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Abstract 

Drug treatment induces cell type-specific transcriptional programs, and as the number 
of combinations of drugs and cell types grows, the cost for exhaustive screens 
measuring the transcriptional drug response becomes intractable. We developed 
DeepCellState, a deep learning autoencoder-based framework, for predicting the 
induced transcriptional state in a cell type after drug treatment, based on the drug 
response in another cell type. Training the method on a large collection of 
transcriptional drug perturbation profiles, prediction accuracy improves significantly over 
baseline and alternative deep learning approaches when applying the method to two 
cell types, with improved accuracy when generalizing the framework to additional cell 
types. Treatments with drugs or whole drug families not seen during training are 
predicted with similar accuracy, and the same framework can be used for predicting the 
results from other interventions, such as gene knock-downs. Finally, analysis of the 
trained model shows that the internal representation is able to learn regulatory 
relationships between genes in a fully data-driven manner. 

 

Introduction 

The transcriptional response to drug treatment is cell type-specific, with some drugs 

eliciting similar effects across lineages and others evoking a range of responses 

depending on the cell type1,2. High throughput profiling of the transcriptional effects of 

drug treatment has proven to be useful for analysis of drug mode of action3, drug 

repurposing4, and predicting off-target effects from drug treatment5. Although large 

repositories of gene expression profiles for a multitude of drug treatments in multiple cell 

types are available6,7, it is not combinatorially feasible to profile all the existing drugs in 
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all the relevant cell types, motivating a need for methods that can accurately predict cell 

type-specific drug responses. 

An autoencoder neural network is an unsupervised learning algorithm that finds an 

efficient compact representation of data by compressing and then reconstructing the 

original input. The primary goal of an autoencoder is dimensionality reduction. 

Autoencoders can have different architectures. However, the crucial feature is a 

bottleneck layer (latent layer), which has lower dimensionality compared to the input 

layer. Because of the bottleneck, only important features are captured by the model. 

Combining this property together with the addition of noise to the input allows for the 

construction of denoising autoencoders to build robust models from high-dimensional 

data. A number of recent studies have successfully applied autoencoders to biological 

problems, where deep autoencoders were used to denoise single-cell RNA-seq data 

sets8,9, analyze10,11 and predict12,13 gene expression, and to study the transcriptomic 

machinery14. Autoencoders have been applied to perturbation response modeling as 

well, focusing on single-cell data15, where for each perturbation, a large number of 

expression profiles are available with relatively low variance within sets of profiles from 

the same perturbation.  

A particular application of autoencoders is DeepFake technology, mainly used in image 

and video processing applications to generate synthetic media where the likeness of 

one person is replaced by that of another one by training an autoencoder to compress 

the original input into a lower dimension latent space16. The same encoder part is used 

to compress media depicting two or more people, whereas separate decoders are used 

to decompress the likeness of each person (Supplementary Figure 1). This enables 

similar facial expressions or actions to be encoded in a similar way in the latent space 

while at the same time allowing for the reconstruction of person-specific facial details on 

the decoder side. 

Considering that deep learning methods to date have not been widely applied to 

transcriptome perturbation analysis and prediction based on relatively small data sets 

with high variance, where each measurement represents a distinct state, we developed 

DeepCellState, an autoencoder-based framework inspired by DeepFake architecture, 

for predicting cell type-specific transcriptional drug response. Using a common decoder 

and separate decoders for each cell type (Figure 1a), the method accurately predicts 

the response in one cell type based on the response in another, with prediction 

accuracy increasing as the framework is generalized to multiple cell types. 

