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Abstract

Purpose

Infiltration of activated dendritic cells and inflammatory cells in cornea represents an impor-

tant marker for defining corneal inflammation. Deep transfer learning has presented a prom-

ising potential and is gaining more importance in computer assisted diagnosis. This study

aimed to develop deep transfer learning models for automatic detection of activated den-

dritic cells and inflammatory cells using in vivo confocal microscopy images.

Methods

A total of 3453 images was used to train the models. External validation was performed on

an independent test set of 558 images. A ground-truth label was assigned to each image by

a panel of cornea specialists. We constructed a deep transfer learning network that con-

sisted of a pre-trained network and an adaptation layer. In this work, five pre-trained net-

works were considered, namely VGG-16, ResNet-101, Inception V3, Xception, and

Inception-ResNet V2. The performance of each transfer network was evaluated by calculat-

ing the area under the curve (AUC) of receiver operating characteristic, accuracy, sensitiv-

ity, specificity, and Gmean.

Results

The best performance was achieved by Inception-ResNet V2 transfer model. In the valida-

tion set, the best transfer system achieved an AUC of 0.9646 (P<0.001) in identifying

PLOS ONE

PLOSONE | https://doi.org/10.1371/journal.pone.0252653 June 3, 2021 1 / 15

a1111111111
a1111111111
a1111111111
a1111111111
a1111111111

OPEN ACCESS

Citation: Xu F, Qin Y, HeW, Huang G, Lv J, Xie X,

et al. (2021) A deep transfer learning framework for

the automated assessment of corneal inflammation

on in vivo confocal microscopy images. PLoS ONE

16(6): e0252653. https://doi.org/10.1371/journal.

pone.0252653

Editor: Ruxandra Stoean, University of Craiova,

ROMANIA

Received: February 3, 2021

Accepted:May 19, 2021

Published: June 3, 2021

Copyright: © 2021 Xu et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: All authors report grants from Guangxi

Promotion of Appropriate Health Technologies

Project (No.S2019084) and Guangxi clinical

ophthalmic research center (No.

GuikeAD19245193).

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0002-5804-0369
https://doi.org/10.1371/journal.pone.0252653
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0252653&domain=pdf&date_stamp=2021-06-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0252653&domain=pdf&date_stamp=2021-06-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0252653&domain=pdf&date_stamp=2021-06-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0252653&domain=pdf&date_stamp=2021-06-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0252653&domain=pdf&date_stamp=2021-06-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0252653&domain=pdf&date_stamp=2021-06-03
https://doi.org/10.1371/journal.pone.0252653
https://doi.org/10.1371/journal.pone.0252653
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


activated dendritic cells (accuracy, 0.9319; sensitivity, 0.8171; specificity, 0.9517; and G

mean, 0.8872), and 0.9901 (P<0.001) in identifying inflammatory cells (accuracy, 0.9767;

sensitivity, 0.9174; specificity, 0.9931; and Gmean, 0.9545).

Conclusions

The deep transfer learning models provide a completely automated analysis of corneal

inflammatory cellular components with high accuracy. The implementation of such models

would greatly benefit the management of corneal diseases and reduce workloads for

ophthalmologists.

Introduction

Inflammation and immune activation are the underlying process of a wide range of corneal

diseases such as infective keratitis, immune and autoimmune corneal diseases [1,2]. Persistent

inflammation can result in corneal opacity, significant visual impairment and even blindness.

Patients with corneal inflammatory diseases may benefit from rational anti-inflammatory

strategies. It is of high importance that the anti-inflammatory regimen should be dynamically

adjusted according to the level of inflammatory response. Therefore, close monitoring of cor-

neal inflammatory activity is warranted. However, symptoms and slit-lamp examination pro-

vide only rather rough estimates of ocular responses, making it difficult to accurately assess the

inflammatory reaction and the effect of anti-inflammatory treatments.

In vivo confocal microscopy (IVCM) enables noninvasive analysis of different corneal lay-

ers in exquisite detail and allows in vivo detection of even subtle microstructural changes in

pathological states [3,4]. IVCM image analysis reveals dendritic cells (DCs) activation and

inflammatory cells infiltration in pathologic and infectious conditions such as dry eye [5,6],

infectious keratitis of various aetiologies [7,8], and contact lens-induced corneal changes [9].

