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A deep transfer learning approach for wearable sleep stage

classification with photoplethysmography
Mustafa Radha1,2,4, Pedro Fonseca 1,2,4, Arnaud Moreau3, Marco Ross 3, Andreas Cerny 3, Peter Anderer3, Xi Long 1,2✉ and

Ronald M. Aarts 2

Unobtrusive home sleep monitoring using wrist-worn wearable photoplethysmography (PPG) could open the way for better sleep

disorder screening and health monitoring. However, PPG is rarely included in large sleep studies with gold-standard sleep

annotation from polysomnography. Therefore, training data-intensive state-of-the-art deep neural networks is challenging. In this

work a deep recurrent neural network is first trained using a large sleep data set with electrocardiogram (ECG) data (292

participants, 584 recordings) to perform 4-class sleep stage classification (wake, rapid-eye-movement, N1/N2, and N3). A small part

of its weights is adapted to a smaller, newer PPG data set (60 healthy participants, 101 recordings) through three variations of

transfer learning. Best results (Cohen’s kappa of 0.65 ± 0.11, accuracy of 76.36 ± 7.57%) were achieved with the domain and decision

combined transfer learning strategy, significantly outperforming the PPG-trained and ECG-trained baselines. This performance for

PPG-based 4-class sleep stage classification is unprecedented in literature, bringing home sleep stage monitoring closer to clinical

use. The work demonstrates the merit of transfer learning in developing reliable methods for new sensor technologies by reusing

similar, older non-wearable data sets. Further study should evaluate our approach in patients with sleep disorders such as insomnia

and sleep apnoea.
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INTRODUCTION

The objective measurement of sleep at home in an unobtrusive
manner has become an increasingly important topic of study as
systematic sleep deprivation is increasingly linked to health
adversities such as weight gain1, systemic inflammation2, wea-
kened glucose regulation3 and poor fitness to drive4. Next to that,
sleep assessments in sleep medicine could also benefit from
longitudinal home monitoring5, which could provide a comple-
mentary role to gold-standard polysomnography (PSG) measure-
ments. The introduction of actigraphy into clinical sleep
assessment has allowed a different perspective on patient’s
conditions6, even though it can only be used to automatically
approximate sleep-wake patterns and cannot reliably distinguish
between the different stages of sleep: rapid-eye-movement (REM)
sleep and the three levels of non-REM sleep (N1, N2, N3)7. A
method which could automatically detect these sleep stages at
home could further advance home sleep assessment.
Sleep stage scoring is normally done through manual visual

annotation of PSG data, which include electro-graphic measure-
ments of cortical brain activity as well as eye and chin muscle
activity. Every 30 s epoch (i.e. segment) of sleep is labelled as one of
the sleep stages or as wake. The resulting annotation for the entire
night is referred to as a sleep hypnogram8. Sample hypnograms are
illustrated in Fig. 1. The current scoring guidelines are maintained by
the American Academy of Sleep Medicine (AASM)8. However, before
2007 the Rechtschaffen & Kales (R&K)9 guidelines were the most
commonly used, since their publication in 1968. While these
standards are very comparable, structural differences have been
found that lead to different results when comparing AASM to R&K
annotation: increase in N1 and N3 scoring; a decrease in N2 scoring;
and a decrease in REM scoring in younger people10. An example of a

night concurrently scored using both guidelines is illustrated in
Fig. 1.
Heart rate variability (HRV) is a heavily studied surrogate to PSG.

The autonomic nervous system’s activity is correlated with the
progression of sleep stages throughout the night and thus HRV
measurements of autonomic activity can be used to estimate
sleep stages. The inference of sleep stages from HRV features is
done by training machine learning algorithms which translate HRV
features to sleep stages. It is still very difficult to perform 5-class
sleep stage classification (Wake-REM-N1-N2-N3) due to the low
agreement on N1 sleep11,12, and thus most recent approaches
focus on 4-class sleep stage classification where N1 and N2 are
combined (i.e. Wake-REM-N1/2-N3). HRV features are most
commonly extracted from ECG as this sensor is part of standard
PSG montages and thus it is easy to find data to develop models
with13–15. The performance of such methods is often measured
using the Cohen’s kappa coefficient of inter-rater agreement. This
coefficient measures the percentage of epochs where the classifier
agrees with the PSG annotation while factoring out agreement by
chance that can occur due to class imbalance. Other common
metrics such as accuracy or F1 scores are often reported as well.
While methods using ECG data provide a first proof of the

feasibility of HRV-based sleep stage classification, the ECG sensor
still requires multiple electrodes to be attached to the body, which
might limit prolonged use at home. A popular, low-cost and
comfortable alternative for measuring HRV is photoplethysmo-
graphy (PPG), which can be incorporated in wrist band wearables
such as smart watches.
Although there were some studies in the past years that used

