data. RNAseq data provided a decisive contribution

to overcome this problem. We found that in the v2 gene

prediction the number of genes with a 5′ and 3′ UTRs

rose respectively, from 17,082 to 21, 892 and from 20,087

to 23,337. Moreover, we found that the average UTR

length of v2 is twofold longer than v1 (Table 1).

To evaluate the quality of the exon/intron splicing sites

we performed a comparison between v1 and v2 gene pre-

dictions and we found that almost 97% of the v1 introns

are predicted also in v2. To further asses the quality of

the two predictions, we used three different sources of

evidence, proteins, ESTs and RNAseq, and we were able

to confirm 92% of the shared introns. Interestingly, the

analysis showed that almost 29% of the introns are sup-

ported by at least two different independent sources of

evidence while this number rose to 58% when we consid-

ered all the three sources, demonstrating the high quality of

the exon/intron boundaries of both gene predictions. More

details are available in Additional file 2: Table S1 and S2.

When we analysed the splicing sites exclusive to one or the

other gene prediction, we were able to confirm only 46% of

v1 introns against 85% of the introns confirmed in the v2.

As expected, we found that the majority of these exclusive

splicing sites are confirmed only by one evidence. In

particular we found that the major contribution to the

v2 exclusive splicing site is given by the RNAseq data.

As described above, the v2 prediction was generated

from v1 using the PASA software, without further manual

revision. We observed that v1 and v2 are very similar;

however we found 249 v2 genes derived from the fusion

of 520 v1 genes, while 183 v2 genes were derived from the

splitting of 91 v1 genes (Additional file 3). To discriminate

between false/positive fusion/splitting events, we performed

a similarity search of each group of fused/split proteins

against the Arabidopsis proteome (TAIR10). We evaluated

the number and the consistency of the best hit to deter-

mine the reliability of the fusion/splitting events (see

Methods). We found that of the 249 fused genes, 161

find a better match on v2, while 54 on v1. Whereas of

the 91 split genes, 38 have a better match on v2 and 29

on v1 (Additional file 2: Table S3).

A further comparison between v1 and v2 showed that

4,966 genes have a different coding sequence in the two

predictions. For each pair of alternative prediction we per-

formed a global pairwise alignment using the Arabidopsis

Table 1 Gene prediction statistics and comparison

v1 v2

# genes 29970 31922

# transcripts 29970 55649

# transcripts x gene 1 1,7

Average length 5134 5267

Median length 2741 2917

Transcript

Average length 1096 1207

Median length 876 990

CDS

Counts 142332 158834

Average coding length 231 247

Median coding length 129 136

Exon

Counts 147805 180493

Avg length 270 410

Median length 147 201

Avg exon x gene 4,7 5,3

UTR3

Counts 22275 43542

Avg length 211 495

Median length 186 356

UTR5

Counts 20025 42291

Avg length 119 285

Median length 72 176

Intron

Counts 117835 124393

Avg length 968 1005

Median length 248 263
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homologous protein as reference. The results show that the

majority of v2 genes have a higher score than v1, suggesting

that they have a better gene structure (Additional file 2:

Table S4 and Figure S2).

Finally we performed a comparison at functional level

using InterProScan annotation. We were able to annotate

23,569 v1 genes with at least one InterPro domain, while

this number rose to 25,880 genes when we considered v2

gene prediction. As reported in Additional file 2: Figure

S3, v2 is better both in terms of number of domains iden-

tified and number of annotated genes.

Alternative splicing prediction and analysis

We observed that 90% of v2 predicted genes (29,150)

contain two or more exons, and 30% (8,668) of these

undergo alternative splicing producing 32,395 different

isoforms. We also found that 64% of the alternative

spliced genes produced more than two isoforms (Figure 2,

panel A). Analysis of the acceptor-donor sites shows that

97.5% are canonical GT-AG pairs, while 1% are GC-AG

and 1.5% a combination of less frequent non canonical

sites. (Figure 2, panel B).

We used ASTALAVISTA [44] to identify and classify

the different types of alternative splicing. We identified

21,632 alternative splicing events, affecting 17% of all

the introns, distributed into five main categories: intron

retention, exon skipping, alternative donor, alternative

acceptor and complex events (Figure 2, panel C and D).

We found that the most common event is intron reten-

tion, involving 77% of the alternatively spliced genes.

This AS category is mainly represented by transcripts in

which a single intron is optionally included and occurred

in 51% of the AS events. On the contrary, exon skipping

occurred only in 4.1% of the cases. Moreover we found that

the use of alternative acceptors (12.3%) is more frequent

than the use of alternative donors (8%). These results are

consistent with other studies [11,12,15,34] supporting the

idea that intron retention is a common event in plants. In

Figure 2 panel E, we compared the size distribution of the

retained introns (IR) with that of the total introns (ALL),

the constitutive introns (IC), the alternatively spliced in-

trons (ASI) and the alternative splicing events excluding

the intron retention events (AS-IR). We found that the size

distribution of retained introns is considerably smaller

than the intron size of other AS (IR median of 123, AS-IR

median of 702), supporting the hypothesis that intron

retention is related to intron size [12,34].