The inflammatory cellular components are considered as excellent indicators of inflammatory

activity and clinical severity [5,8]. The activated DC, a type of antigen-presenting cell that initi-

ates proinflammatory reactions in the cornea, is associated with the severity of dry eye disease

[5], neuro-inflammatory disease [10] and corneal ulcer [11]. The round inflammatory cell,

confirmed as the neutrophil in cornea [12], is associated with clinical outcomes of keratitis

because of its ability to release cytokines that intensify inflammatory process [13]. Monitoring

of these alterations contributes to optimize the tailored management of corneal inflammatory

diseases. Manual analysis of the IVCM images, however, is extremely labor-intensive, time

consuming, requires expertise, and is inherently subjective. Automation is therefore urgently

needed and will facilitate standardized analyses among different centers.

Recently, artificial intelligence (AI) approaches such as deep learning [14] have demon-

strated extraordinary performance in computer vision and medical image analysis tasks. How-

ever, a deep learning model requires training with millions of data points before making a

reliable classification. Deep transfer learning (DTL) is an approach in deep learning where

knowledge is transferred from one model to another [15]. A transfer model is constructed

using a pre-trained deep learning network as a fixed feature extractor for the task of interest.

Transfer learning technique achieves an optimization that allows improved performance of

classification models with a relatively small amount of data. This technique provides a new

insight into solving the task of IVCM images automatic classification.
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Several deep learning models have been applied to trace the nerve fiber and fungal hyphae

in IVCM with impressive accuracy [16–19]. To the best of our knowledge, however, there have

been no studies performed involving the automatic evaluation of corneal inflammation using

IVCM images. The present study was designed to construct an effective diagnostic model

using DTL approach, investigate five transfer network architectures, and compare their perfor-

mance for detecting activated DCs and inflammatory cells using IVCM images.

Materials andmethods

Data collection

A total of 4011 IVCM images of 48 eyes (35 eyes with keratitis, 7 eyes with dry eyes, and 6 eyes

with pterygium) were included in our study. The data were collected from November 2018 to

August 2020 at Guangxi Zhuang Autonomous Region People’s Hospital, China. We excluded

poor-quality images such as those that were of low contrast, unfocused, or had other condi-

tions that interfered with assessment. All images were anonymized prior to their use in the cur-

rent investigation. This study was conducted in compliance with the Declaration of Helsinki

and approved by the ethics committee of The People’s Hospital of Guangxi Zhuang Autono-

mous Region. Informed consent was waived because of the retrospective nature of the study

and anonymized usage of images.

All images were taken using IVCM (HRT III/RCMHeidelberg Engineering, Germany).

The data was initially assigned into training (collected from November 2018 to December

2019) and testing sets (collected in 2020). The testing set was employed for external validation.

Each image was associated with two-level diagnostic labels for activated DCs (Positive: acti-

vated DCs; Negative: no activated DCs) and inflammatory cells (Positive: inflammatory cells;

Negative: no inflammatory cells). Activated DCs were characterized by hyperreflective

branched structures, with long processes extending outwards in multiple directions from the

cell body (Fig 1A and 1C). Inflammatory cells were represented as small, round, bright hyper-

reflective cells (approximate 10 microns in diameter) and often accumulated at the lesion site

(Fig 1B and 1C). In addition, 540 IVCM images containing fungal hyphae (Fig 1D) were

included as negative samples.

Labelling and preprocessing

The anonymous IVCM images were independently analyzed by three specialists with over 10

years of experience in cornea examinations. A ground-truth label was assigned to each image

Fig 1. Activated dendritic cells, inflammatory cells and fungal hyphae shown in in vivo confocal microscopy images. (A) shows activated dendritic cells (DCs) that
are characterized by hyperreflective branched structures, with long processes extending outwards in multiple directions from the cell body; (B) shows inflammatory cells
that represent as small, round, bright hyperreflective cells; (C) shows the co-existence of activated DCs and inflammatory cells; (D) shows fungal hyphae that manifest as
fine branched thread-like structures.

https://doi.org/10.1371/journal.pone.0252653.g001
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when consistent diagnostic outcomes were achieved by the three ophthalmologists. Any level

of disagreement was adjudicated by another cornea specialist with 20 years of experience.

The pixel values of the images were normalized into range [0, 1] before being input to the

models. The original IVCM images were resized to a standard resolution of 224 × 224 pixels to

match the input size of the networks. Data augmentation, a technique commonly used to

increase the diversity of data, was performed in the study. Specifically, flipping and 90˚ rota-

tion were applied to the images in the training set to increase the amount of training data by

fourfold.

