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We propose a definition of the asymptotic phase for quantum nonlinear oscillators from the

viewpoint of the Koopman operator theory. The asymptotic phase is a fundamental quantity

for the analysis of classical limit-cycle oscillators, but it has not been defined explicitly for

quantum nonlinear oscillators. In this study, we define the asymptotic phase for quantum

oscillatory systems by using the eigenoperator of the backward Liouville operator associated

with the fundamental oscillation frequency. By using the quantum van der Pol oscillator with

Kerr effect as an example, we illustrate that the proposed asymptotic phase appropriately

yields isochronous phase values in both semiclassical and strong quantum regimes.

Spontaneous rhythmic oscillations and synchronization are observed in a wide vari-

ety of classical rhythmic systems, and recent progress in nanotechnology is facilitating

the analysis of quantum rhythmic systems. The asymptotic phase plays a fundamental

role in the analysis of classical limit-cycle oscillators, but a fully quantum-mechanical

definition for quantum limit-cycle oscillators has been lacking. In this study, we pro-

pose a definition of the asymptotic phase for quantum nonlinear oscillators, which

naturally extends the definition of the asymptotic phase for classical stochastic os-

cillatory systems [1] from the Koopman-operator viewpoint [2] and provides us with

appropriate phase values for characterizing quantum synchronization.
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I. INTRODUCTION

Synchronization of spontaneous rhythmic oscillations are widely observed in nature [3–8]. It

has been extensively studied in a variety of classical systems in physics, chemistry, and biology.

Recently, much progress has been made in the experimental realization of synchronization in micro-

and nanoscale systems, such as nanoelectromechanical oscillators [9], micro lasers [10], spin torque

oscillators [11], and optomechanical oscillators [12]. Stimulated by the experimental developments,

quantum synchronization has attracted much attention recently [13–41] and theoretical investiga-

tions of quantum signatures in synchronization, such as quantum fluctuations [13–16, 31], quan-

tum entanglement [18–20], discrete nature of the energy spectrum [21–23], and effects of quantum

measurement [24–28], have been carried out. Experimental realizations of quantum phase synchro-

nization in spin-1 atoms [29] and on the IBM Q system [30] have also been reported recently.

In classical deterministic systems, spontaneous rhythmic oscillations are typically modeled as

stable limit cycles of nonlinear dynamical systems. The asymptotic phase [3–7], defined by the

oscillator’s vector field and increases with a constant frequency in the basin of the limit cycle,

plays a central role in analyzing synchronization properties of limit-cycle oscillators. It is the basis

for phase reduction [3–8], which gives low-dimensional phase equations approximately describing

the oscillators under weak perturbations. Recently, it has been clarified that the asymptotic phase,

which was originally introduced from a geometrical viewpoint [3], has a natural relationship with

the Koopman eigenfunction associated with the fundamental frequency of the oscillator [2, 42–45].

For classical stochastic oscillatory systems, Thomas and Lindner [1] proposed a definition of

the asymptotic phase in terms of the slowest decaying eigenfunction of the backward Fokker-

Planck (Kolmogorov) operator describing the mean first passage time, which appropriately yields

isochronous phase values that increase with a constant frequency on average even for strongly

stochastic oscillations, in a similar way to the ordinary asymptotic phase for deterministic oscil-

lators. We recently pointed out that their definition can be considered a natural extension of the

deterministic definition from the Koopman operator viewpoint [2] (see [46–48] for the details of

the stochastic Koopman operator).

The classical definitions of the asymptotic phase are applicable to quantum nonlinear oscillators

in the semiclassical regime, where the system is described by a stochastic differential equation for

the phase-space state along a deterministic classical trajectory under the effect of small quantum

noise [2, 16, 31]. However, in the stronger quantum regime, we cannot rely on the semiclassical

approximation and how to define the asymptotic phase in a fully quantum-mechanical manner is
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an open question. In this study, we propose a definition of the asymptotic phase for quantum

nonlinear oscillatory systems by using the eigenoperator of the adjoint Liouville operator, which is

a counterpart of the backward Fokker-Planck operator in classical stochastic systems. We illustrate

the validity of our definition by using a quantum van der Pol oscillator with quantum Kerr effect

in both semiclassical and strong quantum regimes.

II. ASYMPTOTIC PHASE FOR CLASSICAL OSCILLATORY SYSTEMS

In this section, we briefly review the definitions of the asymptotic phase for deterministic [3–

7, 43–45] and stochastic [1, 2] classical oscillatory systems.

A. Deterministic oscillatory systems

Consider a deterministic dynamical system

Ẋ(t) = A(X(t)), (1)

whereX(t) ∈ RN is the system state at time t, A(X) ∈ RN is a vector field representing the system

dynamics, and (̇) represents time derivative. We assume that this system has an exponentially

stable limit-cycle solution X0(t) with a natural period T and frequency Ωc = 2π/T , satisfying

X0(t+ T ) = X0(t), and denote its basin of attraction as B ⊆ RN . The asymptotic phase Φc(X) :

B → [0, 2π) is defined such that A(X) · ∇Φc(X) = Ωc is satisfied for ∀X ∈ B, where ∇ = ∂/∂X

represents the gradient with respect to X [3–7]. The asymptotic phase φ(t) = Φc(X(t)) of the

system state X(t) then obeys

φ̇(t) = Φ̇c(X(t)) = A(X(t)) · ∇Φc(X(t)) = Ωc, (2)

i.e., φ always increases with a constant frequency Ωc as X evolves in B. Thus, the asymptotic

phase Φc gives a nonlinear transformation of the system state X to a phase value φ such that

the dynamics of φ takes a simple linear form, φ(t) = Ωct + const. The simplicity of the phase

equation (2) has facilitated detailed studies of synchronization and collective dynamics in coupled-

oscillator systems [3–7]. The level sets of Φc(X) are called isochrons.