We also performed an analysis to identify which gene

regions preferentially undergo alternative splicing. We

found that about 70% of all AS events occur at the

Figure 2 Alternative splicing analysis. (A) Number of isoforms per gene distribution. (B) Donor and acceptor splicing site distributions. (C)

Schematic representation of the most frequent splicing event identified in the v2 prediction: intron retention (IR), alternative 3' splicing site (Alt 3' ss),

alternative 5' splicing site (Alt 5'), exon skipping (ES). The number of events is reported between brackets. (D) Pie chart showing the percentage

distribution of alternative splicing events. (E) Intron size box plot distribution: all introns (ALL), constitutive introns (IC), alternatively spliced introns

(ASI), introns that underwent intron retention events (IR), alternatively spliced introns without IR (AS-IR).
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protein-coding level, while 18% and 11% occurred respect-

ively, at the 5′ UTR and 3′ UTR regions. The remaining

1% of the AS events occurred between a coding sequence

and a UTR. These values compared reasonably well with

the extension of coding sequences (65%), 5′UTRs (17%)

and 3′UTRs (18%), indicating that all regions of the tran-

script are susceptible to alternative splicing without any

significant preference. The findings that alternative spli-

cing may not be limited to the sole production of protein

diversity also emerged from Arabidopsis [45]. Moreover of

all the genes with at least one isoform, 46% have alterna-

tive start sites, while 60% have alternative stop codons.

Alternative splicing affects miRNA target sites

Unlike animal miRNAs that usually recognize their tar-

get on the 3′UTR region, plant miRNAs do not show

preferences in terms of target position [46]. To evaluate

the impact of the v2 gene prediction on miRNA target

prediction, we performed a target analysis using the

psRNATarget server [47]. As reported in Table 2, the v2

prediction shows an increased number of miRNA target

sites allowing the identification of targets for 13 more

miRNAs and 167 new target genes. Interestingly, more

that 79% of the target sites in the v1 prediction were

identified on coding sequences, while in v2 those were

only 55%. On the other hand we found that target

regions on 3′ UTRs and 5′ UTRs increased from 11% to

27% and from 9% to 18% respectively on v2 compared to

v1, reassessing the importance of UTR regions in plant

miRNA target identification (Additional file 4).

We investigated the effect of alternative splicing on

miRNA target sites. A recent analysis of Arabidopsis [48]

revealed that mRNA splicing seems to be a possible

mechanism to control miRNA-mediated gene regulation.

Indeed, alternative splicing could produce different iso-

forms which may or may not contain functional binding

sites, playing an important role in modulating the inter-

action between miRNA and target.

To test this hypothesis, for each gene with alternative

splicing we checked if the target sites were predicted to

be present across all the isoforms. We found 286 cases,

involving 131 miRNA and 139 genes (23% of the identified

miRNA target genes), in which a miRNA binding site is

missing in one or more isoforms. Our analysis revealed

that in 43% of the cases the missing binding site is the

result of a differential mRNA initiation or termination.

54% of the remaining events occurred at the 5′UTR, 21%

at the 3′UTR and 23% at the coding sequence, involving

in 46% of the cases intron retention events.

The identification of target sites relies entirely on in

silico prediction, therefore the results need to be taken

with some care. However, although these data need further

experimental validation, they suggest the presence of this

intriguing regulatory mechanism also in grape. Further

analyses to validate the miRNA target sites are required

to better understand the complexity of miRNA-target

interaction and the impact of alternative splicing on modu-

lating miRNA gene regulation.

Comparison of alternative splicing in different tissues,

genotypes and stress conditions

We analysed the expression of the predicted isoforms of

each gene across all the samples. For each isoform we esti-

mated the FPKM (Fragment Per Kilo base per Million)

expression level using two different programs: Cufflinks

and Flux-capacitor (see Methods and Additional file 2:

Figure S4 and S5). Both methods gave very similar results;

here we refer to those obtained with Cufflinks. We assumed

that a FPKM between 1–4 corresponds approximately to 1

RNA molecule per cell [35]. Although we are aware that

also low-expressed transcripts may have a functional role,

we decided to exclude from our analysis those with a

FPKM smaller than 1, because of the uncertainty due

to the low number of reads and the approximation of

the programs for isoform quantification would yield to

low quality results.

The first aspect that we investigated was the number

of different isoforms that can be identified comparing

different tissues, genotypes and stress conditions. We

grouped the samples into three main categories: tissue

(leaf and root, Figure 3, panel A and B), genotype (101.14

and M4, Figure 3 panel C and D) and stress conditions

(salt-stress, water-stress and controls, Figure 3, panel E

and F) and counted how many transcript variants are

shared among the different datasets. Cabernet Sauvignon

berries were not considered in this analysis because a

comparable berry dataset was not available for 101.14 and

M4 genotypes. The analysis was performed considering

only the genes expressed across all the samples in order to

minimize the bias due to the genes that are turned off.