wrist-worn PPG for sleep classification, many of them were proposed
with only sleep and wake classes or three classes including wake,
REM sleep, and non-REM sleep16–18. For sleep-wake classification,
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important sleep statistics can be evaluated such as total sleep time
(TST), sleep efficiency (SE), sleep onset latency (SOL), and wake-after-
sleep-onset (WASO). A few methods were evaluated in earlier work
for PPG-based 4-class sleep stage classification using traditional
machine learning models19–22. Recently, deep learning methods,
specifically long- and short-term memory (LSTM) models, have
shown unprecedented agreement levels with PSG23–25. This is
thought to be because of the strong temporal learning capabilities
of LSTM models26, allowing the model to infer the sleep stage over a
wide temporal context. For the electro-encephalography (EEG)
domain performance levels have been reported that are on par with
inter-human annotation agreement23,24. Recently, LSTM models also
showed a strong improvement over the state-of-the-art for, e.g.,
radio frequency devices27 and ECG28. These LSTM models have
hundreds of thousands of free model parameters and training them
requires larger data sets than traditional machine learning models.
Until now, LSTM’s have been barely studied for PPG with a limited
improvement in sleep staging29, likely due to the lack of large PPG
data sets to train such deep models.
Collecting the large data sets required for training deep

learning models that contain both PPG and PSG is prohibitively
expensive since wrist-worn PPG is not part of standard PSG
montages. However, there are strong similarities between HRV
derived from PPG and ECG, and there are strong similarities
between AASM and R&K annotation. In this work it is proposed to
exploit these similarities through transfer learning30. The techni-
que intuitively involves transferring knowledge from a model
trained on a large “source” data set to solve a new but related
problem where less data samples are available in a “target” data
set. The process is illustrated in Fig. 2. The change from ECG to
PPG is regarded as a domain shift while the change from R&K to
AASM scoring is a shift in the target of the machine learning task.

This simultaneous shift in domain and target has been called
inductive transfer learning30. Transfer learning has been proven
effective in the context of deep neural networks, where knowl-
edge is represented in a modular structure of layers and has been
applied successfully in both computer vision31 and natural
language processing32 networks. Notably, Shashikuma et al.33

used this technique for cardiac arrhythmia detection, where a
model was trained on ECG-derived heart beats and its knowledge
was transferred to perform PPG-based cardiac arrhythmia detec-
tion, providing evidence for its efficacy in the physiological
monitoring domain.
In this work a transfer learning methodology will be evaluated

for transferring the deep temporal knowledge learned using an
LSTM model on the ECG data to a newer, smaller data set
comprising PPG that is annotated according to new sleep scoring
rules. The LSTM network architecture including three main blocks
or layers: domain, temporal, and decision (see Methods section).
Figure 3 illustrates three transfer learning strategies (domain,
decision, and combined) considered in this work. We show that a
transfer learning approach, in which a model is first trained on a
large ECG data set and then adapted using a small PPG data set,
leads to better performance for PPG-based sleep stage classifica-
tion than when using only ECG data or only PPG data to train the
model.

RESULTS

Description of demographics and sleep statistics

Two data sets were used to create and validate the approaches.
The first data set is Siesta34, including 292 participants (584
overnight recordings), a large data set with ECG signals and sleep
scoring according to older R&K guidelines from the PSG signals.

Fig. 1 Sleep hypnogram from the Siesta database simultaneously annotated according to R&K and AASM annotation standards. Due to
differences in annotation rules, a total of 59min of this night were differently annotated (differences highlighted with vertical grey stripes).
Note that some changes may also be related to inter-rater disagreement. For ease of visual comparison, instead of presenting full
hypnograms, this figure shows only 4-class hypnograms (Wake, REM sleep, N1/N2 sleep, and N3 sleep), which is also the objective of
automatic sleep stage classification in this study.
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The second one is the Eindhoven data set19, including 60
participants (101 overnight recordings), used for transfer learning
to PPG and AASM scoring as it contains both PPG and annotation
according to AASM rules from PSG. Table 1 indicates the
participant demographics, and corresponding sleep statistics of
the two data sets. More information on the two data sets and the
corresponding studies are introduced in the Methods section.

Discrepancy between ECG- and PPG-derived HRV features

While both PPG and ECG measure heart beats and thus could be
used for HRV measurement, there are two differences. The first is
that the time delay between the heart contraction (ECG R-peak)
and the arrival of the pulse at the wrist PPG, known as the pulse
arrival time (Fig. 4a), is not constant: it is continuously modulated
through properties of the arterial vessels such as blood pressure
and vasoconstriction35, which change throughout the night36.
Next to that, motion artefacts may impact the PPG sensor to an
extent that heart beats cannot be extracted. These factors
combined lead to HRV features being different when extracted
from these sensors.
From HRV data computed from both ECG and PPG signals, a

total of 127 features that have been proposed in our previous
work37,38 were extracted. All features and their description are
summarized in Supplementary Table 1. The HRV feature set had an
average (Pearson’s) correlation of 0.76 ± 0.17 when derived from
ECG versus PPG with a number of features having much lower
correlation, as illustrated in Fig. 4b. While most features still retain
a high (though not perfect) correlation between ECG and PPG,
some of them are not correlated at all. As examples, the Bland-
Altman density plots of three features with low and three features
with high correlation between ECG and PPG are shown in Fig. 4c,
d, respectively. In comparison with the high-correlation features,
the low-correlation features show a much larger discrepancy
between ECG- and PPG-derived feature values. We found that
most low-correlation features are nonlinear features (such as
visibility graph and Teager energy features) characterizing HRV
time-series structures or dynamics, which are likely more sensitive
to the differences between ECG- and PPG-derived inter-beat
intervals or peak locations. On the other hand, most high-
correlation features are statistical features in the time domain
(such as percentiles of inter-beat intervals or heart rates) that are
expected to be more robust to those differences or “outliers” in
detected inter-beat intervals.