The linear operator A = A(X) · ∇ in the definition of the asymptotic phase Φc(X) is the

infinitesimal generator of the Koopman operator describing the evolution of observables for the

system described by Eq. (1) (see Refs. [42–45] for details). The complex exponential Ψc(X) =

eiΦc(X) of Φc(X) is an eigenfunction of A with the eigenvalue iΩc, namely, it satisfies the eigenvalue
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equation AΨc(X) = iΩcΨc(X). Therefore, the asymptotic phase Φc(X) has a natural operator-

theoretic interpretation as the argument of the Koopman eigenfunction Ψc(X) associated with the

eigenvalue iΩc, characterized by the fundamental frequency Ωc of the oscillator [42–45]. We can

thus define the asymptotic phase by using the Koopman eigenfunction Ψc(X) of A as

Φc(X) = arg Ψc(X). (3)

B. Stochastic oscillatory systems

For stochastic oscillatory systems, we cannot use the deterministic limit-cycle solution in defin-

ing the asymptotic phase unless the noise is sufficiently weak. Thomas and Lindner [1] defined the

asymptotic phase for classical stochastic oscillators without relying on the deterministic limit cycle

by using the eigenfunction with the slowest decay rate of the backward Fokker-Planck operator.

Consider a stochastic oscillator described by an Ito stochastic differential equation (SDE)

dX(t) = A(X(t))dt+B(X(t))dW (t), (4)

where X(t) ∈ RN is the system state at time t, A(X) ∈ RN is a drift vector representing the

deterministic dynamics, B(X) ∈ RN×N is a matrix characterizing the effect of the noise, and

W (t) ∈ RN is a N -dimensional Wiener process. This system is assumed to be oscillatory in the

sense explained below. The transition probability density p(X, t|Y , s) (t ≥ s) of Eq. (4) obeys the

forward and backward Fokker-Planck equations [49],

∂

∂t
p(X, t|Y , s) = LXp(X, t|Y , s), (5)

and

∂

∂s
p(X, t|Y , s) = −L∗Y p(X, t|Y , s), (6)

respectively, where the (forward) Fokker-Planck operator is given by

LX = − ∂

∂X
A(X) +

1

2

∂2

∂X2
D(X) (7)

and the backward Fokker-Planck operator is given by (in terms of X)

L∗X = A(X)
∂

∂X
+

1

2
D(X)

∂2

∂X2
. (8)

Here, D(X) = B(X)B(X)T ∈ RN×N is a matrix of diffusion coefficients (T indicates ma-

trix transposition). The forward and backward operators LX and L∗X are mutually ad-

joint, i.e., 〈LXG(X), H(X)〉X = 〈G(X), L∗XH(X)〉X , where the inner product is defined as
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〈G(X), H(X)〉X =
∫
G(X)H(X)dX for two functions G(X), H(X) : RN → C (the overline

indicates complex conjugate and the integration is taken over the whole range of X).

As explained in Appendix A, the backward Fokker-Planck operator L∗X in Eq. (8) is the infinites-

imal generator of the Koopman operator for Eq. (4). We denote the probability density function of

X at time t as pt(X) ∈ R, which also obeys the Fokker-Planck equation ∂pt(X)/∂t = LXpt(X),

and an observable of the system at time t as gt : RN → C, which maps the system state X to

a complex value. The evolution of the expectation 〈g〉t =
∫
pt(X)gt(X)dX = 〈pt(X), gt(X)〉Xof

the observable g at t = t0 can be expressed as

d

dt
〈g〉t

∣∣∣∣
t=t0

=

〈
∂

∂t
pt(X)

∣∣∣∣
t=t0

, gt0(X)

〉
X

= 〈LXpt0(X), gt0(X)〉X

= 〈pt0(X), L∗Xgt0(X)〉X =

〈
pt0(X),

∂

∂t
gt(X)

∣∣∣∣
t=t0

〉
X

, (9)

where gt(X) remains constant and pt(X) evolves in the second expression, while pt(X) remains

constant and gt(X) evolves in the last expression.

The linear differential operators LX and L∗X have a biorthogonal eigensystem

{λk, Pk, Qk}k=0,1,2,... of the eigenvalue λk and eigenfunctions Pk(X) and Qk(X) satisfying

LXPk(X) = λkPk(X), L∗XQk(X) = λkQk(X), 〈Pk(X), Ql(X)〉X = δkl, (10)

where k, l = 0, 1, 2, . . . and δkl represents the Kronecker delta [49]. We assume that, among the

eigenvalues, one eigenvalue λ0 is zero, which is associated with the stationary state pS(X) of the

system satisfying LXp
S(X) = 0, and all other eigenvalues have negative real parts. It is assumed

that the eigenvalues with the largest non-negative real part (or the smallest absolute real part, i.e.,

the slowest decay rate) are given by a complex-conjugate pair. We denote these eigenvalues as

λ1 = µs − iΩs, λ1 = µs + iΩs, (11)

where |µs| (µs < 0) is the decay rate and Ωs = Im λ1 represents the fundamental oscillation

frequency of the system. The oscillatory property of the system is embodied in this assumption.

We also assume that this pair of principal eigenvalues are well separated from other branches of

eigenvalues and this oscillatory mode is dominant in the system.

Thomas and Lindner [1] proposed a definition of the stochastic asymptotic phase of the system

described by Eq. (4) by using the argument of the complex conjugate of the eigenfunction Q1(X)

of L∗X associated with λ1 as (in the notation used here)

Φs(X) = argQ1(X). (12)
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This definition is natural from the Koopman operator viewpoint [2], as L∗X is the infinitesimal

generator of the Koopman operator for Eq. (4) that formally goes back to the linear operator

A = A(X) · ∇, i.e., to the infinitesimal generator of the Koopman operator for the deterministic

system Eq. (1) in the noiseless limit D(X)→ 0. The exponential average of Φs satisfies [2]

d

dt
arg EX0 [eiΦs(X(t))] =

d

dt
arg EX0 [Q1(X(t))] = Imλ1 = Ωs, (13)

where EX0 represents the average over the stochastic trajectories of Eq. (4) starting from an

initial point X0 ∈ RN . Thus, the asymptotic phase defined by Eq. (12) increases with a constant

frequency Ωs on average with the stochastic evolution of the system and can be considered a

natural generalization of the deterministic asymptotic phase in Eq. (3). It is noted that we may

also choose the eigenvalue λ1 and eigenfunction Q1(X) to define the stochastic asymptotic phase,

which reverses its direction of increase.