In Figure 3 it can be seen that tissues show the highest

difference between alternative isoforms, with more than

8% of different variants; genotypes show between 6 to

7% of non-shared variants, while stress conditions show

between 4 to 7% (summing up the contribution from

control samples). The observation that the extent of

change in alternative splicing due to stress is similar to

that seen in different tissues is a clear indication of its

Table 2 miRNA target site prediction results

v1 v2

# mirna 168 181

# genes 432 599

# transcripts 432 1184

# 3′ UTR 49 317

# 5′ UTR 41 218

# CDS 343 658
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role in stress response. It should be considered that the

status of a transcript being turned on or off depends on

its detectability that in turn is dependent on the coverage.

As a result we would expect that genes expressed at a

low level would produce a minor number of detectable

isoforms. Indeed, we found a correlation between the

number of identified isoforms and the level of gene

expression (Additional file 2: Figure S6).

Genotypes also exhibit considerable variability in splicing.

It is interesting to note that the number of different

isoforms is greater between genotypes than between

plants undergoing different stress conditions. Overall these

data indicate that to better understand the molecular bases

of phenotypic traits we should also consider the differences

in alternative splicing.

When we compared the relative abundance of the var-

iants of individual genes, we found that in most cases

there is a single transcript that has a considerable higher

level of expression rather than a subset of transcripts

with similar expression. Figure 4, panel A shows that the

FPKM value distribution of the major transcript has a

median value of 9, while the second and third variant

have a median value of 4 and 2 respectively. When we

calculated the ratio between the expression values of

the first and second most abundant isoforms, we found

that in 60% of the cases the ratio was higher by at least

2-fold and in 25% of the cases 5-fold (Figure 4, panel B).

Next, we verified how many isoforms were simultaneously

co-expressed in the different samples (Figure 4, panel C).

We noticed that genes tend to co-express a low number

Figure 3 Isoforms shared between different tissues, genotypes

and conditions. Venn diagrams showing the percentage of different

isoforms that are shared comparing different tissues (A and B), genotypes

(C and D) and environmental conditions (E and F).

Figure 4 Isoforms expression analysis. (A) FPKM value distribution

of the first, second and third most abundant isoform within each

sample. (B) Distribution of the ratio between expression values

of the first and second most abundant isoforms. (C) Number of

co-expressed isoforms compared to the number of isoforms per

gene. (D) Frequency of the major isoform across the samples.
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of isoforms, typically two, and there seems to be no

correlation between number of co-expressed isoforms

and number of predicted variants. These results are quite

different from those observed in human [20] where genes

express many isoforms simultaneously and the number

of expressed isoforms is correlated to the number of

predicted variants. Finally, we verified if there is a tendency

of the major isoform to be recurrent across the different

samples. For each gene expressed in at least two samples,

we identified the major isoform and counted how many

times it was the most abundant across the samples. In

4,777 genes (54%) we found that the same major isoform

was expressed across all the samples where the gene is

expressed (Figure 4, panel D). Similar studies have been

recently reported also for human where a survey on 16

different tissues revealed that 35% of the genes tend to

express the same major isoform [21]. This result is strongly

correlated to the dataset. The extension of the analysis to

more samples would probably reduce the number of genes

in which the major isoform remains the same.

Evolutionary adaptation by tuning the alternative splicing

machinery

In the previous paragraph we showed that in 54% of the

genes the major isoform remains the same across all

the samples, while in the remaining 46% the two major

isoforms change. To identify possible correlations between

alternative splicing and sample types we performed a

principal component analysis (PCA). For each gene we

considered the two major isoforms amongst all the sam-

ples (see Methods). The PCA was performed on the log

ratio of the first and the second major isoform expression

values. The dots in Figure 5 represent the 62 samples that

are visualized according to tissue and genotype (leaf, root

and berry tissues and the M4 and 101.14 rootstocks).

The PCA analysis shows some interesting and unex-

pected results, Figure 5, panel A, B and C show the scatter-

plot among the first three PCA components. The first two

components (Figure 5, panel A) show that alternative

splicing switching events are strongly correlated to the

tissue type as the samples from the same tissue tend

to cluster together. Unexpectedly, when the third PCA

component is taken into account (Figure 5, panel B and

C), the samples are further separated according to the

rootstock genotype. This suggests the possibility that

differences amongst genotypes may also arise from changes

in the general splicing regulation program, thus supporting

the idea that the evolutionary adaptation to a sudden and

strong selective pressure (such as domestication) may be

achieved by modifications of the splicing machinery.

To further investigate this hypothesis we considered

the serine/arginine-rich proteins (SR), that are known to

be involved in pre-mRNA splicing processes and regulate

alternative splicing by changing the splice site selection in

a concentration dependent-manner. Several studies demon-

strated that SR proteins are differentially expressed in dif-

ferent tissues and cell types, and that plant SR genes can

produce alternative transcripts with a level of expression

that is controlled in a temporal and spatial manner [49].

