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Using high-precision sensors to monitor and predict the deformation trend of supertall buildings is a hot research topic for a long
time. And in terms of deformation trend prediction, the main way to realized deformation trend prediction is the deep learning
algorithm, but the accuracy of prediction result needs to be improved. To solve the problem described above, �rstly, based on
the conditional deep belief network (CDBN) model, the levenberg-marquardt (LM) was used to optimize the CDBN model; the
LM-CDBN model has been constructed. �en taking CITIC tower, the tallest building in Beijing as the research object, the real-
time monitoring data of the shape acceleration array (SAA) as an example, we used LM-CDBN model to analyse and predict
the building deformation. Finally, to verify the accuracy and robustness of LM-CDBN model, the prediction results of the LM-
CDBN model are compared with the prediction results of the CDBN model, the extreme learning machine (ELM) model, and
the unscented Kalman �lter-support vector regression (UKF-SVR) model, and we evaluated the result from three aspects: training
error, �tness, and stability of prediction results. �e results show that the LM-CDBNmodel has higher precision and �tting degree
in the prediction of deformation trend of supertall buildings. And the MRE, MAE, and RMSE of the LM-CDBNmodel prediction
results are only 0.0060, 0.0023mm, and 0.0031mm, and the prediction result was more in line with the actual deformation trend.

1. Introduction

A�ected by its own structural characteristics and exter-
nal changes, supertall buildings will continue to produce
complex deformations such as di�erential settlement, com-
pression, inclination, de�ection, and vibration during the
construction process. It is necessary to implement high-
precision deformation monitoring and prediction to ensure
its construction safety. With the continuous advancement of
sensor technology, a lot of progress has been made in obtain-
ing deformation data by installing high-precision sensors on
supertall buildings; for example, Su, J.Z. et al. designed a
supertall building precision structural performance moni-
toring system consisting of more than 400 sensors, applied
to the structural health monitoring of Shanghai Tower [1];
Chen, W.H. et al. designed a health monitoring system
which consists of anemometer, strain gauge, GPS, and other

sensors and put it on the Guangzhou TV Tower during
the typhoon, aiming at monitoring building health [2]; Ni,
Y.Q. et al. used wireless sensors to monitor environmental
vibration of the Guangzhou TV Tower during construction
[3]; Gu, M. et al. proposed a new method for optimal sensor
placement based on the simpli�ed multidegree-of-freedom
system for calculating the weak axis modal matrix based
on the equivalent sti�ness parameter identi�cation method
and using the numerical calculation veri�ed the feasibility of
the method [4]; Yi, T.H. et al. proposed a modi�ed monkey
algorithm for sensor array optimization design of structural
health monitoring systems and proved its e�ectiveness by
implementing calculation cases of super high-rise buildings
[5].

Using deformation data to predict the deformation of
supertall buildings is one of the current research hotspots.
Deformation of supertall buildings has strong temporal and
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spatial linkage and obvious time-varying characteristics. On
the concept of time, the monitoring data has a strong depen-
dence on the concept of time slip; and during the di�erent
deformation periods, the structural integrity deformation
are both random and time-variation, as well as having
continuity and periodicity in time; it requires the model to
have higher time-varying information extraction capabilities.
In the spatial range, the deformation of supertall buildings
has a close spatial correlation with the complexity of the envi-
ronmental factors, spatial characteristics, and change trends.
�e di�erent changes of environmental factors in di�erent
time periods and di�erent �elds have di�erent e�ects on the
deformation of supertall buildings. How to deeply mine and
extract the feature attributes of environmental factors has
always been one of the research di�culties.