Performance overview and comparison

Following the steps outlined in the training and validation
schematic shown in Fig. 3, first the model was pre-trained on
the entire Siesta data set for 1,472 training passes (determined
through cross-validation) and evaluated on both the ECG and PPG
signals of the Eindhoven data set. Cohen’s kappa for ECG was
0.62 ± 0.10 while accuracy was 74.83 ± 7.41%. For PPG data,
Cohen’s kappa dropped to 0.57 ± 0.12 (p < 0.00001, Wilcoxon’s
signed-rank test) and accuracy dropped to 71.88 ± 8.34% (p <
0.00001, Wilcoxon’s signed-rank test).
Subsequently, the model was re-initialized to random starting

weights and trained in 4-fold cross-validation on the Eindhoven
PPG data set, leaving out 15 participants for testing at each fold
while training with the data of the remaining 45 participants.
Cohen’s kappa and accuracy are shown in Table 2.
After determining the performance of the baselines, the three

transfer learning approaches were evaluated. Cohen’s kappa and
accuracy for the domain, decision, and combined retrain transfer
learning approaches are given in Table 2, and the confusion matrix
of the classifications obtained with the best model (combined
retrain) is presented in Table 3. In Fig. 5a performance
distributions are given for Cohen’s kappa and accuracy for the
three transfer learning conditions as well as the two baseline
conditions. Wilcoxon statistical test (two-sided) outcomes are also
shown in the figure, revealing that the combined approach has
the best average performance, and is significantly different from
the other transfer learning approaches as well as both baselines.
The performance of the combined approach is also compared

in terms of sleep stage specific F1 scores as illustrated in Fig. 5b.
Wake (W) F1 was 0.71 ± 0.17 for the combined transfer model. This
was significantly higher than for the ECG-trained (0.69 ± 0.17,
p < 0.01) and PPG-trained (0.61 ± 0.20, p < 0.0001) Wake F1 scores.
Analogously, REM F1 was 0.81 ± 0.10, significantly higher than
ECG-trained (0.79 ± 0.11, p < 0.001) and PPG-trained (0.74 ± 0.14, p
< .0001) REM F1. For N1/N2, the combined retrain F1 score was
0.75 ± 0.09, significantly higher than ECG-trained (0.70 ± 0.09, p <
0.0001) and PPG-trained (0.68 ± 0.12, p < 0.0001). Finally, for N3
the F1 score for the combined retrain model was 0.74 ± 0.09,
which was also significantly higher than the N3 F1 score for ECG-
trained (0.66 ± 0.10, p < 0.0001) and PPG-trained (0.68 ± 0.12, p <
0.0001) models.
Finally, Bland-Altman analysis for sleep-wake statistics TST, SE,

SOL, and WASO are shown in Fig. 6 for the combined transfer
approach, including mean error and 95% limits of agreement.

Fig. 2 Transfer learning. The source model (ECG model) is trained using ECG data and PSG based labels scored according to the R&K rules
(Siesta data set in this work) and then its knowledge is transferred to learn a new task, involving PPG input data and PSG annotation according
to the AASM rules (Eindhoven data set in this work), resulting in the PPG model.
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DISCUSSION

The main objective of this work was to evaluate a transfer learning
approach to PPG-based sleep stage classification, in which a deep
neural network model is first pre-trained using a large data set in a
comparable domain and then parts of it are adapted for PPG. The
data set used for pre-training was the Siesta data set in which
ECG-based HRV features were available.
For the features with low correlation between ECG and PPG,

certain patterns (clustering, symmetry, or trending) can be seen in
the Bland-Altman density plots in Fig. 4c, suggesting the presence of
systematic differences. As mentioned before, these can be caused
by, for example, the known discrepancy in hemodynamic or
cardiovascular physiology between HRV data measured from ECG
and PPG signals and for assessing autonomic responses39,40, and a
higher sensitivity of wrist-worn PPG to motion artefacts than ECG41.