Deep transfer learning model and training

In this study, network-based DTL was performed to overcome the deficit of training data for

deep learning. Network-based DTL refers to the reuse the partial network structure and

parameters that pre-trained in the source task, transfer it to be a part of deep neural network

which used in the target task [20]. For the source task, we use five network architectures,

namely: Visual Geometry Group-16 (VGG-16), Residual Network-101 (ResNet-101), Incep-

tion V3, Xception, and Inception-ResNet V2 (Fig 2). In each network, we used the front-layers

and connection parameters pre-trained on the ImageNet dataset (a large dataset contains 1.2

Fig 2. An overview of the five pre-trained networks architectures used in this study. The networks take images of 224 × 224 pixels as input and process the images
through layers of nonlinear operations such as convolution and pooling. The arrows indicate the direction of flow. All convolution layers of the VGG-16 networks are
depicted, but the intermediate repetitive layers of the other networks are omitted for simplicity. The final fully-connected layer was removed, replaced by an adaption
layer.

https://doi.org/10.1371/journal.pone.0252653.g002
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million images with 1000 categories) [21]. The final fully-connected layers were removed, and

the front part of the networks was adopted as the fixed feature extractor for our training data-

set. Then we added an adaptation layer formed by two fully-connected layers FCα and FCβ

that used the output vector Yfixed of the fixed feature extractor as input (Fig 3). Note that Yfixed

was obtained as a complex non-linear function of potentially all input pixels and captured

intermediate image representation. The computation proceeded as follows:

Ya ¼ sðWaYfixed þ BaÞ ð1Þ

sðxÞ ¼ maxð0; xÞ ð2Þ

~Ya ¼ r:Ya ð3Þ

r � BernoulliðpÞ ð4Þ

Yb ¼ cðWb
~Ya þ BbÞ ð5Þ

cðxÞ ¼ 1=ð1þ e�xÞ ð6Þ

Formulas (1) and (2) are the computing process of FCα, whereWα denotes the trainable

weight of FCα, Bα denotes the trainable bias of FCα, and σ(x) is the “ReLU” activation function.

Formulas (3) and (4) denote dropout of FCα, where “�” denotes an element-wise product, Ber-

noulli(p) is the “Bernoulli” function, p is the dropout rate, and r is a vector of independent Ber-

noulli random variables that has probability p of being 1. This vector is multiplied in an

element-wise manner with Yα to create the thinned outputs ~Ya . Formulas (5) and (6) are the

computing process of FCβ, whereWβ denotes the weight of FCβ, Bβ denotes the bias of FCβ, ψ

(x) is the “Sigmoid” activation function, and e refers to the natural logarithm.

Fig 3. The adaptation layer of the deep transfer learning model. The front part of the pre-trained networks was adopted as the fixed feature extractor for our training
dataset. We added an adaptation layer formed by two fully-connected layers that used the output vector of the fixed feature extractor as input. The activation function of
the first fully-connected layer is ReLU, and the fully-connected output is a sigmoid function.

https://doi.org/10.1371/journal.pone.0252653.g003
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The weights of the networks were fine-tuned by continuing the backpropagation. During

training, the binary cross entropy loss metric was optimized through stochastic gradient

descent method. The initial value of learning rate was set to 0.001 and the learning rate was

adjusted through self-adaptation mechanism [22]. The discounting factor for the history/com-

ing gradient, the momentum and the centered Boolean were set as 0.9, 0.0 and False, respec-

tively. A batch size of 32 was used for the training. The training epoch of VGG-16, ResNet-

101, Inception V3, Xception, and Inception-ResNet V2 models for detecting activated DCs

were 26, 27, 18, 31, and 18, respectively; and that for detecting inflammatory cells were 22, 26,

12, 16, and 10, respectively. All experiments were conducted on an NVIDIA Tesla T4 Tensor

Core GPU. All models were implemented using Keras, Tensorflow-2.3-gpu. Programs were

written in the Python programming language (Python 3.7, Python Software Foundation). The

detailed characteristics of the transfer models were recorded in S1 Table.

The classical architecture of VGG-16 network consists of 13 convolution layers, five pooling

layers, and three fully-connected layers [23]. In convolutional layers, 3 × 3 kernel-sized filters

are used to convolve the input images and generate hierarchical feature maps. Max-pooling

strategy with a dropout rate at 0.5 is adopted on the pooling layers (also called down-sampling

layers) to reduce the dimensionality of the feature.