Therefore we investigated if there was a significant dif-

ference in the expression level of grape SR genes that

could be correlated with a different splicing program in

tissues and genotypes. Firstly, we performed a blast simi-

larity search (e-value cutoff 1e-5) using the 19 SR proteins

identified in Arabidopsis [50] to identify the orthologous

sequences in the grape genome. We were able to identify

18 grape genes as reported in Table 3. Secondly, we com-

pared the mean expression values of the genes grouping

the samples according to genotype and tissue type. When

the samples are grouped according to genotype, we

did not find any significant difference between the

genes of the two groups, with the exception of the

gene VIT_212s0142g00110 (p-value 0.01); however,

when the analysis was done taking into consideration

the expression level of the isoforms, we found four differen-

tially expressed variants (Figure 6, panel A): VIT_216s009

8g01020.7 (p-value 0.037), VIT_215s0048g01870.6 (p-value

0.003), VIT_204s0069g00800.3 (p-value 4.8e−5) and VIT_21

6s0100g00450.3 (p-value 0.0007). Finally, when the samples

were grouped according to tissue, we found that almost all

the SR genes were markedly differentially expressed (15 out

18, Figure 6, panel B), thus confirming the results shown in

Figure 5 and indicating that switches in alternative splicing

Figure 5 Isoforms expression principal component analysis.

(A,B,C) Scatter plot of the first three principal component analysis of

the expression values ratio between the first two highly expressed

isoforms. (D) Scatter plot of the first two components of the

expression values of the whole gene set. Each dot represents a

sample: 101.14 leaf (cyan), 101.14 root (blue), M4 leaf (red), M4 root

(green) and Berry (black).
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plays a very important role in the definition of tissues and

to a lesser extent in genotypes.

We also performed a PCA on the expression pattern

of genes rather than isoforms and we found that tissues

are resolved by the first two components (Figure 5, panel

D), while genotypes cannot be resolved, even when the

second and third components are considered (Additional

file 2: Figure S7). We can conclude that the two different

genotypes showed more marked differences in alternative

splicing than in change in the level of gene expression.

Non coding transcripts

To identify long non coding transcripts (lncRNA) we devel-

oped a stringent filtering pipeline to discriminate between

coding and non coding sequences and to eliminate possible

errors of assembly. Briefly, we identified putative lncRNAs

based on their expression level and genomic context and

only if they had no coding potential, no possible homology

with proteins or protein domains and no homology with

repeated sequences. LncRNAs can be classified as natural

antisense transcripts (NATs), long intronic noncoding

RNAs and long intergenic noncoding RNAs (lincRNAs)

according to their genome location. Depending on the

type of lncRNA, we applied different filters to avoid false

positives due to several possible sources of errors, as for

example missing UTRs or intron retention events. Further

details can be found in the materials and methods section.

This procedure led to the identification of 3,336 long non

coding RNA divided into 526 intronic, 1,992 intergenic and

818 antisense transcripts. We analysed the structure, the

expression level and the conservation of these lncRNA. We

found that grape lncRNA were on average smaller than

protein coding genes (mean length of 1,016 nt, 426 and 408

for antisense, intronic and intergenic lncRNAs versus

3,232 nt for protein coding genes). Moreover we found

a considerable difference between the length of antisense

lncRNA and the other two types of long non coding RNA

(Figure 7, panel A). We found that grape lncRNAs are

generally monoexonic and that only 11% of intergenic,

1.3% of intronic and 5% of antisense lncRNAs have

more than one exon. Consequently to this monoexonic

structure, we found that only a low number of lncRNAs

undergoing alternative splicing: 40 intergenic lncRNA

produced 97 different isoforms while 12 antisense lncRNAs

produced 23 variants. We did not detect any isoforms for

intronic lncRNAs. These findings are quite different from

what was found in human were the majority of lincRNAs

are composed by two exons [51].

To verify if the high number of monoexonic lincRNAs

was due to low coverage problems, we looked for a pos-

sible correlation between lincRNA structure and level

of expression. As shown in Additional file 2: Figure S8,

the expression level distribution of both monoexonic

and multiexonic lincRNAs is quite similar, suggesting

that monoexonic lincRNAs structure is not due to low

sample coverage.