We hypothesize that these differences are learnable to a certain
extent using transfer learning approaches.
It was shown first that the initially trained model for ECG indeed

showed a higher performance on hold-out ECG data in
comparison to PPG data that was extracted simultaneously. This
confirms that the disparity between ECG- and PPG-derived
features (see Fig. 4) also results in performance loss of a model
trained for ECG. The LSTM model was also trained purely on the
PPG data set, but the obtained performance did not differ
significantly (Fig. 5a) from when the pre-trained ECG model
is used.
Subsequently, the three transfer learning approaches were

shown to significantly outperform the PPG-trained and the ECG-
trained models, confirming that (1) adaptation to PPG of an ECG-
based model can improve performance for PPG and (2) the PPG
data set is not large enough to train such a deep model without
pre-training.
The transfer learning approaches had, in addition to a better

mean performance, also a slightly lower standard deviation (Fig.
5), suggesting that the model is more robust to unusual samples.
In the case of the ECG-trained model, those could for example be
people for which the ECG-derived and PPG-derived features were
exceptionally different from each other. Those would result in low
performance using that model in comparison to the transfer
learning approaches where the model is adapted to PPG. Whereas
for the PPG-trained model the unusual samples could be people
with uncommon sleep architectures that the Eindhoven data set
did not contain enough examples of for the model to learn about.
By pre-training on the larger and more heterogenous Siesta data
set the model became more robust to these unusual sleep
architectures than it could have using only the smaller Eindhoven
data set. A different reason for the performance improvement
after transfer learning could also be the adaptation to the newer
AASM annotation standard. The AASM rules result in structural
differences in the annotation. The inter-rater agreement between
human annotators using AASM rules has a Cohen’s kappa of 0.76
while agreement between annotators using R&K rules is only
0.6842.
Among the three transfer learning approaches, the combined

approach achieved the highest performance (Table 2). In earlier
transfer learning approaches32,33 only the softmax/decision layers
of the model were retrained and other layers were never

Fig. 3 Overview of the validation scheme. The top horizontal lane describes operations done using the Siesta data while the bottom lane
describes the validations on the Eindhoven data. Square boxes describe model training operations, rounded black boxes describe endpoints
that are statistically compared to confirm the hypothesis of this work, and the rounded grey box denotes the trained ECG model, which is
used either as a pre-trained model or adapted via knowledge transfer for PPG-based sleep stage classification as indicated by the arrows
flowing out of it. CV means cross-validation across participants.

Table 1. Demographics and sleep statistics of participants in the two

data sets used in the study.

Parameter Siesta data Eindhoven data

N 292 participants (126
females, 43.2%), 584
recordings (252
females, 43.2%)

60 participants (26
females, 43.3%), 101
recordings (48
females, 47.5%)

Age (year) 51.5 (17.3), 20.0−95.0 51.1 (7.9), 41.0−66.0

BMI (kg/m2) 25.6 (4.5), 16.5−43.3 25.6 (3.9), 17.5−36.2

TIB (hour) 8.0 (0.5), 5.8−9.6 7.9 (0.7), 6.4−10.3

SE (%) 80.8 (12.8), 14.6−99.1 85.0 (9.8), 36.0−96.6

N1 sleep (%) 13.1 (8.4), 2.4−77.1 10.7 (5.0), 3.0−30.6

N2 sleep (%) 53.8 (8.8), 13.6−78.8 41.7 (8.7), 22.2−66.6

N3 sleep (%) 13.8 (8.4), 0.0−44.5 26.2 (8.7), 10.3−47.3

REM sleep (%) 18.2 (5.9), 0.0−34.8 21.4 (5.9), 9.2−38.2

Note: Sleep statistics are computed based on the sleep stage annotation of

the data set. Except for N, results are presented as mean (standard

deviation), range. The percentages of N1, N2, N3, and REM sleep were

normalized to total sleep time (excluding wake time). BMI body mass index,

TIB time in bed, SE sleep efficiency.
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considered, however, this result implies that this is not always the
optimal approach. More optimal retraining strategies may be
found by considering also other layers. In comparison to previous
work, the performance of the combined retrain transfer learning
approach for PPG-based sleep stage classification is unprece-
dented. For 4-class sleep stage classification, Fonseca et al.19

evaluated a model that was previously trained using HRV features
from a large ECG data set on a smaller PPG data set (51 healthy
middle-aged adults) and a linear discriminant classifier, reporting a
Cohen’s kappa of 0.42 for 4-class sleep stage classification. Wu
et al.22 developed a support vector machine algorithm on a small
PPG data set (31 healthy subjects), and reported a Cohen’s kappa
of 0.41. Beattie et al.20 reported a Cohen’s kappa of 0.52 for a
similar healthy demographic by training on a PPG data set and
Fujimoto et al.21 achieved an accuracy of 68.8% using a similar

method, also with healthy individuals (100). Recently, Korkalainen
et al.43 performed sleep staging from PPG data obtained with a
finger pulse oximeter instead of a wrist-worn device and achieved
a slightly higher kappa of 0.54 and a similar accuracy of 68.5% in
patients with suspected sleep apnoea. In our earlier work, we
reported Cohen’s kappa of 0.56 using a clinical data set with a
model trained on ECG data44, and it has been concluded that the
direct application of an ECG-based model on PPG (without
transfer learning) decreases the performance. The combined
retrain transfer approach presented here outperformed all these
works considerably with an average Cohen’s kappa of 0.65 and
accuracy of 76.36%.
Because sleep statistics (derived from sleep-wake pattens) are

vital measures of assessing sleep quality, we also compared our
results with several studies that evaluated PPG for binary