The ResNet-101 presents a residual learning framework to ease the training of networks

[24]. It consists of multiple residual blocks connected in series, with each block containing a

shortcut route and a residual route [25]. Down-sampling is performed by convolution layers

with a stride of two. In ResNet-101 architecture, the size of feature map is reduced by half,

while the number of feature map doubles, thereby maintaining the network complexity.

The characteristic of Inception V3 lies in extracting multiple features in the same layer [26].

The input is transferred to various extraction methods such as convolution kernels of different

sizes (for example, 1×1, 1×3, 1×7 et al). Concatenating operation is used to integrate the

features.

Xception is proposed as an improvement to the Inception V3. In Xception networks, depth-

wise separable convolution is substituted for the general convolution [27], leading to higher

performance at relatively low computational cost.

Inception-ResNet V2 is a modified version of the Inception model, which incorporates the

idea of residual learning [28]. In each block, 1 × 1 convolution is added before addition opera-

tion, playing the role of filter-expansion layer to scale up the dimensionality of the filter bank.

The network has the advantages of both Inception and ResNet and thereby improving the

training efficiency.

Comparison with human ophthalmologists

To evaluate the performance of our transfer networks, we recruited two human ophthalmolo-

gists to read the images independently. Ophthalmologist A had three years of experience and

the ophthalmologist B had one years of experience in IVCM image analysis. Both ophthalmol-

ogists were blinded to the ground-truth. The results of ophthalmologists were compared with

those of the transfer models in detecting activated DCs and inflammatory cells in the external

testing sets.

Experimental setup

Five-fold cross-validation was used to select the tuning parameters. With this approach, train-

ing data were randomly split into five subsets. Each time, four subsets were used as training set

and one was withheld as validation set. The process was iterated five times until each of the

five subsets was used as a validation dataset once [29]. The final models were trained on the
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entirety of training dataset, and were used to perform external validation on external testing

set (Fig 4).

The classification outcomes were represented as confusion matrices. Accuracy, sensitivity,

specificity, and G mean of the five DTL models and two ophthalmologists were calculated as

follows:

Accuracy ¼
TP þ TN

TP þ FP þ TN þ FN

Sensitivity ¼
TP

TP þ FN

Specificity ¼
TN

TN þ FP

G mean ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Sensitivity� Specificity
p

where TP, FP, TN, and FN represented the number of true positive, false positive, true nega-

tive, and false negative samples, respectively.

A receiver operating characteristic (ROC) curve that plots the true positive rate (i.e., sensi-

tivity) against the false positive rate (i.e., 1-specificity) was generated to evaluate every model

and ophthalmologist on external validation sets. The closer the ROC curve was to the upper

Fig 4. The detailed model building process. The training dataset consisted of 3453 (86%) in vivo confocal microscopy (IVCM) images. Five-fold cross-validation was
used for parameters tuning. The testing dataset comprised 558 (14%) IVCM images and was used to perform external validation. Area under the curve (AUC), accuracy,
sensitivity, specificity, and Gmean were calculated to evaluate the final performance of the deep transfer learning models.

https://doi.org/10.1371/journal.pone.0252653.g004
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left border, the higher the overall accuracy of the test. The area under the curve (AUC) was cal-

culated for each ROC curve.

Statistical analysis

Data were analyzed using SPSS (SPSS Version 11.0, IBM-SPSS Inc., Chicago, IL, USA) and

MedCalc (MedCalc version 19.7.2, MedCalc Inc., Ostend, Belgium). The AUC represents the

overall performance of the algorithm, where one could distinguish between non-informative

(AUC = 0.5), less accurate (0.5< AUC� 0.7), moderately accurate (0.7< AUC� 0.9), highly

accurate (0.9< AUC< 1) and perfect discrimination (AUC = 1). The AUC was compared

with the chance level (AUC = 0.5). The statistical significance P< 0.05 was considered statisti-

cally significant. Pair-wise comparisons of ROC between the models were made by MedCalc

software according to the method proposed by Delong DM et al [30]. The accuracy, sensitivity

and specificity of models and ophthalmologists were compared by chi-square test. The Bonfer-

roni test was used to correct for multiple comparisons. The significance was set at 0.05/N,

where N is the number of tests used.