Recently, many advances have been made in the pre-
diction of deformation of buildings using neural network
technology. In aspect of shallow neural networks [6, 7] such
as backpropagation (BP), extreme learning machine (ELM),
and support vector machine (SVM), Kang F et al. used the
ELM to predict the deformation of a dam and used the
prediction accuracy and prediction stability as evaluation
indicators to evaluate the prediction results and obtained
good experimental results [8]; Xin, J. et al. used the ARIMA-
GARCH model to predict the deformation of the bridge
and achieved good prediction results [9]; Wang, X. et al.
used a multiple population genetic algorithm to improve
the BP neural network, optimized the network’s weight and
parameter selection mechanism, and applied it to the defor-
mation prediction of dams [10]; Cao, Y.B. et al. used a new
method which integrated the combining genetic algorithm
with the arti�cial neural network to predict the deformation
of landslide in some reservoir area of the �ree Gorges [11];
Zhang,H. et al. proposed amultiscale deformation prediction
model which integrated the genetic algorithm support vector
machine (GA-SVM)with the empirical mode decomposition
(EMD) and used it to predict the deformation of the dam.
By multiscale dam deformation prediction model, BP neural
network prediction results were compared with the predicted
results demonstrating high accuracy [12].

�e deep learning algorithm [13–15] adopts interlayer
network training and batch sample grading trainingmethods
to solve problems such as over�tting of data analysis and local
minima in shallow networks, which improves the training
speed of the network. Deep belief networks (DBN) model
[16–18] is one of the classic models for deep learning; it
has the advantages of fast network training, easy parameter
selection, high-e�ciency feature extraction capability, and
ease of regression analysis. Conditional deep belief network
(CDBN) model [19–23] is a variant of DBNmodel; it inherits
many excellent features of the DBN model and adopts
the normal distribution to process the resampling of the
deformation data of the supertall building. But CDBNmodel
uses the gradient descent method to search the optimal
solution during the process of determining weight, and that
causes the di�erence between the predicted value and the
actual value in the deformation prediction to be obviously
di�erent. �e prediction oscillation is more obvious and has
a greater impact on the prediction accuracy and stability. So

the LMalgorithm [24, 25] was adopted to replace the gradient
descent algorithm to optimize the weighting mechanism of
the CDBN model, the information extraction stability of the
model and the generalization ability of the nonlinear problem
of the time-varying system are improved, the speed of the
model convergence is accelerated, and the prediction accu-
racy and stability of the model are improved. Considering
the complexity of the deformation of supertall buildings,
the complexity of deformation factors, the deformation
characteristics, and the advantages and disadvantages of the
model, the LM-CDBNmodel was applied to the deformation
prediction of the CITIC tower, and the prediction accuracy
and stability of the proposed model are veri�ed by model
comparison experiments and predictive analysis.

2. Brief of CDBN Model

CDBN model is a variant of the traditional DBN model.
It inherits many excellent features of the DBN model
and resamples the distortion data of the supertall build-
ing through normal distribution. �e deformation data of
supertall building has a high degree of four-dimensional
spatial characteristics, of which the temporal and spatial
characteristics are particularly prominent. In the process
of extracting deformation information from a supertall
building, the CDBN model uses an automatic regression
mechanism to dynamically mine, extract, and feedback the
temporal and spatial characteristics of the deformation data.
�e model can be used to excavate the dynamic change
characteristics of deformation trend from historical data.
�ese features complement and guide the in-depth digging
of the current deformation trend. In addition, the automatic
regression (AR) adjustment capability also provides conve-
nient conditions for analysis of supertall deformation trend,
deformation extrapolation, and trend �tting.

As shown in Figure 1, suppose that there are � visible
neurons = (V1, V2, . . . , V�) obeying a Gaussian distribution
in space and � observable Bernoulli distributions of hidden
neurons ℎ = (ℎ1, ℎ2, . . . , ℎ�), and �� is the No. � hidden node
and �� is the No. � visible node;� is the weightmatrix between
the historical data and the target data; � is the weight matrix
between the historical data and the hidden node. �e system
energy function E(�, ℎ) of the CDBN network structure was
shown in

	 (�, ℎ) = �∑
�=1

(Vi − ��)22
2
i

− �∑
�=1

�∑
�=1

Vi
i ℎ��ij − �∑
�=1
�jℎj (1)

where Vi is the No. i visible node; ℎj is the No. j hidden node;
��� is the weight matrix between V� and ℎ�; �� is the threshold
of ℎ�; �� is the threshold of V�; 
i is the noise of Vi; in order to

facilitate model calculation and expansion, 
2i normally sets
to 1.
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Figure 1: Structure diagram of single layer of CDBN model, consisting of historical data, target data, and hidden nods.