We performed a similarity comparison between grape

lncRNA and the long non coding RNA identified in

Arabidopsis [13]. Despite the use of a relaxed e-value

threshold (blast e-value cutoff lower or equal to 1e−5),

Table 3 Grape splicing factors and homologous genes in Arabidopsis

Grape Arabidopsis Evalue Gene symbol Description

VIT_201s0026g00250 AT1G23860 6e-38 SRZ-21 RS-containing zinc finger protein 21

VIT_204s0069g00800 AT4G31580 4e-48 SRZ-22 Serine/arginine-rich 22

VIT_206s0004g00710 AT3G13570 5e-79 SCL30A SC35-like splicing factor 30A

VIT_207s0005g00320 AT1G02840 2e-75 SR1 RNA-binding (RRM/RBD/RNP motifs) family protein

VIT_208s0007g00970 AT1G16610 8e-10 SR45 Arginine/serine-rich 45

VIT_208s0040g02860 AT2G37340 4e-50 RSZ33 Arginine/serine-rich zinc knuckle-containing protein 33

VIT_212s0142g00110 AT5G64200 2e-54 SC35 Ortholog of human splicing factor SC35

VIT_213s0019g01060 AT3G55460 4e-51 SCL30 SC35-like splicing factor 30

VIT_213s0067g03600 AT2G37340 3e-70 RSZ33 Arginine/serine-rich zinc knuckle-containing protein 33

VIT_213s0156g00020 AT1G55310 1e-13 SR33 SC35-like splicing factor 33

VIT_214s0030g00480 AT5G18810 1e-44 SCL28 SC35-like splicing factor 28

VIT_214s0060g02290 AT1G09140 1e-77 SR30 SERINE-ARGININE PROTEIN 30

VIT_215s0046g00050 AT2G46610 7e-83 RS31a RNA-binding (RRM/RBD/RNP motifs) family protein

VIT_215s0048g01870 AT5G52040 1e-85 RS41 RNA-binding (RRM/RBD/RNP motifs) family protein

VIT_216s0098g01020 AT3G49430 5e-90 SRp34a SER/ARG-rich protein 34A

VIT_216s0100g00450 AT5G52040 5e-97 RS41 RNA-binding (RRM/RBD/RNP motifs) family protein

VIT_218s0001g05550 AT5G64200 6e-53 SC35 Ortholog of human splicing factor SC35

VIT_219s0027g00590 AT1G16610 1e-71 SR45 Arginine/serine-rich 45
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we identified a very small number of matches. In details

we found that only 61 intergenic, 6 intronic and 120

antisense non coding transcripts had at least one match.

This result confirms the observation that very few lncRNAs

are clearly conserved across species [30,37].

Analysis on the expression level revealed that lncRNAs

are on average 10-fold less abundant than protein cod-

ing genes (Figure 7, panel B). Similar results have also

been found both in Arabidopsis [13] and in vertebrates

[29,30,37] suggesting that short sizes and low expression

levels may be general characteristics of long non-coding

RNA and probably related to their differences in biogenesis,

processing, stability and function compared to mRNA.

We performed a principal component analysis of the

expression values of lncRNAs across all the samples.

Figure 8, panel A shows that the first two PCA compo-

nents clearly indicate a tissue-specific expression pattern.

Moreover we investigated the expression of lncRNAs in

relation to stress conditions. Strong evidence support the

hypothesis that long non coding transcripts are involved

in the response to different stresses, including biotic

stresses and pathogen infections [13,14]. PCA analysis

however was unable to efficiently separate the samples

according to the stress condition, indicating that the

tissue-specificity has a stronger effect on lncRNA expres-

sion regulation. Nevertheless Venn diagrams of lncRNAs

distribution according to tissue (Figure 8, panel B) and

stress conditions (Figure 8, panel C), show that even

though many lncRNAs are tissue-specific, as already

suggested by PCA analysis, there is a considerable num-

ber of lncRNA that are induced by stress conditions.

We found 241 lncRNAs that are uniquely induced during

water stress, 186 during salt stress and 108 that are

common between the two stress conditions.

Figure 6 Differential expression of splicing factor genes in different tissues and genotypes. Splicing factor average expression value

(FPKM) grouping the samples according to genotype (A) or tissue (B). Boxes on panel A shows the expression levels of the variants that were

significantly expressed between genotype. The number above each box represents the number of the isoform. Stars over the bar plots indicate

the comparisons that resulted significantly different (t-test with a p-value < 0.05 after FDR correction).
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Data availability

The new v2 gene prediction, together with the long non

coding sequences and other useful information resources

on Vitis vinifera are available for download as flat files in

popular file formats (gff3, fasta) at http://genomes.cribi.

unipd.it/grape. Data are also accessible through a web

based informatics infrastructure that integrates the data

giving the possibility to visualize and further analyze the

available data. The web resource hosts a genome browser,

a blast server to perform similarity search against the

genome, genes and long non coding sequences, and an

advanced query platform to perform complex queries.

The RNAseq data used in this study has been depos-

ited at the NCBI Short Read Archive (http://www.ncbi.

nlm.nih.gov/Traces/sra/sra.cgi) under the following SRA

accession: SRA110531 and SRA110619.