Results

A total of 4011 IVCM images were used to train and test the performance of the DTL

models, after the exclusion of 397 images due to poor quality that interfered with reliable

interpretation. Of the 4011 images, 3453 constituted the training set and 558 made up the

external testing set (Fig 4). External validation results of five models and two ophthalmol-

ogists are shown in the confusion matrices (Fig 5). The performance of classifiers in

internal validation study were likely to be optimistic (shown in S2 Table), and better than

their performance when applied to external data; therefore, results of external validation

were considered as the primary evaluation indicators to assess the applicability of the

models.

Detection of activated dendritic cells

The AUC of DTL models in detecting activated DCs ranged from 0.8846 to 0.9646 in the

external validation (Table 1). ROC curves showed that Inception-ResNet V2 transfer model

and ResNet-101 transfer model exhibited excellent diagnostic efficiency (Fig 6A). In this

regard, Inception-ResNet V2 transfer network achieved an AUC of 0.9936 (accuracy,

0.9792; sensitivity, 0.9077; and specificity, 1) and 0.9646 (accuracy, 0.9319; sensitivity,

0.8171; specificity, 0.9517; and G mean, 0.8872) in training and testing datasets, respec-

tively. Likewise, ResNet-101 transfer network detected activated DCs with an AUC of

0.9929 (accuracy, 0.9757; sensitivity, 0.9385; and specificity, 0.9865) and 0.9537 (accuracy,

0.9283; sensitivity, 0.8049; specificity, 0.9496; and G mean, 0.8743) in training and testing

datasets, respectively.

Ophthalmologist A identified activated DCs with an accuracy of 0.9659 (sensitivity, 0.8780;

specificity, 0.9811; and G mean, 0.9281) in testing dataset. Whereas ophthalmologist B had a

diagnostic accuracy of 0.9140 (sensitivity, 0.7683; specificity, 0.9391; and G mean, 0.8494).

Detection of inflammatory cells

The AUC of DTL models in detecting inflammatory cells ranged from 0.9701 to 0.9901 in the

external validation (Table 2). The ROC curves of the five models were almost overlapping with

each other (Fig 6B). Inception-ResNet V2 transfer model obtained the best performance, fol-

lowed by Xception transfer model, as a close second. Inception-ResNet V2 transfer network
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Fig 5. Confusion matrices of external validation in detecting activated dendritic cells (DCs) and inflammatory cells.DCs, dendritic
cells; P: Positive; N: Negative. Confusion matrices of deep transfer learning models and ophthalmologists in detecting activated dendritic
cells (DCs) and inflammatory cells are shown. True positive, true negative, false positive and false negative rates are calculated. Matrix
cells are colored according to the rates.

https://doi.org/10.1371/journal.pone.0252653.g005
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achieved an AUC of 0.9957 (accuracy, 0.9826; sensitivity, 0.9600; and specificity, 0.9906) and

0.9901 (accuracy, 0.9767; sensitivity, 0.9174; specificity, 0.9931; and G mean, 0.9545) in train-

ing and testing datasets, respectively. Xception transfer network diagnosed inflammatory cells

with an AUC of 0.9999 (accuracy, 0.9931; sensitivity, 0.9733; and specificity, 1) and 0.9869

(accuracy, 0.9588; sensitivity, 0.8347;specificity, 0.9931; and G mean, 0.9105) in training and

testing datasets, respectively.

Both ophthalmologists achieved excellent discrimination of inflammatory cells. The accu-

racy of Ophthalmologist A and B in identifying inflammatory cells was 0.9857 (sensitivity,

0.9504; specificity, 0.9954; and G mean, 0.9726) and 0.9391 (sensitivity, 0.8926; specificity,

0.9519; and G mean, 0.9218), respectively.

Table 1. External validation results of five transfer networks and two ophthalmologists in detecting activated dendritic cells (DCs).