DeepCellState achieves significant improvement over the baseline and alternative deep 

learning approaches. Cell types not used in training can also be used as the basis for 

prediction, and the system is also able to predict the response of the entire drug families 

not seen by the network. Additionally, the same framework can be applied to predict the 

effects of loss of function (LoF) experiments. Analyzing the trained network, we find that 

it captures physical interactions between transcription factors and the target genes they 

regulate. 
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Fig. 1 Overview of the proposed framework. a. Training and prediction procedures of DeepCellState. 
Transcriptional profiles are encoded by a shared encoder that captures the drug response in a cell neutral way. 
The latent representations of the drug responses are decoded by cell-specific decoders, which reconstruct the 
original input in a cell type-specific way. After the shared encoder and decoders are trained, the response to a drug 
in a cell type can be predicted by using the drug’s response in another cell type. b. The architecture of the encoder 
and the decoders used in DeepCellState. Dropout is applied to the input layer, forcing the model to denoise the 
input. The input is encoded as a vector of size 128 with a sparsity constraint enforced by L1 regularization.  The 
model also employs skip connections from the dropout layer directly to the output layer, allowing some of the input 
to be directly copied to the output during training. 
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Results 

DeepCellState network architecture for predicting cell type-specific drug 

response 

The network architecture of DeepCellState, featuring a common encoder and cell type-

specific decoders, is shown in Figure 1b. The encoder part uses two dense layers, with 

dropout applied to the input for increased generalization capabilities by forcing the 

model to denoise the input17. This is followed by a latent vector, which in turn is the 

input for the decoder, consisting of two layers with the same dimensions as the dense 

layers in the encoder. The encoder side is trained using transcriptional drug response 

data from multiple cell types, whereas distinct decoders are trained for each cell type 

separately. Additional details about the network architecture and training strategy are 

provided in Methods.  

 

 

Initial training and evaluation of model on two cell types 

We initially developed the framework for two cell types, retrieving 12737 and 12031 

transcriptional profiles from the LINCS database6 measuring the drug perturbation 

response in MCF-7 and PC-3 cell lines respectively, to use for initial training and 

evaluation (Methods). The transcriptional response profiles, measured at 978 

“landmark genes” on the L1000 platform, were averaged across treatment time and 
doses in order to decrease noise3. We only kept profiles of drugs that were available for 

both MCF-7 and PC-3, resulting in 1750 averaged profiles for each cell type. 

A naïve baseline method for predicting the transcriptional response in a cell type after 

treatment with a specific drug is to predict that the response to that drug will be the 

same as in another cell type. After training our network and using 10-fold cross-

validation, holding out 10% of drugs, we obtained an average Pearson correlation 

coefficient (PCC) of 0.60 between predicted and actual treatment response to drugs not 

seen by the network, a significant improvement (p<1e-300, t-test) compared to the 

baseline average correlation of 0.28 between the responses in the input and output cell 

types (Figure 2a,b,c,d, Supplementary Figure 2), corresponding to an average fold-

increase of 2.14 over baseline (Figure 2b). To make sure that the training was not 

biased by being exposed to drugs with similar targets, we next revised the testing 

strategy to hold out entire drug families with the same modes of action18, yielding similar 

results (Supplementary Figure 3a, Supplementary Table 1, Methods). 
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Fig. 2 Evaluation of the DeepCellState performance. a. 10-fold cross-validation results. DeepCellState 
performance compared to the baseline. b. Distribution of fold-change in DeepCellState performance over baseline 
for predicting MCF-7 (blue) and PC-3 (red) response. c. From top to bottom pentobarbital response in PC-3 
(baseline), MCF-7 pentobarbital response predicted by DeepCellState based on the PC-3 response, and the 
observed MCF-7 response (ground truth). d. Scatter plot of individual gene values predicted for pentobarbital 
response compared to the observed response in MCF-7 cells. e. Comparison of DeepCellState and baseline 
performance for prediction of statin response from an external data set. f. Comparison of predicted anticancer drug 
responses. DeepCellState* represents results obtained by applying transfer learning: performing additional training 
on 14 drugs and predicting one which is repeated 15 times each time leaving out one drug. g. Comparison with 
alternative methods for paired data modeling, using PC-3 responses to predict MCF-7 samples.  
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Generalization of the method to multiple cell types 

Proceeding to generalize the method to multiple cell types, we incrementally added 

transcription profiles from A375, HA1E, HT29, HELA, and YAPC cells (1796, 1796, 

1750, 1570, and 1570 number of profiles respectively after averaging across treatment 

times and dosages), obtaining increased performance when the prediction was 

averaged over multiple input cell types compared to the two cell types case (PCC=0.66, 

p=1.88e-59, Supplementary Figure 3b). In comparison, a previously developed tensor-

based method treating cell type-specific response prediction as an imputation problem2 

was reported to achieve an average correlation of 0.54 using multiple cell types as 

input. We also tested the prediction capability using completely unseen cell types as 

input, obtaining lower performance, yet still significantly higher than baseline 

(Supplementary Figure 3c, PCC=0.49 compared to baseline PCC=0.28, p<1e-300).  