Conclusions

In this paper we present an improved grape gene predic-

tion, named v2, based on the incorporation of a great

amount of RNAseq data. A considerable number of new

genes have been identified, including many genes related

to lncRNAs. The sequencing libraries were produced with

a procedure that assured a high directional accuracy, that

is particularly important in the annotation of lncRNA and

for the identification of anti-sense RNAs. Furthermore,

with this study we have produced, for the first time in

grape, a comprehensive description of alternative splicing

in different tissues, genotypes and stress conditions. As

Figure 7 Long non coding expression and size distribution. (A)

Box-plot of the long non coding size distribution compared to the

coding sequence length. (B) Box-plot of the long non-coding expression

value distribution compared to the coding sequence expression.

Figure 8 Long non coding expression analysis. (A) Principal component analysis of the expression values of the three different categories of

lnRNAs. (B) Venn diagrams showing the distribution of lnRNA among tissues (B) and stressed conditions (C).
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observed in Arabidopsis and now in grape, alternative

splicing and non coding RNAs contribute significantly

to the transcriptional complexity and they should be taken

into consideration in genome wide transcriptomic studies.

In plants, in particular in Arabidopsis, it has been shown

that many genes undergo regulated alternative splicing.

Serine/arginine-rich (SR) and heterogeneous nuclear

RNP (hnRNP) proteins are the main splicing factors (SF)

involved in constitutive as well as regulated AS. The level

of several SFs changes in different plant tissues [52] and

in this study (Figure 7, panel B) we showed that this is true

also in grape. Similarly, stress and environmental condi-

tions produce specific SF changes [53,54]. Thus, changes

in the SF profile, driven by developmental and environ-

mental conditions, contribute to the definition of the

splicing specifications to be applied in different circum-

stances (for a review see [55]).

Differences in alternative splicing have also been de-

scribed between different ecotypes of Arabidopsis [56],

giving support to the argument that changes in splicing

may contribute to the evolutionary adaptation process.

A question that is still open is whether the changes in

splicing observed in different Arabidopsis ecotypes are

due to specific alterations of the splicing sites or if they

could be determined also by general modifications of the

splicing machinery.

In this paper we show that like Arabidopsis ecotypes,

also grape genotypes exhibit some splicing specificity.

Interestingly, when we investigated if this could be due

to changes in the splicing machinery we saw only minor

differences in the level of expression of the 18 SR genes

of grape (Figure 7, panel A), but when we investigated

at the level of individual SR isoforms we found some

very striking changes (Figure 7A, top frames). Another

interesting observation is that the SF isoforms that are

differentially expressed in the two genotypes did not show

differential regulation in tissues. This suggests a possible

mechanism of perturbation of the splicing machinery that

would interfere only marginally with the splicing speci-

fications required in different tissues. A more detailed

description of these differences is given in Additional

file 2: Table S5 and S6 and Figure S9-S12.

The finding that plants that practically belong to the

same biological species have different splicing machineries

is very intriguing and leads to interesting considerations

and hypotheses. Since SFs affect also the splicing of their

own transcripts, small changes of the splicing machinery

may reshape the AS profiles to new points of equilibrium

where each SF panel will produce the same SF isoforms. A

more detailed knowledge of the specific role of each SF

will help to better understand this problem.

Finally, it should be considered that small changes of

the splicing machinery could play an important role in

evolutionary adaptation, providing an easy and quick

generation of several “variations on the theme”, using parts

that have already been tested (the isoforms), but changing

their assortment. This could be particularly relevant in

the response to sudden and strong selective pressures.

Therefore, it would be interesting to verify whether

some of the intraspecific AS differences that are often

reported in different plant species and cultivars are due

to changes of individual splicing sites or if they could

result from the tuning of the splicing machinery.

Methods

Dataset

For a detailed description of the experimental design see

[38]. Briefly, 108 plants of 101.14 and M4 were grown in

a greenhouse and divided into 6 pools and exposed to

drought and salt stresses. The water stress treatment

was imposed decreasing gradually in 10 days the water

quantity from 80% to 30% of the field capacity. Leaves

and roots tissues were collected at 2 (time point T1), 4

(T2), 7 (T3) and 10 (T4) days after the beginning of the

stress experiment.

Salt stress treatment was imposed adding daily 5 mmol

of NaCl to plants with a water availability equal to 80%

of the field capacity. Leaves and roots tissues were col-

lected from plants at 2 (T1), 4 (T2) and 10 (T3) days

after the beginning of the stress experiment. At each

time point of the two experiments, mRNA from non-

stressed plants of both the two rootstocks grown with

a water availability equal to 80% of the field capacity

were sampled as controls.

All samplings were performed in two biological repli-

cates producing a total of 52 leaves and 52 root samples.

Total RNA of all samples was extracted from leafs and

roots using the “SpectrumTM Plant total RNA Kit” (Sigma)

according to manufacturer instructions. Moreover we

included 20 RNAseq berry samples from Vitis vinifera

L. cv Cabernet Sauvignon (CS) grafted onto 1103P and

M4 rootstocks (Pasqua vigneti e cantine, Novaglie VR,

Italy). Grapevines were grown in well-watered conditions.