III. ASYMPTOTIC PHASE FOR QUANTUM OSCILLATORY SYSTEMS

Our aim in this study is to propose a quantum-mechanical definition of the asymptotic phase

that does not rely on classical trajectories. In Ref. [16], we developed a semiclassical phase reduction

theory for quantum limit-cycle oscillators, but the definition of the asymptotic phase was based on

the deterministic limit cycle in the classical limit and could not be applied in stronger quantum

regimes. In Ref. [2], we considered the asymptotic phase of quantum limit-cycle oscillators using

the definition for the classical stochastic oscillators explained in Sec. II, but it was valid only in

the semiclassical regime. Here, we consider a quantum master equation describing the evolution

of the density operator of the system and define the asymptotic phase by using the eigenoperator

of the adjoint Liouville operator. We use standard notations for open quantum systems without a

detailed explanation; see e.g., Refs. [51–53] for details.

A. Quantum master equation

We consider quantum oscillatory systems with a single degree of freedom coupled to reservoirs.

The system’s quantum state is represented by a Hermitian density operator ρ (= ρ†) and the

observable is described by an operator F , where † represents Hermitian conjugate. Introducing an

inner product 〈X,Y 〉tr = Tr (X†Y ) of two operators X and Y , the expectation of the observable
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F is expressed as

〈F 〉 = Tr (ρF ) = 〈ρ, F 〉tr. (14)

In the Schrödinger picture, the quantum state ρ evolves with time while the observable F re-

mains constant. Assuming that the interactions of the system with the reservoirs are instantaneous

and Markovian approximation can be employed, the evolution of the density operator ρt at time t

obeys the quantum master equation [51–53]

ρ̇t = Lρt, (15)

where the Liouville operator L (sometimes called a superoperator because it acts on an operator)

is given by

LX = −i[H,X] +

n∑
j=1

D[Cj ]X. (16)

Here, H(= H†) is a system Hamiltonian, Cj is a coupling operator between the system and jth

reservoir (j = 1, . . . , n), [A,B] = AB − BA is the commutator, D[C]X = CXC† − (XC†C +

C†CX)/2 is the Lindblad form, and the reduced Planck’s constant is set as ~ = 1.

In the Heisenberg picture, the quantum state ρ remains constant while the observable F evolves

with time as

Ḟt = L∗Ft, (17)

where the time dependence of F is explicitly shown. Here, L∗ is the adjoint operator of L satisfying

〈LX,Y 〉tr = 〈X,L∗Y 〉tr (18)

and can be explicitly calculated as

L∗X = i[H,X] +
n∑
j=1

D+[Cj ]X, (19)

where D+[C]X = C†XC − (XC†C + C†CX)/2 is the adjoint Lindblad form [53]. The evolution

of the expectation 〈F 〉t = 〈ρt, Ft〉tr of F with respect to ρ at t = t0 can be expressed as

d

dt
〈F 〉t

∣∣∣∣
t=t0

= 〈ρ̇t|t=t0 , Ft0〉tr = 〈Lρt0 , Ft0〉tr

= 〈ρt0 ,L∗Ft0〉tr = 〈ρt0 , Ḟt|t=t0〉tr, (20)

where F remains constant and ρ evolves in the second expression (Schrödinger picture), while

ρ remains constant and F evolves in the last expression (Heisenberg picture). Equation (20)
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corresponds to Eq. (9) for the expectation of the observable for classical stochastic systems. Thus,

the adjoint operator L∗ is a counterpart of the backward Fokker-Planck operator L∗X in Sec. II,

namely, L∗ corresponds to the infinitesimal generator of the Koopman operator.

We assume that the operators L and L∗ have a biorthogonal eigensystem {Λk, Uk, Vk}k=0,1,2,...

consisting of the eigenvalue Λk and right and left eigenoperators Uk and Vk, satisfying

LUk = ΛkUk, L∗Vk = ΛkVk, 〈Uk, Vl〉tr = δkl, (21)

for k, l = 0, 1, 2, . . . [54]. Among the eigenvalues, one eigenvalue Λ0 is always 0, which is associated

with the stationary state ρS of the system satisfying LρS = 0, and all other eigenvalues have

negative real parts; This also indicates that the system has no decoherece free subspace [50]. We

assume that, reflecting the system’s oscillatory dynamics, the eigenvalues with the largest non-

vanishing real part (i.e., with the slowest decay rate) are given by a complex-conjugate pair. We

denote these eigenvalues as

Λ1 = µq − iΩq, Λ1 = µq + iΩq, (22)

where |µq| (µq < 0) is the decay rate and Ωq = Im Λ1 gives the fundamental frequency of the

oscillation. As in the case of the stochastic oscillatory systems in Sec. II, the oscillatory property

of the system is embodied in this assumption.

B. Phase space representation

The density operator ρ can also be represented by using quasiprobability distributions in the

phase space such as the P , Q, and Wigner distributions [51, 52, 55]. We use the P representation

and express ρ as

ρ =

∫
p(α)|α〉〈α|dα, (23)

where |α〉 is a coherent state specified by a complex value α ∈ C, or equivalently by a complex

vector α = (α, α)T ∈ C2, p(α) : C2 → R is a quasiprobability distribution of α, dα = dαdα, and

the integral is taken over C. Defining the P representation of an observable F as

f(α) = 〈α|F |α〉, (24)

where F is expressed in the normal order [51, 52, 55], the expectation of F is expressed as

〈F 〉 = Tr(ρF ) =

∫
p(α)f(α)dα = 〈p(α), f(α)〉α. (25)
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Here, we defined the L2 inner product 〈g(α), h(α)〉α =
∫
g(α)h(α)dα of two functions g(α),

h(α) : C2 → C, where the integral is taken over the complex plane.

In the Schrödinger picture, the time evolution of pt(α) (dependence on t is explicitly denoted)

corresponding to the master equation (15) is describied by a partial differential equation

∂

∂t
pt(α) = Lαpt(α), (26)

where the differential operator Lα is related to the Liouville operator L in Eq. (15) via

Lρt =

∫
Lαpt(α)|α〉〈α|dα

and can be explicitly calculated from Eq. (15) by using the standard calculus for the phase-space

representation [51, 52, 55].