Evaluation of trained model on external data and application of transfer learning 

To further validate the performance of DeepCellState, we evaluated its predictive 

capabilities on independently generated data sets on expression profiling platforms 

other than the L1000 platform used for the training data. In the first dataset we used, the 

expression profiles of four statins were measured in HepG2, MCF-7, and THP-1 cells19 

using CAGE technology. Using HepG2 profiles as input and predicting MCF-7 

response, the DeepCellState predictions showed a correlation of 0.43 with the true 

response in MCF-7 cells (1.64-fold over baseline, p=0.037, Supplementary Table 2, 

Figure 2e). Next, we tested our method using data from a study measuring the 

response to 15 anticancer agents20 on Affymetrix Human Genome U133A 2.0 Array 

platform, achieving 0.41 PCC (Figure 2f) compared to 0.28 PCC for baseline (1.46-fold 

improvement, p=0.026, Supplemental Table 3). Performance on this external dataset 

could be further improved through transfer learning, performing additional training of our 

model on a subset of the external data set. To this end, we used the model trained on 

the LINCS data and additionally trained it on 14 drugs from the anticancer set to predict 

the effects of treatment with the 15th drug. This was repeated 15 times, each time 

leaving out one drug, resulting in an average performance of 0.56 PCC (p=4.04e-06 

compared to baseline). This result suggests that the transfer learning approach is useful 

to complete a small drug response data set which is not large enough to train the deep 

learning model by itself. 

 

Prediction of transcriptional effects of loss of function 

We further hypothesized that the DeepCellState approach may be useful for predicting 

the response to cellular perturbations other than drug treatment. To test this, we added 

transcriptional profiles from loss of function (LoF) experiments from the same database 

to the training set. Using the updated set, we obtained an average correlation of 0.56 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 25, 2021. ; https://doi.org/10.1101/2020.12.14.422792doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.14.422792
http://creativecommons.org/licenses/by-nc-nd/4.0/


(corresponding to an average fold-increase over baseline of 1.6, p<1e-300, 

Supplementary Figure 3d) on the LoF experiments, the lower performance compared 

to drug perturbations likely due to that the number of available profiles for LoF was 

substantially lower than the number of drug treatment profiles (10230 LoF profiles in 

total compared to 24768 drug perturbation profiles for MCF-7 and PC-3 before 

averaging). 

Comparison with alternative approaches 

We benchmarked DeepCellState against other potential methods to predict the cell 

response given the response in another cell. For this purpose, we focused on paired 

MCF-7 and PC-3 samples, with 30% data used for the test set. Recently, variational 

auto-encoders (VAEs) were used to deal with the paired biological data21. Anchor loss 

was used in this approach to ensure that paired samples are encoded closely in the 

latent space. Generative adversarial networks (GANs) were also applied to paired and 

semi-paired biological data22,23. The authors of MAGAN23 proposed a dual GAN setup 

with a special correspondence loss for the labeled data. In the dual GAN framework, 

each generator learns a mapping from one type of data to another in order to generate 

increasingly realistic output that cannot be distinguished from real data by a 

discriminator.  

scGen15 was proposed to predict single-cell perturbation responses based on VAE 

architecture, where an encoder is used to learn the semantic embedding of both the 

normal cell state and the stimulated state. The difference between such embeddings 

could then be considered as the embedding of the drug stimulation. When applying the 

method onto new cell types, the authors proposed to perform latent space vector 

arithmetic, adding the stimulation embedding to the normal cell embedding, and to pass 

the resulting vector through the decoder, obtaining the predicted responses. Since we 

have multiple drugs and the amount of data for each drug is limited, we modified the 

method to learn the difference between different cell types (Methods).  

Comparison of the tested methods on the benchmark dataset is shown in Figure 2g. 