Whole berries were collected from 1103P (V. berlandieri x

V. Rupestris), and M4 bunches at 45, 59, 65 days after full

bloom (DAFB), in correspondence to the end of lag phase

when most of grape berries reached veraison. The other

samples (separating skin and pulp) were collected at 72,

86 and 100 DAFB. Total RNA was extracted from the

above cited samples using the method described in

[57]. These samples were sequenced using the same

technology.

Library preparation and sequencing

The mRNA was extracted from total RNA using the

Dynabead mRNA Direct kit (Invitrogen pn 610.12). We

obtained a variable quantity of mRNA from the total RNA

that ranged from 0.4 to 1.6%, with a mean value of 0.8%.
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We prepared the samples for Ligation Sequencing accord-

ing to the SOLiD Whole transcriptome library preparation

protocol (pn 4452437 Rev.B). The samples were purified

before RNAse III digestion with Purelink RNA micro kit

columns (Invitrogen, pn 12183–016), digested from 3 min

to 10 min according the starting amount of mRNA, retro-

transcribed, size selected using Agencourt AMPure XP

beads (Beckman Coulter pn A63881) and barcoded during

the final amplification. The libraries were sequenced using

Applied Biosystems, SOLiD™ 5500XL, which produced

stranded paired end reads of 75 and 35 nucleotides for the

forward and reverse sequences respectively. The average

insert size was 114 with a standard deviation of 49 bp, as

calculated on the aligned paired ends.

RNAseq genome alignment and filtering

The reads were aligned to the reference 12X grape gen-

ome using PASS aligner [40]. The percentage identity

was set to 90%, and one gap was allowed. For each read

we considered only the best alignment. In the case of

reads mapping in multiple sites, for gene prediction

we considered them all, while for gene expression we

considered only the reads mapping to unique genomic

positions. The spliced reads were identified using the

procedure described in PASS manual (http://pass.cribi.

unipd.it). We applied different filters to spliced reads

mapping in order to reduce the number of false positive.

These include the rejection of reads with an overlap length

less than 15 bases on one exon and with a total alignment

length of less than 40 bases. Additional filters based on

read coverage to improve the accuracy of the potential

new introns: 1) the splicing site need to be confirmed by

reads from both the replicates with a total read coverage

of at least 4; 2) in case the reads come from only one repli-

cate, the read coverage was increased to 10.

Transcript reconstruction and gene prediction update

To improve read coverage, the biological replicates were

merged together. For each RNAseq library, we recon-

structed the transcripts using three different programs:

Cufflinks version 2.0.2 [36], Isolasso [41] and Scripture

[37]. The programs were run using default parameters

except for Cufflinks option “-j” that was set to 0.3 in order

to increase the minimum depth of coverage in the intronic

region and IsoLasso option “-c” that was increased to 5 to

adjust the minimum number of clustered reads.

All the transcript models generated by the three pro-

grams were compared with each other using Cuffcompare

program from Cufflink package. We considered good

transcripts only those that were predicted with the same

genomic structure by at least two different programs.

Finally, the transcripts that were shorter than 150

nucleotides were considered false positives and removed

from further analysis.

The obtained dataset was used to update the grape v1

gene prediction. The transcripts were aligned on the

genome using PASA [42], an eukaryotic genome an-

notation tool that uses spliced alignments of transcript

sequences to automatically model and update gene struc-

tures. PASA updated both the UTR regions and the gene

models and identified the alternatively spliced models.

Identification of new genes

Beside the v1 gene prediction update, we also performed

a new gene prediction in order to identify potentially new

genes. We used several tools and approaches based both on

de novo predictor and protein/transcripts sequenced based

alignment methods. We used a collection of 1.158.221

non redundant vidiriplantaea proteins and 7.897.336

eudicotyledons ESTs downloaded from NCBI ftp site.

The sequences were aligned on the genome using initially

a blast program [58] to quickly identify the similarity

regions and Exonerate [59] software to refine the align-

ment. We used a blast e-value cutoff of 1e−30 and 1e−5

for protein and nucleotide alignment respectively.

We used Augustus [60] de novo gene predictor trained

with the assemblies generated by PASA. The training

was performed using the automatic procedure available

at the Augustus web server [61]. Augustus prediction was

performed feeding the program with the whole RNAseq

data alignment.

The final gene prediction was obtained using Eviden-

ceModeler (EVM) [62] software in order to combine ab

intio gene predictions, protein ESTs and PASA assemblies

alignments into weighted consensus gene structures. We

compared the gene models generated by EVM with the

updated grape gene prediction and identified a set of

6,381 new potential genes. We applied several criteria

to discriminate between true coding protein genes and

non-coding or gene model artefacts. At first, we excluded

all the genes showing a similarity with a miRNA gene or

predicted to be non-coding by CPC software [63]. More-

over, we performed a further filtering selecting all the

genes that fulfil at least one of the following criteria: i) an

homologous sequences on another species excluded V.

vinifera ii) presence of an interproscan predicted domain

iii) a RNAseq coverage of at least 50% of the gene model.