The corresponding evolution of the P representation ft(α) of the observable Ft in the Heisenberg

picture is given by

∂

∂t
ft(α) = L∗αft(α), (27)

where the differential operator L∗α is the adjoint of Lα, i.e.,

〈Lαg(α), h(α)〉α = 〈g(α), L∗αh(α)〉α, (28)

and satisfies

L∗αft(α) = 〈α|L∗Ft|α〉. (29)

Thus, L∗α is the generator of the Koopman operator in the P representation describing the evolution

of f(α), which corresponds to the adjoint Liouville operator L∗ in Eq. (19).

Corresponding to the Liouville operators L and L∗, the differential operators Lα and L∗α also

possess a biorthogonal eigensystem {Λk, uk(α), vk(α)}k=0,1,2,... of eigenvalue Λk and eigenfunctions

uk and vk, satisfying

Lαuk = Λkuk, L∗αvk = Λkvk, 〈uk, vl〉α = δkl, (30)

which has one-to-one correspondence with Eq. (21). The eigenvalues {Λk}k=0,1,2,... are the same as

those of L, and the eigenfunctions uk and vk of Lα are related to the eigenoperators Uk and Vk of

L via

Uk =

∫
uk(α)|α〉〈α|dα, vk(α) = 〈α|Vk|α〉, (31)
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which follow from

LUk =

∫
uk(α) {L|α〉〈α|} dα =

∫
{Lαuk(α)} |α〉〈α|dα =

∫
Λkuk(α)|α〉〈α|dα = ΛkUk (32)

and

L∗αvk = L∗α〈α|Vk|α〉 = 〈α|L∗Vk|α〉 = Λk〈α|Vk|α〉 = Λkvk. (33)

C. Quantum asymptotic phase

Generalizing the definition for classical stochastic oscillatory systems in Sec. II, we here propose

a definition of the quantum asymptotic phase. We note that, in quantum systems, the system state

is given by the density operator ρ and individual trajectories as in the classical stochastic systems

cannot be considered.

First, we define the quantum asymptotic phase Φq(α) of the coherent state α in the P represen-

tation. Considering the definition Eq. (12) of the asymptotic phase in terms of the eigenfunction

Q1(X) of the backward Fokker-Planck operator L∗X in the classical stochastic case, we define the

quantum asymptotic phase Φq(α) as the argument of the complex conjugate of the eigenfunction

v1(α) in the P representation associated with the principal eigenvalue Λ1 as

Φq(α) = arg v1(α) = arg〈α|V1|α〉. (34)

Next, considering that the general quantum state ρ is represented as a superposition of coherent

states with the weight p(α), Eq. (23), we define the asymptotic phase of ρ as

Φq(ρ) = arg〈p(α), v1(α)〉α = arg〈ρ, V1〉tr. (35)

It can be shown that the asymptotic phase Φq(ρ) evolves with a constant frequency Ωq as the

quantum state ρ evolves according to the master equation (15). Defining

Ψq(ρt) = 〈pt(α), v1(α)〉α = 〈ρt, V1〉tr, (36)

where the dependence on time t is explicitly denoted, we have

d

dt
Ψq(ρt)

∣∣∣∣
t=t0

=

〈
∂pt(α)

∂t

∣∣∣∣
t=t0

, v1(α)

〉
α

= 〈Lαpt0(α), v1(α)〉α

= 〈pt0(α), L∗αv1(α)〉α = 〈pt0(α),Λ1v1(α)〉α = Λ1Ψq(ρt0), (37)
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or, equivalently,

d

dt
Ψq(ρt)

∣∣∣∣
t=t0

= 〈ρ̇t|t=t0 , V1〉tr = 〈Lρt0 , V1〉tr = 〈ρt0 ,L∗V1〉tr

= 〈ρt0 ,Λ1V1〉tr = Λ1〈ρt0 , V1〉tr = Λ1Ψq(ρt0). (38)

Integrating by time, we obtain

Ψq(ρt) = exp(Λ1t)Ψq(ρ0) = exp[(µq + iΩq)t]Ψq(ρ0), (39)

where ρ0 is the initial state at t = 0, and hence the asymptotic phase is given by

Φq(ρt) = arg Ψq(ρt) = Ωqt+ arg Ψq(ρ0). (40)

Differentiating by t, we obtain

d

dt
Φq(ρt) = Ωq, (41)

namely, the asymptotic phase Φq(ρt) increases with a constant frequency Ωq with the evolution of

the quantum state ρt.

Thus, by using the eigenfunction v1(α) of the adjoint linear operator L∗α or equivalently the

eigenoperator V1 of the adjoint operator L∗ associated with the eigenvalue Λ1, we can define the

asymptotic phase Φq(ρ) of the quantum state ρ. The quantum master equation (15), adjoint Liou-

ville operator L∗ (or adjoint differential operator L∗α in the P representation), and eigenoperator V1

(or the eigenfunction v1(α) in the P representation) with the eigenvalue Λ1 correspond to the for-

ward Fokker-Planck equation (5), backward Fokker-Planck operator L∗X , and eigenfunction Q1(X)

with the eigenvalue λ1 in the classical stochastic system discussed in Sec. II, respectively.

We stress, however, that the system state is generally represented by the density operator ρ or

quasiprobability distribution p(α) and individual trajectories cannot be considered in the quantum

case. As in the classical stochastic case, we may also choose the eigenvalue Λ1, eigenfunction

v1(α), and eigenoperator V †1 to define the quantum asymptotic phase, which reverses its direction

of increase.