Transfer network AUC Accuracy Sensitivity Specificity G mean

mean 95% CI AUC p

VGG-16 0.9364 0.8993–0.9736 < 0.001 0.9176 0.7683 0.9433 0.8513

ResNet-101 0.9537 0.9216–0.9858 < 0.001 0.9283 0.8049 0.9496 0.8743

Inception V3 0.9232 0.8828–0.9637 < 0.001 0.9373 0.8049 0.9601 0.8791

Xception 0.8846 0.8364–0.9330 < 0.001 0.9211 0.6463 0.9685 0.7912

Inception-ResNet V2 0.9646 0.9365–0.9929 < 0.001 0.9319 0.8271 0.9517 0.8872

Ophthalmologist A - - - 0.9659 0.8780 0.9811 0.9281

Ophthalmologist B - - - 0.9140 0.7683 0.9391 0.8494

DCs, dendritic cells; AUC, area under the curve; CI, confidence interval; AUC p, P value of AUC.

https://doi.org/10.1371/journal.pone.0252653.t001

Fig 6. Performance of the deep transfer learning (DTL) models in external validation datasets. (A) shows the receiver operating characteristic (ROC) curves of
five transfer models in identifying activated DCs. The area under the curve (AUC) ranged from 0.8846 to 0.9646. (B) shows the ROC curves of five transfer models in
identifying inflammatory cells. The AUC ranged from 0.9701 to 0.9901.

https://doi.org/10.1371/journal.pone.0252653.g006
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Statistical results

The difference between the AUC and the chance level (AUC = 0.5) was statistically significant

(all P<0.001) (Tables 1 and 2), indicating that the AUC was clearly above chance.

For the detection of activated DCs, pairwise comparisons of AUC showed significant differ-

ences between Inception and Inception-ResNet V2 (P = 0.0062), and between Xception V3

and Inception-ResNet V2 (P = 0.0009). Significant differences for accuracy, sensitivity and

specificity were found among groups (p = 0.014, 0.023 and 0.021 respectively); Bonferroni

analyses indicated that the accuracies of VGG-16 and Xception V3 were significantly lower

than that of ophthalmologist A, the sensitivity of Xception V3 was significantly lower than that

of ophthalmologist A, and the specificity of VGG-16 was significantly lower than that of oph-

thalmologist A, while no differences were found among Inception-ResNet V2, Inception,

ResNet-101 and ophthalmologist A.

For the detection of inflammatory cells, pairwise comparisons of AUC showed significant

difference between VGG-16 and Inception-ResNet V2 (P = 0. 0051). The accuracy, sensitivity

and specificity among groups differed statistically (p = 0.001, 0.003 and< 0.001, respectively).

The accuracy of Inception-ResNet V2 was not statistically different from that of ophthalmolo-

gist A but significantly higher than that of ophthalmologist B. The sensitivity of ResNet-101

was significantly lower than that of ophthalmologist A. The specificities of all transfer models

were not statistically significantly different from that of ophthalmologist A but significantly

higher than that of ophthalmologist B.

Discussion

In this study, DTL models based on five deep neural networks were used to provide a compre-

hensive view of the role of AI in detecting corneal inflammatory components using IVCM

images. The results attained indicated the high efficacy of our transfer systems in identifying

both activated DCs and inflammatory cells, which was comparable to that of human ophthal-

mologists. Given the advantages of technical feasibility and noninvasive nature of the image

acquisition, the intelligent systems have great potential to facilitate the objective assessment of

corneal inflammatory response and the elaboration of individualized treatment plans.

For activated DCs detection, Inception-ResNet transfer network displayed the best classifi-

cation accuracy with an AUC of 0.9646. The images of fungal hyphae were incorporated into

our datasets to increase heterogeneity of the distractors. Hyphae debris were morphologically

similar to atypical DCs, which added to the difficulty of the classification task. In the false-posi-

tive group, nine images were misclassified due to fragmented hyphae with short irregular

Table 2. External validation results of five transfer networks and two ophthalmologists in detecting inflammatory cells.

Transfer network AUC Accuracy Sensitivity Specificity G mean

mean 95% CI AUC p

VGG-16 0.9732 0.9530–0.9936 < 0.001 0.9624 0.8347 0.9977 0.9126

ResNet-101 0.9702 0.9487–0.9916 < 0.001 0.9498 0.7851 0.9954 0.8840

Inception V3 0.9812 0.9641–0.9984 < 0.001 0.9659 0.8512 0.9977 0.9215

Xception 0.9869 0.9726–1.0010 < 0.001 0.9588 0.8347 0.9931 0.9105

Inception-ResNet V2 0.9901 0.9776–1.0030 < 0.001 0.9767 0.9174 0.9931 0.9545

Ophthalmologist A - - - 0.9857 0.9504 0.9954 0.9726

Ophthalmologist B - - - 0.9391 0.8926 0.9519 0.9218

AUC, area under the curve; CI, confidence interval; AUC p, P value of AUC.

https://doi.org/10.1371/journal.pone.0252653.t002
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branches. Increasing the number of these error-prone images in the training set could poten-

tially improve the classification performance.