�e energy function of CDBN is obtained by (1), and
then the conditional probability distribution of the model is
derived using

� (Vi | ℎ) = �(�� + 
i �∑
j

���ℎj, 
2i)
�(ℎj | �) = ������(�j + �∑

i

�ij

Vi
2
i

) (2)

where �(Vi | ℎ) is conditional probability distribution of
Vi; �(ℎj | �) is conditional probability distribution of ℎj;������(.) represents an activation function; N (∙) represents
a Gaussian probability distribution.

�e CDBN network model uses the gradient descent
algorithm to search for optimal solution. �e gradient
descent algorithm is the most commonly used optimization
algorithm for neural network model training. For the func-
tion �(�), ��/�� is the gradient of the function. Its iteration
equation is shown in

��+1 = �� + ��−�� (3)

where ��+1 satis�es the minimum value of �(��); �−� rep-
resents the gradient in the descending direction; and ��
represents the search step in the gradient direction, also
meaning learning rate in deep learning.

Finally, training and learning is performed by comparing
the divergence sampling method [26–28] to update and set
the model parameters, as shown in
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(4)

where ��ij,��i,��j is the update value of �ij, �i, �j;
���−��,i is the weight matrix between V� at time t-q and V�
at current time t; ���−��,j is the weight matrix between V� at

time t-q and ℎ� at current time t; V
�−	
i

is the status value

of V� at time t-q; ℎ�−	
j

is the Status value of ℎ� at time t-q;⟨∙⟩data is the expected output for original data; ⟨∙⟩model is the
expected output data calculated by model; ⟨∙⟩0 is the initial
expectation; ⟨∙⟩∞ is the stable expectation; % is learning rate.
3. Deformation Prediction Approach

Deformation of supertall buildings is more complex, and the
characteristics of spatiotemporal linkage are more obvious.
�erefore, the deformation prediction of it needs higher
prediction accuracy and prediction stability. �e CDBN
model has a high ability to extract deformation tendency. But
due to the use of a gradient descent algorithm to �nd the
optimal solution during the process of weight determination,
the predicted output and the actual deformation output are
signi�cantly di�erent, and the predicted oscillation is more
obvious. In order to solve this problem,we used the L-Malgo-
rithm to model the weight, and the Gauss-Newton algorithm
was used to update the weight and threshold of the model to
speed up the convergence of the algorithm.�e combination
of powerful deformation information extraction capability
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Figure 2: Flow chart of LM-CDBN algorithm.

and stable nonlinear optimization ability can help improve
the prediction accuracy and stability of supertall buildings.

3.1. LM-CDBNModel Weighting Principle. Assume�� is the
matrix vector composed of all the weights and thresholds
a�er the LM-CDBNmodel iteration k times; then the matrix
vector is composed of the weights and thresholds updated
a�er k+1 iteration is��+1, shown as the

��+1 =�� + ���� (5)

�e mean squared error (MSE) of the model training is
de�ned as the minimum reference standard.

MSE = 1� ∑(4̂� − 4�)2 (6)

where � represents the sample dimension; 	[∙] represents
the mathematical expectation function; 4� and 4̂� represent
the No. i actual prediction value and model value of the
prediction label, respectively. Solve the second derivative’s
extreme value according to the principle of least squares and
correct by Gauss-Newton algorithm; then ���� is

���� = − [6�6 + 78]−1 6: (7)

where 7 (7 > 0) is a proportional coe�cient; e is the network
error vector; � is a unit matrix; � is a Jacobi matrix, shown as

� = [[[[[[[[

�:1��1 ⋅ ⋅ ⋅ �:1���... d
...�:���1 ⋅ ⋅ ⋅ �:����

]]]]]]]]
(8)

In the initial stage of model training, the value of 7 is
large, the model will seek the minimum value following the
gradient descent method, and each iteration will make 7
decrease continuously. �en the Gauss-Newton algorithm is
used to �nd the expected value of the target. �e second
derivative of the algorithm is used. �e principle of seeking
extreme improves the speed of model training and the ability
of nonlinear generalization.