The final gene set was processed by PASA to add the UTR

regions and to calculate the alternatively spliced models.

Gene annotation

Gene annotation was performed using a combination of

software, tools and databases. At first we used Inter-

ProScan v4.8 [64], an integrated annotation system that

looks for protein domains and functional sites integrating

11 different databases. Secondly we performed a similarity

search at the protein level on the grape genes against the

non redundant databases using the blast algorithm [58].
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Finally we performed gene ontology and KEGG annota-

tion using a local version of blast2go [65].

Evaluation of the gene prediction quality

To identify fusion/splitting events, we compared the two

gene predictions using the cuffcompare program and

selected the genes in one prediction overlapping to two

or more genes in the other gene dataset. We used the

BLASP program to search each group of fused/split

genes against the Arabidopsis proteome using a evalue

cut-off equal or lower than 1e-5. If a v2 merged gene

showed the same best hit than the v1 split genes, we

considered it as correct. On the other hand if the split

v2 genes showed two different best hits we considered

them better than the v1 merged gene. When one of the

split genes do not show any similarity with Arabidopsis

proteins, we classified it as “Ambiguous”.

The genes from the two gene predictions mapping on

the same genomic locus but with a different coding

sequence were evaluated using a method similar to the

one described in [66] that implies a 2-steps analysis: at

first for each pair of sequences we performed a similarity

search against the Arabidopsis proteome and we identified

the two best hits. If the best hits were the same for both

the gene prediction, we re-aligned the two gene models

on the reference using a global alignment based on

Needleman–Wunsch algorithm implemented in the

program stretcher from EMBOSS package [67]. Alignments

having a percent identity below 30% were removed. In the

case of v2 alternative spliced genes, we aligned all the

isoforms against the Arabidopsis homologous protein and

we selected the variant with the highest score. The results

of this analysis are reported in Additional file 2: Table S4.

Isoform quantification and analysis

The transcripts were quantified with two different pro-

grams, Cufflinks [36] and Flux-capacitor [68] and all the

further analyses were done independently using the

results from both the programs. In this manuscript we

report the results obtained using Cufflinks. All the other

results are available as Additional file 2. The transcript

abundances were quantified using both the replicates

for each sample. To constrain quantification errors, we

considered expressed only those genes with a FPKM value

of at least 1 on both the replicates. For the genes that

passed this first filter the expression value was calculated

as the mean of the FPKM values of the biological replicates.

Transcript switching analysis was performed identifying

for each alternative spliced gene those having two major

isoforms expressed in the highest number of samples. A

major isoform is defined as the transcript with the highest

expression value within a given sample. For each gene we

calculated the log ratio of the expression values between

the two transcripts across all the samples. The obtained

dataset was used to perform a principal component ana-

lysis using “prcom” function in R environment.

Splicing factor gene analysis

To assess differences in the expression level of the splicing

factor genes between both genotypes and tissues we

applied the t-test implemented in the statistical package

R. We grouped the samples according to genotype or

tissue and we considered as significant only those that

had a p-value equal or lower than 0.05 after FDR (False

Discovery Rate) correction.

Long non coding prediction

The assemblies generated by Cufflinks were compared to

the v2 gene prediction using cuffcompare program. We

selected all the sequences with size of at least 200 bp

and labelled as intergenic (“u” code), intronic (“i” code)

and exonic overlap on the opposite strand (“x” code). In

order to discriminate between coding and non-coding

sequences we applied the following procedure. First we

ran the Coding Potential Calculator (CPC) program [63]

to assess the protein-coding potential of the transcripts.

The sequences predicted as non-coding were further

filtered according to InterProScan annotation [64] and

all the sequences with an annotated domain were removed.

Next, we checked for the presence of repeated sequences

using RepeatMasker program (http://www.repeatmasker.

org/). Then, depending on the type of the sequences, we

applied some additional filters based on the genomic

context. We removed all intergenic transcripts that were

located within a 1 kb from the nearest genes. This filter

was used to reduce the risk of considering missing UTRs

as non-coding transcripts. Moreover, we deleted all the

intronic transcripts nearer than 100 base distance from

the flanking exons and with a length higher than 30% of

the length of the hosting intron. We applied these filters

to discriminate between genuine non-coding transcripts

and transcripts that arise because of possible non-mature

transcripts or intron retention events. Finally to reduce

the risk of artefacts, we removed all the antisense tran-

scripts with an overlap shorter that 30% within an exon.

We quantified the transcripts abundance with Cufflinks

using the biological replicates of each sample. Only the

transcripts with an FPKM expression value of at least 1 on

both the replicates were considered for further analysis.

Additional files

Additional file 1: Excel, new gene set, tabular file with the new

identified genes.

Additional file 2: Supplementary data.

Additional file 3: Excel, overlap between V1 and V2 gene prediction.

Additional file 4: Excel, miRNA target site prediction.
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