IV. EXAMPLE: QUANTUM VAN DER POL OSCILLATOR

In this section, using the quantum van der Pol model with quantum Kerr effect as an example,

we illustrate the validity of the quantum asymptotic phase defined in Sec. III. We also analyze a

damped harmonic oscillator in Appendix D.
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A. Quantum van der Pol model with quantum Kerr effect

As an example of quantum oscillatory systems, we consider the quantum van der Pol model

with quantum Kerr effect. The system’s density operator ρ obeys the master equation

ρ̇ = Lρ = −i [H, ρ] + γ1D[a†]ρ+ γ2D[a2]ρ, (42)

where a and a† are annihilation and creation operators, H = ω0a
†a+Ka†2a2 is the Hamiltonian, ω0

is the frequency parameter of the oscillator, K is the Kerr parameter, and γ1 and γ2 are the decay

rates for negative damping and nonlinear damping, respectively [21, 31]. By using the standard

rule of calculus [51, 52, 55], we can derive the differential operator Lα in Eq. (26) describing the

evolution of the P representation p(α) of ρ from the Liouville operator L, which consists of third-

and higher-order derivative with respect to α [21].

To evaluate the fundamental frequency Ωq and the asymptotic phase Φq(ρ) of the system,

we numerically calculate the eigenvalues and eigenfunctions of the Liouville and adjoint Liouville

operators L and L∗. To this end, we approximately truncate the number representation of the

density operator as a large N ×N matrix and map it to a N2-dimensional vector of the double-ket

notation [56]. We can then approximately represent the Liouville operators L and L∗ by N2 ×N2

matrices and calculate their eigensystem to obtain the asymptotic phase in Eq. (34).

B. Semiclassical regime

We first consider the semiclassical regime where γ2 and K are sufficiently small. In this case,

as explained in Appendix B, we can approximate Eq. (26) by a Fokker-Planck equation for p(α),

namely, the system state is approximately equivalent to a classical stochastic system. Furthermore,

in the classical limit where the quantum noise vanishes, the system is described by a single complex

variable α ∈ C obeying a deterministic ordinary differential equation

α̇ =
(γ1

2
− iω0

)
α− (γ2 + 2Ki)αα2. (43)

This equation represents the Stuart-Landau oscillator (normal form of the supercritical Hopf bi-

furcation) [4] and possesses a stable limit-cycle solution α0(φ) = Reiφ, which is represented as a

function of the phase φ = Ωct + const. with a natural frequency Ωc = −ω0 −Kγ1/γ2 and radius

R =
√
γ1/2γ2. The basin B of this limit cycle is the whole complex plane except the origin. The

classical asymptotic phase Φc of this system is given by [16]

Φc(α) = arg α− 2K

γ2
ln
|α|
R

+ const. (44)
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and satisfies Φ̇c(α) = Ωc as α evolves in B under Eq. (43) [6]. As stated in Sec. II, this Φc(α) is the

argument of the Koopman eigenfunction Ψc(α) of the system associated with the eigenvalue iΩc.

In Ref. [16], we used this Φc for the phase-reduction analysis of quantum synchronization in the

semiclassical regime with weak quantum noise. It is expected that the quantum asymptotic phase

Φq(α) of the coherent state α is close to the classical asymptotic phase Φc(α) when the quantum

noise is sufficiently small.

Figure 1(a) shows the eigenvalues of L near the imaginary axis obtained numerically, where

the principal eigenvalue Λ1 = µq + iΩq is shown by a red dot (µq < 0), and Figs. 1(b) and 1(c)

compare the quantum-mechanical phase Φq(α) with the corresponding classical phase Φc(α). Here,

we adopt a negative value for Ωq so that the resulting phase Φq increases in the counterclockwise

direction from 0 to 2π on the complex plane, i.e., Φq satisfies
∮
c∇Φq(x) · dx = 2π where x =

(x, p) = (Re α, Im α) and C is a circle around 0.

As the quantum noise is small, the quantum frequency Ωq and the asymptotic phase Φq(α)

obtained numerically from L are close to the classical frequency Ωc and asymptotic phase Φc(α),

respectively. The difference between Ωq and Ωc arises from the small quantum noise; in the limit of

vanishing quantum noise, the eigenfunction v1(α) of Lα in the P representation coincides with the

Koopman eigenfunction of the deterministic system Eq. (43) with the eigenvalue iΩc and therefore

Φq reproduces the classical phase Φc (see Appendix C). Here, we note that the principal eigenvalues

iΩq and iΩc are well separated from other branches of eigenvalues with faster decay rates and the

corresponding oscillatory modes become quickly dominant.

To demonstrate that the present definition of the quantum asymptotic phase yields appropriate

values, we consider free oscillatory relaxation of ρt from a coherent initial state ρα0 = |α0〉〈α0| with

α0 = 1 at t = 0 and measure Φq(ρt). For comparison, we also measure the argument arg 〈a〉t of the

expectation 〈a〉t = 〈ρt, a〉tr of the annihilation operator a, which simply gives the polar angle of

〈a〉t on the complex plane. We note that, although the system state ρ starts from a pure coherent

state, it soon becomes a mixed state due to the coupling with the reservoirs and eventually relaxes

to the stationary state ρS .

Figures 1(d) and (e) plot the evolution of the expectation Ψq(ρt) = 〈ρt, V1〉tr of the eigenoperator

V1 and the quantum asymptotic phase Φq(ρt) = arg Ψq(ρt), respectively, and Figs. 1(f) and (g)

show the evolution of the expectation 〈a〉 and its polar angle arg〈a〉, respectively. The asymptotic

phase Φq(ρt) increases with a constant frequency Ωq and appropriately yields isochronous phase

values. In contrast, the polar angle arg〈a〉 does not increase constantly with time, in particular in

the transient process before t = 10, as shown in Fig. 1(g); as the limit cycle in the classical limit
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FIG. 1: Quantum asymptotic phase in the semiclassical regime. The parameters are γ1 = 1 and

(ω0, γ2,K)/γ1 = (0.1, 0.05, 0.025). (a) Eigenvalues of L0 near the imaginary axis. The red dot repre-

sents the principal eigenvalue Λ1 with the the slowest decay rate. (b) Quantum asymptotic phase Φq with

Ωq = −0.605. (c) Classical asymptotic phase Φc with Ωc = −0.6. (d-g) Evolution of the expectation values

of V1 and a and their arguments from a pure coherent state: (d) Ψ(ρt) = 〈V1〉t, (e) Φ(ρt) = arg〈V1〉t, (f)

〈a〉t, and (g) arg〈a〉t. In (a), individual branches of eigenvalues are shown with different colors. In (b),

(c), (x, p) = (2.5, 0) is chosen as the phase origin. In (c), the red-thin line represents the limit cycle in the

classical limit.

is rotationally symmetric in this model, the polar angle also yields almost constantly increasing

phase values after relaxation.