Fig. 4 Discrepancy between ECG- and PPG-derived HRV features. a Inter-beat interval. A sequence of inter-beat intervals as recorded by
ECG (blue, RR-interval, RRI) and PPG (red, peak-to-peak interval, PPI). Pulse arrival time (PAT) is also shown. b Distribution of correlations
between ECG-derived and PPG-derived HRV features. The features were obtained from ECG and PPG signals simultaneously recorded in the
Eindhoven data set. The detailed description of the features can be found in Supplementary Table 1. c Bland-Altman density plots of example
features with low correlation. From left to right, the features are the slope of network degree distribution using a visibility graph method, the
mean of inter-beat-interval series amplitudes (after empirical mode decomposition), and the standard deviation of inter-beat-interval series
amplitudes at transition points detected based on a Teager energy method, with a correlation coefficient of 0.069, 0.264, and 0.308,
respectively. d Bland-Altman density plots of example features with high correlation. From left to right, the features are the 75th percentile of
inter-beat intervals, the 10th percentile of heart rates, and the 50th percentile of inter-beat intervals, with a correlation coefficient of 0.997,
0.995, and 0.994, respectively. AVG and DIFF indicate the mean and the difference between ECG and PPG feature values, respectively.
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sleep-wake classification. For example, Uçar et al.16 reported an
F1 score for wake of 0.79 in sleep apnoea patients, higher than
obtained in this study (0.71) with healthy individuals, though they
only used 10 individuals to evaluate the method, as compared to
60 individuals in this study. Walch et al.18 trained and validated
their model (multilayer perceptron) using PPG data from Apple
Watch (Apple Inc., Cupertino, CA) and achieved an accuracy of
90% (F1 score not reported). Haghayegh et al.45 reviewed studies
using different Fitbit (Fibit Inc., San Francisco, CA) models in
assessing sleep. They reported an overestimated TST of 7–67min
and SE of 2–15%, an underestimated WASO of 6–44min, and a
bias of 1–25min for SOL, which, in general, worse than what we
achieved in this work. Terjung et al.17 evaluated an algorithm for
estimating sleep/wake statistics in patients suspected of sleep-
disordered breathing. They reported higher bias ± [95% limit of
agreement] for TST (14 ± [−82 to 54] min, versus 0.36 ± [−48.77 to
49.48] min in this work) and for SE (4 ± [−20 to 13.4]%, versus
0.03 ± [−10.36 to 10.41]% in this work). For WASO they reported a
higher bias but smaller limits of agreement (−12 ± [−69.14 to
44.54] min, versus 3.75 ± [−31.23 to 48.74] min in this work) and
for SOL estimation they reported smaller bias but higher limits of
agreements (−1min ± [−41 to 43] min, versus −4.53 ± [−28.87 to
19.80] min here). Trained on 70 and tested on 32 patients with
sleep apnoea and/or periodic limb movement, Cakmak et al.46

reported a lower F1 score (0.62) with an higher bias for SE (2.09 ±
[−3.97 to 8.15]%), for SOL (−22.86 ± [−44.01 to −1.7] min), and for
WASO (7.66 ± [−16.62 to 31.94] min) compared with our results. As
the population of the Eindhoven data set is healthy, it is difficult to
conclusively compare with the data set used by Terjung et al.
(which likely included many sleep-disordered patients) and the
data set by Cakmak et al. The analyses in Fig. 6 show that
estimation error for SOL and WASO tends to increase with
unusually high SOL and WASO (which could be related to sleep
insomnia). In addition, some other studies used fingertip PPG

(pulse oximetry) data including both heart rate and oxygen
saturation to detect sleep/wake state and achieved high
performance47,48, but sleep statistics were not reported.
In the present work, we only considered 4-class sleep stage

classification instead of classifying all 5 stages. It is known that the
human inter-rater agreement is worst for N1 (considered a
transitional stage) when performing PSG-based manual scoring,
with a reported Cohen’s kappa of 0.4642. Moreover, when using
autonomic data (such as HRV), detecting N1 is even more difficult,
as evidenced by a very low detection rate (26.7%) and PPV (3.7%)
as reported in our previous work38. This is likely because changes
in autonomic nervous activity are in nature slower than cortical
changes and N1 sleep is much shorter than the other sleep stages,
making those changes hardly visible in HRV features during
N1 sleep. Thus, like many other studies, we merged N1 and N2 as
one single class (often called light sleep).
It is known that sleep disordered breathing events (such as

obstructive sleep apnoea and hypopnoea) disturb sleep architec-
ture49. It is therefore important to understand how the algorithm
performs in patients with different severity classifications of sleep
apnoea as measured by apnoea-hypopnoea index (AHI). For the
Siesta data set, AHI was only available from automatic scoring
using the Somnolyzer auto-scoring software (Philips Respironics,
Murrysville, PA), not verified manually. Therefore, we decided to
not present this information and avoid possibly misleading results.
For the Eindhoven data set, AHI is not available because only the
minimum set of PSG channels needed to score sleep stages was
used, and two of the essential respiratory channels (airflow and
SpO2) were not recorded. Future studies are required to analyse
the effect of sleep apnoea/hypopnoea on our proposed algorithm
in sleep stage classification.
This study used wrist-worn reflective PPG instead of finger PPG