We were unable to obtain a good performance using the dual GAN approach 

(PCC=0.26), likely due to the training data being too small. The data for each cell type 

has very high variance, making it hard for a discriminator to learn the difference 

between simulated and real cell response. scGen achieved an average correlation of 

0.22, the main reason being that scGen is designed specifically for one kind of 

stimulation. However, in the problem we are trying to solve, multiple drugs and multiple 

cells need to be handled simultaneously and scGen showed limited capacity in handling 

this multi-task problem. The VAE using anchor loss obtained significant improvement 

over the baseline (PCC=0.48 compared to baseline PCC=0.28), however, the profiles 

predicted by DeepCellState were considerably more accurate (PCC=0.61, p<2.09e-40). 

After these experiments, we attempted to incorporate VAE as well as GAN into the 
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DeepCellState approach, but the improvement was not significant enough to justify the 

added complexity.  

Effect of training set size and latent layer size on performance 

We next investigated more deeply the relationship between the number of input profiles 

used in training and the prediction performance. Results showed that significant 

improvement over baseline was possible already for a small number of training 

examples, with higher performance as the number of training examples increased 

(Figure 3a).To study the impact of the latent layer size on the performance of 

DeepCellState, we tested five different layer sizes (8, 16, 32, 64 and 128 neurons) and 

trained our model 10 times for each size. Average results for the test set (shown in 

Figure 3b) showed that performance started to drop significantly at a latent layer size 

below 32. 

Biological interpretation of trained model 

We set out to analyze general and cell type-specific regulatory properties captured by 

the trained model, expecting that the latent vector itself should capture a general 

response to the input perturbations, whereas the decoder parts should represent 

behavior related to functionality specific to each cell type. To this end, we computed the 

PCC between the output of the nodes in the latent layer for the drugs in the test set 

between MCF-7 and PC-3 cells. Indeed, although considerably different, the inputs from 

the same drug in the two cell types consistently yielded similar output in the latent layer 

as illustrated in a t-SNE plot (Figure 3c) in the input and the latent space, where drugs 

with profiles divergent for different cell types in the input space (Figure 3c, left panel) 

could be observed to be encoded using very similar latent representations (Figure 3c, 

right panel). Similarly, a matrix containing correlations between latent responses for 

MCF-7 and PC-3 cells, sorted by the magnitude of the correlation of the input profiles, 

showed a consistently strong signal on the diagonal (Figure 3d), independent of the 

correlation between the responses in the input space. 

It has been shown previously that autoencoders are able to capture transcription factor 

(TF) gene regulatory relationships14,24. To test if this was the case also for the 

DeepCellState framework, we used TF target gene lists from ChIP-Atlas25 which include 

MCF-7 specific targets. After filtering, we computed the overlap between the targets 

implied by our model (see Methods) and targets based on ChIP-seq binding data, 

obtaining average fold enrichment of 2.5 (Figure 3e), with higher enrichment for the 

MCF-7 targets of four out of six transcription factors, compared to the general set of 

targets according to ChIP-Atlas. Identification of the most important genes in the cell 

type specific decoder response (see Methods) revealed enrichment of biological 

processes26 that matched known properties of each cell type (Figure 3f). For the top 

genes common to the decoders, the high ranking hits were enriched for terms including 

“response to abiotic stimulus” (p=0.0144) and “cellular response to chemical stimulus” 
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(p=0.018), expected since the model was trained using drug profiles (Supplemental 

Table 4). Additionally, several significantly enriched terms (p=1.12e-04, p=2.32e-04) 

were related to positive regulation of cell death and apoptotic process, likely due to 

some doses being toxic as previously observed27. Conversely, top genes of the MCF-7 

decoder included several genes involved in mammary gland development (SRC, 

STAT5B, EGF). Similarly, BMP4, GLI2, and FGFR2, which are known to be involved in 

prostate morphogenesis, were among the top important genes of the PC-3 decoder. 

Taken together, these results suggest that the trained network is able to capture known 

biological processes and regulatory relationships, and that additional, deeper analysis 

may reveal relationships previously unnoticed. 