Thus, the quantum asymptotic phase Φq increases with a constant frequency Ωq in the semi-

classical regime of a quantum van der Pol model with the quantum Kerr effect.
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FIG. 2: Quantum asymptotic phase in the strong quantum regime. The parameters are γ1 = 0.1 and

(ω0, γ2,K)/γ1 = (300, 4, 100). (a) Eigenvalues of L near the imaginary axis. The red dot represents the

principal eigenvalue Λ1 with the the slowest decay rate. (b) Quantum asymptotic phase Φq with Ωq = −30.

(c) Classical asymptotic phase Φc with Ωc = −32.5. (d-g) Evolution of the expectation values of V1 and a

and their arguments from a pure coherent state: (d) Ψ(ρt) = 〈V1〉t, (e) Φ(ρt) = arg〈V1〉t, (f) 〈a〉t, and (g)

arg〈a〉t. In (a), individual branches of eigenvalues are shown with different colors. In (b), (c), (x, p) = (2.5, 0)

is chosen as the phase origin. In (c), the red-thin line represents the limit cycle in the classical limit.

C. Strong quantum regime

Next, we consider a strong quantum regime with relatively large γ2 and K, where only a small

number of energy states participates in the system dynamics and the semiclassical description is not

valid. The eigenvalues of L obtained numerically are shown in Fig. 2(a). Figures 2(b) and 2(c) show

the quantum-mechanical phase Φq and the corresponding classical phase Φc. Because the system

is in the strong quantum regime, Φc is distinctly different from Φq and the classical frequency Ωc

also differs largely from the true quantum frequency Ωq. Here, we again note that the principal

eigenvalues have much smaller (less than half of the second largest) decay rate than the eigenvalues

in the other branches.
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We consider free oscillatory relaxation of ρ from a coherent initial state ρ = |α0〉〈α0| with α0 = 1

at t = 0 and measure the evolution of the asymptotic phase Φq(ρt) = 〈V1〉t of the system state ρt.

For comparison, we also measure the polar angle arg〈a〉t of 〈a〉t.

Figures 2(d) and (e) plot the evolution of the expectation Ψq(ρt) = 〈ρt, V1〉tr of the eigenoperator

V1 and the quantum asymptotic phase Φq(ρt) = arg Ψq(ρt), respectively, and Figs. 2(f) and (g)

show the evolution of the expectation 〈a〉 and its polar angle arg〈a〉, respectively. As expected, the

asymptotic phase Φq(ρt) appropriately gives constantly varying phase values with the frequency

Ωq. In contrast, the polar angle arg〈a〉t does not vary constantly with time and is not isochronous.

This is because the transition between relatively a small number of energy levels takes part in the

system dynamics and the discreteness of the energy spectra can play important roles in this strong

quantum regime.

Thus, the quantum asymptotic phase Φq gives appropriate phase values that increase with a

constant frequency Ωq even in the strong quantum regime of a quantum van der Pol model with

quantum Kerr effect, even though the strong quantum effect strongly alters the dynamics of the

system from the classical limit.

D. Fundamental difference between the classical and quantum systems

Although we introduced the definition of the quantum asymptotic phase Φq by analogy with

the classical deterministic phase Φc and classical stochastic asymptotic phase Φs, a fundamental

difference exists between the quantum and classical cases. Specifically, in the quantum case, the

system state is described by the density operator ρ and the asymptotic phase Φq assigns a phase

value on each ρ, while in the classical case, the phase function Φc or Φs assigns a phase value on

each individual state X, although the probability density function p(X) is used in defining the

stochastic asymptotic phase Φs. This difference arises because the system state can be described

by a SDE representing a single stochastic trajectory of the noisy oscillator in the classical stochastic

case, whereas the system state can only be characterized by the density operator ρ representing

the statistical state of the system in the quantum case.

Though we have taken the viewpoint that the asymptotic phase is defined for a single stochastic

trajectory in the classical stochastic case in this study, we may also consider that the asymptotic

phase is defined for the probability density p(X) rather than for the state X in the classical

stochastic case. Then, the quantum asymptotic phase Φq as a function of the density matrix ρ

corresponds to the stochastic asymptotic phase Φs(p(X)) = arg
∫
p(X)Q1(X)dX as a function of
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the probability density p(X) in the classical stochastic case in Sec. II. We regarded this quantity

as the exponential average of the asymptotic phase values defined for individual states in Eq. (13).

In the present approach, it is always possible to formally introduce a ’phase function’ for any

oscillatory system as long as it has the decaying mode with a non-zero imaginary part by using

the associated eigenoperator. However, this phase function does not necessarily play the role of a

quantum asymptotic phase unless the system exhibits limit-cycle oscillations and synchronization.

As an example, in Appendix D, we introduce a phase function of a damped quantum harmonic

oscillator, which cannot be considered the quantum asymptotic phase since the system does not

exhibit synchronization. Only when the system is nonlinear and exhibits synchronization, the

asymptotic phase captures the synchronization dynamics of the system.

The asymptotic phase is the basis for developing phase reduction theory for classical nonlinear

oscillators. For quantum oscillatory systems, however, even if we can introduce the asymptotic

phase as described in this study, it does not necessarily mean that we can develop the phase

reduction theory. This is because the quantum state ρ may not be appropriately localized in

the phase-space representation and hence it may not be reconstructed from the phase value even

approximately. Still, as we showed for the case of the quantum vdP oscillator in the semiclassical

regime [16], we may approximately describe the dynamics of the quantum state by using the reduced

phase equation and perform a detailed synchronization analysis in appropriate physical situations.

It should be noted that we also encounter a similar problem in developing phase reduction theory for

classical oscillators under strong noise. We also note that, even if we cannot derive a reduced phase

description for quantum nonlinear oscillators, the asymptotic phase can be used to characterize

the peculiar properties of quantum synchronization [57].