For inflammatory cells detection, all five networks achieved good results, with Inception-

ResNet showing the best performance. Morphologically, the inflammatory cells present as

small, bright hyper-reflective round dots, and the characteristics are clear and stable. There-

fore, the discrimination task was relatively straightforward, and the overall results were

satisfactory.

There are a few studies that have investigated DTL’s detection ability on IVCM images. Lv

et al [18] developed a DL system to detect fungal hyphea in IVCM images and achieved an

AUC of 0.9875 with an accuracy of 0.9626. Wei et al [19] established a DL-based model to

trace sub-basal corneal nerve and achieved an AUC of 0.96. Our study on DL’s detection of

activated DCs and inflammatory cells in IVCM images also showed similar AUC and accuracy

outcomes as those in previous reports. The neural networks provide optimal structure to learn

and detect local features of complex IVCM image data.

A highlight of this study was the automated assessment of inflammatory cellular elements

in IVCM images. The accuracy of transfer model was comparable to that of experienced oph-

thalmologist and better than under-experienced ophthalmologist. It has been reported that

activated DCs and inflammatory cells are important biomarkers for monitoring inflammatory

activity and clinical severity of corneal diseases [7,8]. Our DTL models proposed automated

solutions for the evaluation of corneal inflammatory cellular components, which may support

under-experienced ophthalmologists in decision making regarding the management of cor-

neal diseases. Most importantly, the present study laid the foundations for the future investiga-

tion on the fully automated IVCM images analysis system.

The present study contrasted five pre-trained deep learning algorithms, and the results

revealed that Inception-ResNet V2 transfer network has an advantage over the others. On the

one hand, the hybrid Inception module of Inception-ResNet allows for multiple convolution

and pooling operations in parallel. Concatenating the results gives rise to better image repre-

sentation. On the other, the use of residual learning solves the degradation problem, which

facilitates the training of substantially deeper neural networks. Hence, Inception-ResNet V2

could obtain outstanding performance.

One of the most innovative aspect of this study was the use of DTL technique. Although

4011 IVCM images were included in this study, the size of the dataset was not yet sufficient to

meet the enormous demands for data to train a complete deep learning model. Transfer learn-

ing brings two main advantages: it requires far less data to achieve equal or even better perfor-

mance, and it drastically shortens the training time. We divided the pre-trained network into

two parts, the former part was transferred to be the feature extractor of the transfer model and

the last layer was modified. It was based on the widely recognized view that the features

extracted by the front-layers of the network are versatile [20,31]. Compared with traditional

deep learning models [32], our approach improved the performance with a higher training

start, a faster convergence rate and a better solution accuracy.

External validations were performed in this study. Images from the same patient had high

similarity. Thus, random partition of training and validation datasets could lead to a biased

high accuracy. To avoid this bias, the images of our external datasets were all obtained from

new patients to warrant a stringent validation.

There are some limitations that should be considered. First, our models had high specificity

but relatively low sensitivity. As we know, the infiltration of inflammatory cells and activation

of DCs are non-specific manifestations of corneal inflammatory diseases. In this light, sensitiv-

ity is important because a false-negative result represents potentially denying a patient neces-

sary special care. It is desired to introduce better models with higher sensitivity to ensure a
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minimum false-negative rate. Second, although we have collected as many images as possible,

the clinical situation is undoubtedly more complicated. Therefore, more diversified images

with heterogeneous background should be used to train robust models in follow-up studies.

Third, binary classification models were established to detect whether an IVCM image exhibits

inflammatory components, but it cannot calculate the density of the inflammation-related

cells. There are two potential solutions to this problem: a density-based multi-classification

method and an image segmentation method. For option one, images should be annotated as

multi-category labels such as “no”, “low-density”, “medium-density” and “high-density”.

Multi-class classification models will be used for the stratified analysis of density. For option

two, image segmentation algorithms will be used to segment the inflammation-related cells

from the IVCM images and thereby allows for automated cell counting. These approaches will

be included in our future research direction.

In conclusion, this study developed accurate DTL-based models for detecting activated

DCs and inflammatory cells using IVCM images. These findings suggest that DTL is useful in

the objective assessment of corneal inflammation in a time-efficient manner. The models can

be used as an assistant tool for the clinical assessment of corneal diseases.
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