 

Fig. 3 Analysis of the developed method. a. Average PCC obtained for different size subsets of the training set. b. 
Dependency between the number of latent nodes and the average PCC. c. t-SNE clustering of profiles in the input 
and the latent space. d. Matrix displaying latent vector response correlation. Drugs on each axis are sorted from 
high to low correlation in the input space. e. Overlaps of top target genes of TFs based on chromatin 
immunoprecipitation data compared to target gene prediction based on DeepCellState trained model. f. Heatmap 
of most important genes for MCF-7 and PC-3 decoders.  
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Discussion 

We here present DeepCellState, an autoencoder-based method that can successfully 

predict the transcriptional drug response in a cell type based on the response in another 

cell type. This problem was addressed in a recently proposed method that attempts to 

fill the gaps remaining in the combinatorial drug-cell space2 through a computational 

framework that first arranges existing profiles into a three-dimensional array (or tensor) 

indexed by drugs, genes, and cell types, and then uses either local or global information 

to predict unmeasured profiles. Different approaches were evaluated, with the best one 

achieving an average correlation of 0.54 compared to 0.66 for DeepCellState. One 

issue with the proposed tensor based method is that the performance strongly depends 

on the density of the constructed tensor, meaning that cell type-specific prediction of the 

response of a particular drug is heavily dependent on the amount of profiles for that 

same drug in other cell types. In contrast, the DeepCellState framework is capable of 

predicting the response of drugs never seen previously by the network and can also 

make predictions that improve significantly over baseline using the response in 

completely unseen cell types as input. Our results on even a relatively small amount of 

LoF data suggest that the approach may be able to capture changes in cellular state in 

a more general way. 

Previous autoencoder-based methods for analyzing transcriptome and other data 

capturing cellular states have mainly focused on predicting cell state at the single-cell 

level15,23,28. Unlike these methods, DeepCellState can handle a large number of 

different perturbations, without requiring many data points for each. In a recent 

example, an autoencoder-based approach was used to translate between different 

domains of the single-cell data21, specifically between imaging and sequencing data. 

While the authors suggested the use of the approach for other types of translations, one 

requirement mentioned was that data come from the same cell population. With 

DeepCellState, we explicitly set out to predict the cell state in a particular cell type 

based on the state in one or more other cell types. Thus, we expect that the method can 

be readily applied to data sets measuring cell quantifiable characteristics other than 

transcriptome, e.g. imaging, Hi-C, or ATAC-seq data, with samples coming from 

different cell types. 

The results here serve as a proof-of-principle and may be improved by various 

modifications to the architecture and training strategy. Additionally, the performance 

may be increased by measuring a larger set of genes than the 978 “landmark genes” 
measured on the L1000 platform, or by adding measurements of additional 

transcriptional features such as non-coding RNAs and transcribed enhancers. 

Performance is also expected to increase as more data capturing additional cellular 

states becomes available, especially if produced under controlled and standardized 

experimental conditions. 
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Methods 

 

LINCS data processing 

Drug response expression profiles from LINCS phase 2 dataset (GSE70138) were used 

for training and evaluation. The latest level 5 data (signatures from aggregating 

replicates and converted to z-scores) was used (downloaded May 27, 2020). There are 

usually several treatment times and doses for each drug treatment; we averaged the 

profiles for the same drug across different timepoints and doses to reduce noise. 

Finally, the profiles were normalized to the range from -1 to +1 based on the whole data 

matrix.  

 

 

Model architecture and training 

The architecture of the autoencoder used in our method is shown in Figure 1b. The 

encoder consists of two dense layers with 512 and 256 neurons respectively. Dropout is 

applied to the input to increase the generalization capabilities of the model. The dropout 

rate is 0.5 which means half of the input genes will be set to 0 during training. This 

makes our model act as a denoising autoencoder since all values in the output layer 

need to be predicted. The last layer of the encoder is flattened and fed into a dense 

layer with 128 nodes, which represents our latent vector. The decoder takes the latent 

vector as an input and consists of two layers with 256 and 512 neurons respectively. 

The output layer has a direct connection to the dropout layer. The motivation is that 

some of the input can be “leaked” into the output29.  