that is routinely used in clinics, mainly because of its ease of use
and capability of measuring heart beats (pulses) during sleep,
making it an attractive sensing modality for monitoring sleep at
home. The reflective PPG device provides only one optical
wavelength (green light), and is therefore not adequate to
measure oxygen saturation or SpO2 and therefore assess sleep
disordered breathing. Moreover, the PPG signal measured using
green light (corresponding to a shorter wavelength) has a higher
signal-to-noise ratio, allowing for higher accuracy in pulse
detection and HRV measurement compared with red and
infrared50. Despite these advantages, it is worth further exploring
the feasibility of adding SpO2 for improving sleep staging
performance for sleep-disordered patients and detecting sleep
disordered breathing. Previous studies have shown promising
results in sleep staging by combining HRV with accelerometer
data20,21. Yet this was not possible in our work when using transfer
learning approaches because there was no accelerometer data
available in the Siesta data. Future work should investigate
methods allowing accelerometer data to be added to the model,
while retaining the HRV part trained based on transfer learning.

Table 2. Evaluation of different training strategies on the Eindhoven PPG data set.

Model Training procedure summary Cohen’s kappa Accuracy (%)

ECG-trained model Traina on Siesta 0.57 ± 0.12 71.88 ± 8.34

PPG-trained model Trainb on Eindhoven 0.55 ± 0.14 69.82 ± 10.23

Domain retrain Pre-traina on Siesta+ adaptb using Eindhoven 0.62 ± 0.12 75.21 ± 7.82

Decision retrain Pre-traina on Siesta+ adaptb using Eindhoven 0.63 ± 0.12 75.14 ± 8.10

Combined retrain Pre-traina on Siesta+ adaptb using Eindhoven 0.65 ± 0.11 76.36 ± 7.57

aTraining was done on the entire Siesta ECG data set.
bDone in 4-fold cross-validation. In each fold 45 participants of the Eindhoven data set were used for training and 15 were left out for validation. Shown results

are aggregated over all folds. All cross-validation experiments used the same folds to enable comparison. Results are presented as mean ± standard deviation.

Distribution of performance over participants and statistical significance tests are shown in Fig. 5.

Table 3. Confusion matrix of the combined retrain transfer learning

model for sleep stage classification.

Predicted label → ↓

True label
Wake N1/N2 N3 REM Sensitivity (%)

Wake 8,468 2,588 199 885 69.75

N1/N2 2,670 31,449 4,332 3,347 75.24

N3 68 6,127 14,570 182 69.56

REM 461 2,298 103 14,690 83.69

PPV (%) 72.58 74.06 75.87 76.89

Note: Results were obtained after classifying Wake, REM sleep, N1/N2 sleep,

and N3 sleep in all epochs (n= 92,437) of all recordings on the Eindhoven

PPG data set. Sensitivity and positive predictive value (PPV) for each class

are presented.
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Another limitation of this work is, as shown in Table 1, that the
age range in the Eindhoven data set (44–60 years) is limited in
comparison with the Siesta data set, and that all subjects from this
data set were healthy (and therefore did not have any sleep
disorders). Since the present work focused on the validation of our
proposed method in health subjects, future work in which sleep
disordered individuals are included could make the method more
robust to unusual samples such as these. Given the large
performance improvement achieved with the transfer learning
approach for healthy individuals compared to non-transfer
approaches, we anticipate that the method will also lead to
improvements in sleep-disordered populations.
In conclusion, a transfer learning approach has been proposed

for wearable sleep stage classification using a PPG sensor and an
LSTM deep neural network. The proposed transfer learning
strategy was compared to two baselines: training the model on
a large ECG data set, as well as training the model only on the
(smaller) amount of PPG data available. It was shown that transfer
learning outperforms both approaches, suggesting that deep
temporal knowledge can be generalized over different sensor
modalities.

METHODS

Data sets and procedure

The Siesta data set was collected as part of the EU Siesta project34 in the
period from 1997 to 2000 in seven European countries. The study was
approved by the local ethical committee of each research group (e.g.,
Medical University of Vienna, Austria) and all participants signed informed
consent. Participants had no history of alcohol or drug use or worked
shifts. The data set includes 195 healthy participants and 97 patients with a
sleep or sleep-disturbing disorder (26 patients with insomnia, 51 with sleep
apnoea, 5 with periodic limb movement disorder, and 15 with Parkinson’s
disease). Each participant underwent two nights of PSG monitoring in a
sleep lab. The PSG included EEG, ECG, electrooculography (EOG), and
electromyography (EMG) measurements. Each recording was scored by
two trained somnologists from different sleep centres according to the
R&K guidelines9, and revised by a third expert who took the final decision
in case of disagreement. For a small portion of the data set, the data was
also scored according to AASM guidelines, which were used to create the
example illustrated in Fig. 1. A major aim of Siesta was to create a large
normative sleep database of both healthy subjects and patients with sleep

disorders across all age groups from 20 to >80. More details regarding
participants and study design were described by Klosh et al.34