V. SUMMARY

In this study, we proposed a definition of the asymptotic phase for quantum oscillatory systems

by generalizing the asymptotic phase for classical stochastic oscillatory system proposed by Thomas

and Lindner [1] from the Koopman operator viewpoint [2]. The proposed asymptotic phase is

defined by using the eigenoperator of the adjoint Liouville operator describing the evolution of the

quantum-mechanical observable, in close analogy to the asymptotic phase for classical limit-cycle

oscillators that can be interpreted as the argument of the Koopman eigenfunction associated with

the fundamental frequency. By using the quantum van der Pol model with quantum Kerr effect as

an example, we demonstrated that the proposed asymptotic phase appropriately yields isochronous
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phase values even in the strong quantum regime where the semiclassical approximation is not valid.

Though quantum synchronization has attracted much attention recently, compared with classi-

cal synchronization, systematic analysis of the quantum synchronization has been restricted, partly

due to the lack of the clear definition of the phase. The proposed definition of the asymptotic phase

valid in strong quantum regimes may be used for systematic and quantitative analysis of synchro-

nization phenomena in quantum nonlinear oscillators [57]. Moreover, we may be able to develop a

phase reduction theory for strongly quantum nonlinear oscillators by using the proposed definition,

which would allow us to reduce the system dynamics to a simple phase equation and facilitates

detailed analysis, control, and optimization of quantum nonlinear oscillators. It will also be inter-

esting to extend the definition of the amplitude functions for classical stochastic oscillators [2, 58]

to strongly quantum oscillatory systems on the basis of the Koopman operator theory.
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Appendix A: Koopman operator for classical stochastic processes

In this section, we briefly summarize the definition of the Koopman operator for classical

stochastic processes described by the Ito SDE (4). The evolution of an observable g : RN → C for

this Ito diffusion process from time t0 to t+ t0 is expressed as [47, 61, 62]

gt+t0(X) = (U tgt0)(X), (A1)

where U t (t ≥ 0) is the stochastic Koopman operator defined as

(U tg)(Y ) = EY [g(X(t+ t0))]

=

∫
g(X)p(X, t+ t0|Y , t0)dX = 〈p(X, t+ t0|Y , t0), g(X)〉X . (A2)
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Here, EY [·] represents the expectation over the stochastic realizations ofX(t) started fromX(t0) =

Y at t = t0, p(X, t|Y , s) (t ≥ s) is the transition probability density, and 〈·, ·〉X represents the

inner product defined in Sec. II. Defining a time evolution operator St = etLX (t ≥ 0), the evolution

of the probability density p(X) is expressed as

pt+t0(X) = (Stpt0)(X), (A3)

where the operation of St on a function f : R→ C is given by

(Stf)(X) =

∫
p(X, t+ t0|Y , t0)f(Y )dY . (A4)

The Koopman operator U t is the adjoint of St, i.e.,

〈f(X), (U tg)(X)〉X =

∫
f(Y )

[∫
g(X)p(X, t+ t0|Y , t0)dX

]
dY

=

∫ [∫
p(X, t+ t0|Y , t0)f(Y )dY

]
g(X)dX

=

∫
(Stf)(X)g(X)dX = 〈(Stf)(X), g(X)〉X (A5)

for two functions f, g : RN → C. It is noted that the expectation of the observable g at time t+ t0

can be expressed as∫
pt0(X)(U tgt0)(X)dX = 〈pt0(X), (U tgt0)(X)〉X

= 〈(Stpt0)(X), gt0(X)〉X =

∫
(Stpt0)(X)gt0(X)dX. (A6)

It can be shown that the infinitesimal generator of U t is given by the backward operator L∗X in

Eq. (8) (see e.g. Ref. [62] for a rigorous treatment). From the Ito formula [49, 62], the SDE for a

function g : RN → R is given by

dg(X) =

[
A(X) · ∂

∂X
g(X) +

1

2
D(X)

∂2

∂X2
g(X)

]
dt+B(X)

∂

∂X
g(X)dW , (A7)

which gives

EY [g(X(t+ t0))] =

∫ t+t0

t0

[
A(X) · ∂

∂X
g(X) +

1

2
D(X)

∂2

∂X2
g(X)

]
dt =

∫ t+t0

t0

L∗Xg(X)dt (A8)

by integration. Assuming the function g to be the observable gt0 at t = t0, the infinitesimal

evolution of gt at t = t0 can be represented as

d

dt
gt(Y )

∣∣∣∣
t=t0

= lim
t→+0

(U tgt0)(Y )− gt0(Y )

t
= lim

t→+0

EY [gt0(X(t+ t0))]− gt0(Y )

t
= L∗Xgt0(Y ).

(A9)
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Thus, we can express the Koopman operator as U t = etL
∗
X .

From the adjoint relation for St and U t, LX and L∗X are also adjoint to each other, i.e.,

〈LXf(X), g(X)〉X = 〈f(X), L∗Xg(X)〉X , and the evolution of the expectation of the observable g

at time t = t0 can be expressed as in Eq. (9).

Appendix B: Quantum van der Pol oscillator with Kerr effect in the semiclassical regime

In this section, we briefly explain the classical limit of the quantum van der Pol oscillator. As

shown in Ref. [16], in the semiclassical regime, the linear operator Lα in Eq. (26) describing the

evolution of the quasiprobability distribution p(α) in the P representation of the quantum van der

Pol oscillator can be approximated by a Fokker-Planck operator

L̃α =
[
−

2∑
j=1

∂j{Aj(α)}+
1

2

2∑
j=1

2∑
k=1

∂j∂k{Djk(α)}
]

(B1)

by neglecting the third- and higher-order derivatives, where ∂1 = ∂/∂α and ∂2 = ∂/∂ᾱ. The drift

vector A(α) = (A1(α), A2(α)) ∈ C2 and the matrix D(α) = (Djk(α)) ∈ C2×2 are given by

A(α) =

(γ12 − iω0

)
α− (γ2 + 2Ki)αα2(γ1

2 + iω0

)
α− (γ2 − 2Ki)αα2

 , (B2)

D(α) =

−(γ2 + 2Ki)α2 γ1

γ1 −(γ2 − 2Ki)ᾱ2

 . (B3)

The corresponding stochastic differential equation is thus given by

d

α
α

 =

(γ12 − iω0

)
α− (γ2 + 2Ki)αα2(γ1

2 + iω0

)
α− (γ2 − 2Ki)αα2

 dt+ β(α)

dW1

dW2

 , (B4)

where W1 and W2 are independent Wiener processes and the matrix β(α) is given by

β(α) =

 √ (γ1+R11(α))
2 eiχ(α)/2 −i

√
(γ1−R11(α))

2 eiχ(α)/2√
(γ1+R11(α))

2 e−iχ(α)/2 i

√
(γ1−R11(α))

2 e−iχ(α)/2

 , (B5)

where R11(α)eiχ(α) = −(γ2 + 2Ki)α2. It is noted that the two equations for α and α in Eq. (B4)

are mutually complex conjugate and represent the same dynamics.