 

We use L1 regularization for the latent layer, which acts as a sparsity constraint on the 

activity of the latent representations. Activation function is leaky relu30 with alpha equal 

to 0.2 for all layers except the output layer, which uses tanh activation. The optimizer 

used is ADAM31 with a learning rate equal to 1e-4 and batch size is 128. Validation set 

is employed for early stopping with patience of 5 epochs.  

 

To initialize our model, we first train a regular autoencoder using profiles of all cell types 

as both input and output. Then we create a separate decoder for each cell type by 

copying the weights from the autoencoder. These decoders are trained one by one 

together with the shared encoder, where the inputs are profiles from all cell types and 

the outputs are profiles with the decoder’s cell type only. In the final stage, when there 

has been no improvement in the validation set for 5 epochs, the encoder weights are 

frozen and only decoders are trained until there is no improvement. When making a 

prediction for a certain drug and cell combination, any cell profile can be used as an 

input. The cell specific decoder is used to make the final prediction.  

 

DeepCellState is implemented in Python 3 using TensorFlow32 library and the models 

were trained using NVIDIA Quadro RTX 6000 GPU. Training two cell decoders takes 
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about one hour to complete, however new predictions can be made in less than a 

second.  

 

External data processing 

We trained an encoder and three decoders (HepG2, MCF-7 and PC-3) for external 

validation. The common drugs from the two external data sets were removed from the 

training and validation sets. The statin data set was generated by converting CAGE 

data to gene expression data by mapping to GENCODE version 34. CAGE tags in a 

1000 base pair window around a landmark gene start were summed. We added a small 

value c = 2 to each gene value to avoid problems when calculating log fold change. 

Each generated profile was multiplied by a million and divided by the total sum of the 

profile. The resulting profiles for controls and treatments were averaged across 

replicates followed by a computation of log fold change after treatment for each gene. 

For the anticancer data we directly calculated log fold change between the average 

control and treatment values. In both statin and anticancer tests, we only used landmark 

genes, setting missing gene values to 0. Only the 24 h time point was used as it is the 

most common time point in LINCS phase 2 compound data (96% of the data). 

 

Methods related to analysis/interpretation of model 

Since it is hard to directly learn the inner-workings of the deep learning model, we study 

it by feeding in different inputs and analyzing the output. To calculate the top genes for 

each decoder, we iterated through all the data, for each profile using 100 random genes 

subsets of size 100 to input in the model. The gene sets which performed the best to 

make the prediction were considered to be important. For each profile we picked the top 

10 subsets that performed the best. After doing this for all the profiles, we ranked the 

genes based on their frequency in these subsets. 

  

For the TF analysis, we downloaded target genes for 22 TFs profiled in MCF-7 cells 

from ChIP-Atlas25. We filtered them by retaining TFs that were upregulated in at least 

one drug treatment profile (i.e. has value > 0.5), and that had at least 50 targets in 

ChIP-Atlas (with targets defined as genes having a binding score of at least 100). This 

resulted in 6 remaining TFs and we picked the top 50 target genes for each. To make a 

prediction of target genes using DeepCellState, we started with a random profile and 

performed gradient descent optimization to find the input profile that maximizes the TF. 

As the obtained profile will also have other upregulated genes, the top 50 with the 

highest values are the DeepCellState prediction for the TF targets. For each TF we 

calculated fold enrichment and p-values using binomial statistic for the overlap between 

the DeepCellState set and the ChIP-Atlas set, using a similar method as described on 

the PANTHER website26. 
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Comparison with alternative approaches 

 

scGen15 was designed to predict single-cell perturbation responses based on VAE 

architecture, where an encoder 𝑓 is used to learn the semantic embedding, 𝑧, of both 

the normal cell state and the stimulated state. The difference between such embeddings 

could then be considered as the embedding of the drug stimulation. When applying the 

method onto new cell types, the authors proposed to perform latent space vector 

arithmetic, adding the stimulation embedding, 𝛿, to the normal cell embedding, and to 

pass the resulting vector through the decoder, ℎ, obtaining the predicted responses.  