The second data set was collected in 2014 and 2015 in Eindhoven, the
Netherlands, approved by the Internal Committee of Biomedical Experiments

of Philips Research and conducted in accordance with the Declaration of

Helsinki. Before participation, all participants gave informed consent. It
includes 101 recordings of 60 healthy participants with no primary history of

neurological, cardiovascular, psychiatric, pulmonary, endocrinological, or

sleep disorders. In addition, none of the participants were using sleep,

antidepressant or cardiovascular medication, recreational drugs or excessive
amounts of alcohol. Each of the participants underwent one or two nights of

PSG measurements in a hotel including EEG, ECG, EMG, and EOG used to

annotate the epochs according to the AASM sleep scoring rules8. Next to the

standard PSG system, also a CE-marked logging device containing a PPG and
a tri-axial accelerometer sensor (Royal Philips, Amsterdam, the Netherlands)

was used. The logging device was mounted on the non-dominant wrist of

the participant, with the sensor facing the skin on the dorsal side of the hand,

above the ulnar styloid process. The PSG data were annotated by a trained
sleep technician according to the AASM rules of sleep scoring8. The aim of

creating this data set was to collect wrist-worn PPG data with simultaneously

recorded PSG as gold standard for developing PPG-based sleep monitoring
algorithms. More details regarding study design were described in the work

by Fonseca et al.19

HRV feature extraction

The ECG signals of both the Eindhoven and Siesta data sets, as well as the
PPG signals of the Eindhoven data set, were processed by beat detection

algorithms to extract series of inter-beat intervals for each night of data.

For ECG, the algorithm was a modification51 of the Hamilton-Tompkins

beat detection52. For PPG signals, the algorithm described by Papini et al.53

was used. From these inter-beat-interval series, a set of 127 HRV features

were extracted. This extensive set of sleep features has been well-

documented and motivated in our earlier work37,38. It includes 37 time
domain statistical features, 14 frequency-domain features, 8 phase

coordination features, 28 features measuring entropy and self-similarity

of the heart beat series, 22 features in the Teager energy domain,

5 statistical features of cortical sleep arousal likelihood and 13 features
based on visibility graph analysis (see Supplementary Table 1 for feature

descriptions and corresponding references). Each feature value f was

normalised through fn ¼
f p�μ

σ
. The parameters p, μ, and σ are determined

during training using the entire training set. p was chosen to maximize the
feature’s distribution similarity to a uniform distribution, and on this new

distribution the mean (μ) and standard deviation (σ) were determined.

Fig. 5 Comparison of sleep stage classification performance. a Evaluation of different model training strategies on the Eindhoven PPG data set.
Distributions of participants in the data set are shown using letter value plots, in which box sizes are proportional to the number of participants in the
box range. Performance reported in Cohen’s kappa and accuracy. b Comparison of the combined retrain transfer learning strategy with the two non-
transfer baselines for each sleep stage, presented in F1 score. The same letter value plots and statistical testing annotation are used. Statistical
comparisons between different models have been performed using Wilcoxon’s signed rank test (two-sided). Stars denote p-value of the test, where *,
**, ***, and **** denote p< 0.05, p< 0.01, p< 0.001, and p< 0.0001, and “NS” denotes “not significant” or p> 0.05.
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The LSTM model

A single model architecture was used throughout all experiments. The
model, illustrated in Fig. 7, is conceptually divided into three blocks:
Domain layer consists of perceptrons that make 32 linear combinations

of features. The function of this layer is to pre-weight, pre-select and
combine the input into a more compact representation of the domain: a
vector of 32 values per time-step. We call this output X′ as it is a translation
of X. As this vector is generated for each time step t, the domain layer
generates a sequence of vector fX 0

1; ¼ ; X 0
ng, with jX 0

t j ¼ 32.
Temporal layer consists of the LSTM stacks. These LSTMs take the

sequence fX 0
1; ¼ ; X 0

ng and generate 128 new features at each time step,
where temporal information has been taken into account through the
short- and long-term recurrence properties both from the past and future.
This results in a sequence of feature vectors fX 0

10; ¼ ; X 0
n0g, where ...

Decision layer consists of two levels of perceptrons. The first level
performs a dimensionality reduction of the output of the temporal layer,
reducing the vector of size 128 to size 32. The final level contains 4 softmax
perceptrons: each perceptron generates a sigmoid output representing the
4 class probabilities PðYt ¼ WjX 0

t 0Þ00 PðYt ¼ RjX 0
t 0Þ00 PðYt ¼ N1=N2jX 0

t 0Þ00 and
PðYt ¼ N3jX 0

t 0Þ00. The outputs sum up to one for each time step through the
softmax normalisation. These outputs are generated for each time step,
resulting in a sequence of sleep stage probabilities corresponding to all
epochs of the entire night.
The 2.6 × 105 free parameters of the model were trained simultaneously

with the RMSprop optimizer54. Dropout55 on the input (20%), on LSTM
outputs (50%) and recurrent LSTM connections56 (50%) was applied during

each training phase to reduce overfitting. Categorical cross-entropy was
used as the loss function during model fitting.