In the classical limit, the deterministic part of Eq. (B4) gives the Stuart-Landau equation for

the complex variable α given in Eq. (43), which is analytically solvable and the asymptotic phase

Φc(α) can be explicitly obtained as given in Eq. (44) [4, 6].
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Appendix C: Classical limit of the quantum asymptotic phase

In this section, we explain that the quantum asymptotic phase formally reproduces the determin-

istic asymptotic phase in the classical limit. In the semiclassical regime, the linear operator Lα of

Eq. (26) for the quasiprobability distribution p(α) in the P representation can be approximated by

a Fokker-Planck operator L̃α of the form Eq. (B1). By introducing a real vector X = (Re α, Im α)

and the corresponding probability density function p(X), the Fokker-Planck operator L̃α for p(α)

can be cast into a real Fokker-Planck operator LX for p(X) in Eq. (7).

In the classical limit, the quantum noise vanishes and the diffusion term in LX disappears.

Thus, LX formally becomes a classical Liouville operator, i.e., LX → −(∂/∂X)A(X), and the

corresponding backward Liouville operator formally becomes the infinitesimal generator of the

deterministic Koopman operator, i.e., L∗X → A = A(X) · (∂/∂X) = A(X) · ∇. Also, the decay

rate µq approaches 0 and the eigenvalue Λq approaches iΩc where Ωc is the frequency of the

limiting classical deterministic system. As discussed in Sec. II A, the classical asymptotic phase Φc

is obtained as the argument of the eigenfunction Ψc of A associated with the eigenvalue Λ1 = iΩq.

Thus, the quantum asymptotic phase Φq formally reproduces the deterministic asymptotic phase

Φc in the classical limit with vanishing quantum noise.

Figure 3 schematically shows the behavior of the eigenvalues of L∗X approaching those of the

deterministic system in the classical limit with a stable limit-cycle solution. The eigenvalues in

the classical limit are given in the form λc = mκ1 + inω1 (m = 0, 1, 2, . . . and n = 0,±1,±2),

where κ1 is the real part of the largest non-zero eigenvalue and ω1 is the imaginary part of the

pure-imaginary eigenvalue with the smallest absolute imaginary part. In the example of a quantum

van der Pol oscillator with quantum Kerr effect in Sec. IV, κ1 = −γ1 and ω1 = Ωc. As the system

approaches the classical limit, each curved branch of eigenvalues Λq of LX in Fig. 3(a) approaches

the corresponding straight branch of eigenvalues λc in Fig. 3(b) in the classical limit.

The above formal correspondence with the conventional definition of the asymptotic phase in

the classical limit supports the validity of our definition of the quantum asymptotic phase.

Appendix D: Phase function of a quantum damped harmonic oscillator

In Ref. [63], Thomas and Lindner considered the stochastic phase function for a classical damped

harmonic oscillator described by a multi-dimensional Ornstein-Uhlenbeck process. In this section,

generalizing their result, we consider a simple quantum harmonic oscillator with a damping and
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FIG. 3: A schematic diagram for eigenvalues of L∗
X , which converges to the classical limit. (a) Semiclassical

regime. (b) Classical limit.

formally calculate the phase function. This system is linear and does not possess a limit cycle in

the classical limit, but the isochronous phase function as defined in Sec. III can still be introduced

(as the system lacks an asymptotic periodic orbit in this case, we do not use the term ’asymptotic’).

The eigenoperator V1 of the adjoint Liouville operator L∗ can be analytically obtained in this

case. The evolution of a damped harmonic oscillator is described by a quantum master equation

ρ̇ = Lρ = −i[ωa†a, ρ] + γD[a]ρ, (D1)

where ω is the natural frequency of the system, γ denotes the decay rate for the linear damping,

and D is the Lindblad form [51]. The eigenoperator associated with the slowest non-vanishing

decay rate of the adjoint Liouville operator L∗ of L is simply given by V1 = a, i.e., L∗a = Λ1a,

where Λ1 = −γ/2 − iω [64, 65]. Therefore, the phase function Φq(α) of the coherent state α is

given by

Φq(α) = arg〈ρt, a〉tr = arg〈α|a|α〉 = argα = arg
(
reiθ

)
= θ, (D2)

where α = reiθ, and the phase function Φq(ρt) of the density operator ρt at time t is given by

Φq(ρt) = arg〈a〉t = arg〈ρt, a〉tr. (D3)

For the initial condition ρ0 = |α0〉〈α0| with α0 = r0e
iθ0 , the expectation of a evolves as

d

dt
〈a〉t

∣∣∣∣
t=t0

= 〈ρ̇t|t=t0 , a〉tr = 〈Lρt0 , a〉tr = 〈ρt0 ,L∗a〉tr = Λ1〈ρt0 , a〉tr = Λ1〈a〉t, (D4)

which gives 〈a〉t = eΛ1t〈a〉0 = eΛ1t〈α0|a|α0〉 = eΛ1tα0. Thus, the phase of the state ρt is given by

Φq(ρt) = arg(e(−γ/2−iω)tα0) = −ωt+ θ0, (D5)
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which decreases with a constant frequency ω.

As shown in this example of a quantum damped harmonic oscillator, we can formally introduce

the phase function for a wide class of oscillators, even if the system does not exhibit limit-cycle

dynamics. In a special case where the system exhibits limit-cycle dynamics, our definition of the

phase function plays the role of the quantum asymptotic phase.
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