Mathematically, we have  𝛿𝑛2𝑠 = 𝑎𝑣𝑔(𝑧𝑠𝑡𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑) − 𝑎𝑣𝑔(𝑧𝑛𝑜𝑟𝑚𝑎𝑙), 𝑥𝑠𝑡𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑′ = ℎ(𝑓(𝑥𝑛𝑜𝑟𝑚𝑎𝑙) + 𝛿𝑛2𝑠), 

where 𝛿𝑛2𝑠 is the stimulation embedding; 𝑧𝑠𝑡𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 is the embedding of the stimulated 

cell profile; 𝑧𝑛𝑜𝑟𝑚𝑎𝑙 is the embedding of the normal cell profile; 𝑥𝑛𝑜𝑟𝑚𝑎𝑙 is the input 

normal cell profile; 𝑥𝑠𝑡𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑′ is the predicted stimulated cell profile. 

 

Regarding our task, since we have multiple drugs and the amount of data for each drug 

is limited, we modified the method to learn the difference between different cell types, 

instead of the difference between conditions.  

Consequently, we have 𝛿𝑝2𝑚 = 𝑎𝑣𝑔(𝑧𝑚𝑐𝑓7) − 𝑎𝑣𝑔(𝑧𝑝𝑐3), 𝑥𝑚𝑐𝑓7′ = ℎ(𝑓(𝑥𝑝𝑐3) + 𝛿𝑝2𝑚). 

Both the encoder, 𝑓, and decoder, ℎ, are trained using the standard VAE training 

protocol described in the original paper15 with our data as discussed above.  

 

MAGAN23 was developed to tackle the problem of aligning corresponding sets of 

samples. MAGAN is composed of two GANs, each with a generator network 𝐺 that 

takes as input 𝑋 and outputs a target dataset 𝑋′. For the minibatch (𝑥1, 𝑥2), the loss for 

generator 𝐺12 is defined as sum of reconstruction loss, discriminator loss, and 

correspondence loss: 𝑥12 =  𝐺12(𝑥1), 𝑥121 =  𝐺21(𝑥12), 𝐿𝐺1 =  𝐿𝑟 + 𝐿𝑑 + 𝐿𝑐, 𝐿𝑟 = 𝐿(𝑥1, 𝑥121), 𝐿𝑑 = −𝔼𝑥1~𝑃𝑥1 [log 𝐷2(𝑥12)], 𝐿𝑐 = 𝐿(𝑥1, 𝑥12). 
The loss for discriminator 𝐷1 is defined as: 𝐿𝑑 = −𝔼𝑥1~𝑃𝑥1 [log 𝐷1(𝑥1) + log 𝐷1(𝑥121)] − 𝔼𝑥2~𝑃𝑥2 [log(1 − 𝐷1(𝑥21))]. 
 

Since in our task all the data are paired, we used the following correspondence loss, as 

suggested in the original paper23:  
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𝐿𝑐 = 𝑀𝑆𝐸(𝑥𝑝𝑐3→𝑚𝑐𝑓7, 𝑥𝑚𝑐𝑓7) + 𝑀𝑆𝐸(𝑥𝑚𝑐𝑓7→𝑝𝑐3, 𝑥𝑝𝑐3). 
We used the total loss to train two generators, 𝐺𝑝𝑐3→𝑚𝑐𝑓7 and 𝐺𝑚𝑐𝑓7→𝑝𝑐3, together with 

two discriminators, 𝐷𝑝𝑐3 and 𝐷𝑚𝑐𝑓7.  

 

To implement VAE with anchor loss, we have trained a standard VAE with two decoders 

and employed the following loss to ensure that all the 𝑚 paired samples are encoded 

close to each other by encoder 𝐸 in the latent space: 𝐿𝑎𝑛𝑐ℎ𝑜𝑟 = ∑|𝐸(𝑥𝑖,𝑝𝑐3) − 𝐸(𝑥𝑖,𝑚𝑐𝑓7)|.𝑚
𝑖=1  

 

 

 

Data and code availability 

Trained models, code to generate them, and code for analysis and figures described in 

this study are available at the following GitHub repository: 

https://github.com/umarov90/DeepCellState. All data used in training and validation is 

publicly available through databases referenced above. 
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