Baseline model training and evaluation

A number of models are trained and compared with the goal of validating
the LSTM model on ECG data and comparing three transfer learning
methods against two conventional learning methods. The entire validation
scheme is illustrated in Fig. 3 through numbered blocks.
First, the model is pre-trained on the Siesta data set. The inputs are the

HRV features computed from ECG and the labels are the R&K annotations.
The validation is done in a 4-fold cross-validation scheme in which folds
are created on participant level, thus ensuring that nights from the same
participants are always either in the training or the testing portion. An early
stopping criterion is used that stops training the model once the loss on
the test fold does not improve for 100 subsequent passes over the training
data. Subsequently, the model is trained on the entire Siesta data set to
generate the source model, which will be referred to as the ECG model
(block 2 in Fig. 3). The number of epochs is taken as the average number of
epochs until early stopping across the four folds in the earlier step.
This model is then used without any adaptation to classify the entire

Eindhoven data set using two different inputs. First, the ECG recordings of
the Eindhoven data set are used as input as these are a hold-out that was
not used in creating the ECG model (block 3 in Fig. 3). Then, the model is
also used without adaptation to classify the Eindhoven PPG data as a
means to quantify the performance drop due to a change in sensing

Fig. 6 Bland-Altman analysis of the four main sleep-wake statistics, between reference and the combined retrain transfer learning
approach. AVG on the horizontal axis is the mean between true and predicted values and DIFF on the vertical axis is the error (predicted
value–true value).
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modality (block 4 in Fig. 3). This forms the first baseline for PPG-based

sleep stage classification.
The conventional way in which the model would be trained for PPG-based

sleep stage classification is by training only using PPG data. This is the second

baseline condition. The LSTM model is trained using the PPG sequences of

the Eindhoven data set as inputs and the AASM annotations as labels. This is

done using 4-fold cross-validation and the predictions over all folds are used

to compute the performance of this model (block 5 in Fig. 3).

Transfer learning conditions and evaluation

As mentioned, the model was conceptually divided into three compo-

nents. The temporal component contains the deep temporal representa-

tion of sleep physiology in relation to sleep stage progression. This part is

expected to generalize to different sensors as well as changes in

annotation standard. This layer also contains 96.6% of the model’s

weights, making it particularly hard to train on smaller data sets. These

reasons make the temporal layer a good candidate for transfer as only a

small amount of weights would need to be adapted using the scarce target

data set. Thus, the candidate layers for retraining are the domain and

decision layers. Retraining the domain layer would imply adapting the

domain layer to make X′ more comparable to what the ECG model expects

(Fig. 7), while alternatively retraining the decision layer implies adapting

the mapping between X″ and the labels. The third option is to retrain both

domain and decision layers simultaneously, leaving it up to the optimizer

to change weights as needed in both of the layers.

All three strategies are tested by freezing all layers of the source model
and then retraining the respective layers using 4-fold cross-validation
(blocks 6, 7, and 8 in Fig. 3) as used for the PPG-trained baseline. The fold
splitting was kept constant across all experiments. When a layer is frozen,
its weights will not be updated during training anymore. However, the
dropout mechanism remains in place: connections in the temporal layer
will be randomly omitted to improve generalisability during training
passes, even though the weights associated with these connections will
not be changed. The models created with these three transfer learning
strategies will be referred to as the domain, decision, and combined
models, referring to which layers are retrained in the condition.

Analysis of performance

The main measures of performance were accuracy and Cohen’s kappa.
First, the performance of the ECG model on the Eindhoven ECG versus the
Eindhoven PPG data is compared to understand the loss in performance
due to the domain shift from ECG to wearable PPG. These are the
outcomes of blocks 3 and 4 in Fig. 3. Then, the three transfer learning
strategies (domain, decision, and combined; block 6, 7, and 8 in Fig. 3) are
compared in terms of their performance on Eindhoven PPG data to
understand which strategy leads to the best knowledge transfer. The best
transfer strategy is then compared to the performance of the two baseline
models on PPG, namely the pre-trained ECG model (block 4 in Fig. 3) and
the PPG-only model (block 5 in Fig. 3). This is done to show that the
transfer learning method outperforms non-transfer baselines. For this
comparison, performance is also compared in terms of the F1 score for

Fig. 7 A partially rolled-out overview of the neural network architecture to visualise the temporal interaction. The dotted arrows indicate
the flow direction of temporal information through LSTM connections.
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each of the 4 sleep stage classes (W, REM, N1/N2, and N3). Since all
evaluations are performed on the Eindhoven PPG data set (with the same
participants), a paired statistical comparison is performed with perfor-
mance measured per participant. The chosen test was the Wilcoxon’s
signed-rank test (two-sided), as it does not assume normality of the
performance distributions.
For the best-performing model, a confusion matrix was presented. In

addition, the sleep-wake statistics TST (total non-waking time in the night),
SE (percentage of non-waking time of the night), WASO (amount of time
awake after first sleep epoch and before last sleep epoch), and SOL (time
spent awake before falling asleep at the start of the night) were computed.
Comparison with sleep statistics derived from reference hypnogram was
done using Bland-Altman analysis57.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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