3.2. Flow of Algorithm. �e network training and learning
process of the LM-CDBNmodel is constructed as follows and
the �ow of algorithm was shown in Figure 2.

Step 1 (data preparation phase). �e original data is prepro-
cessed (denoised, �ltered, normalized, and batched) and the
topology of the network is determined.

Step 2. Enter the �rst batch of data and prepare for network
training.

Step 3. Use (9) to update the status of the hidden node of the
�rst layer network.

E� = ������( �∑
i

�ijEi + � (0, 1) (9)

where N(0,1) represents a Gaussian distribution;�ij is the
weight matrix connecting the visible layer and the hidden
layer; Ei is a state value of visible node �.
Step 4. Use (10) to update the status value of the visible nodeEi.

Ei = ������( �∑
j

�ijEj + � (0, 1) (10)

Step 5. According to the visible layer node state value Ei
obtained in Step 4, use (11) to update the state of the hidden
layer node E� again.

E� = ������( �∑
i

�ijEi + � (0, 1) (11)

Step 6. Dynamically update the o�sets of the visible and
implicit nodes thresholds.

� �FGHj = �j +∑
�
I�−	�j V
�−	
�

� �FGHi = �i +∑
�
J�−	�i V
�−	
�

(12)
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where � �FGHj represents the dynamic o�set of the implicit
node j; � �FGHi represents the dynamic o�set of the visible

node �; V�−	� is the state value of the visible node K on time t-

q; I�−	�j is the weighted value of directed connections between

V� in time t-q and ℎ� on current time F; J�−	�,� is the weighted
value of directed connections between V� in time t-q and V�
on current time t.

Step 7. Use the state E� of the hidden layer node of the �rst
layer network as the initial input of the layer 2 network.
Repeat Steps 3–6 to complete the pretraining of the layer 2
network until the network is completed layer by layer.

Step 8. Establish a matrix vector of the network weights and
thresholds. Use (5) and (7) to update the network weights and
thresholds.

Step 9. Enter the second batch of data and go to Step 3 to
complete the next round of training and so on until all data
processing is completed.

Step 10. Use the function so�max to output the predicted
value, denormalize data, and evaluate the network prediction
results.

3.3. Evaluation Mechanism. To objectively evaluate the pre-
diction results, the prediction model needs to be evaluated
based on full consideration of the prediction error and
the accuracy of the prediction value �tting degree. �e
evaluation mechanism is mainly composed of three aspects:
model training error evaluation, �tting degree evaluation,
and prediction accuracy.

Taking the three aspects of root mean square error
(RMSE), mean absolute error (MAE), mean relative error
(MRE) as evaluation indices, as shown in (13). �e smaller
number of three indicators means the stronger the ability
to extract model information, the higher the prediction
accuracy.

RMSE = √∑ (4� − 4̂�)2�
MAE = ∑ NNNN4� − 4̂�NNNN�
MRE = 1� ∑ NNNN4� − 4̂�NNNN4̂�

(13)

where4� and 4̂� represent theNo. � actual prediction value and
model value of the prediction label, respectively; N represents
the input sample dimension.

R represents the degree of �t between the actual observed
value and the predicted output value. If the value of R
is very large, it means that the predicted value and the
actual observed value are compliant; else it means that the

correlation between the two is poor. �e equation for R is
shown in

R = (1 − √∑ (4� − 4̂�)2∑42� )× 100% (14)

Put the prediction results of LM-CDBN model to com-
pare with CDBN model, extreme learning machine (ELM),
and UKF-SVR model to evaluate the training error and
predictive performance of the LM-CDBN model.

4. Case Study

4.1. Description of the CITIC Tower. �e supertall building
CITIC tower is in the core area of CBD, Chaoyang District,
Beijing, China. �e external shape is the overall shape of
the “bottle” of Chinese ancient wine containers (Figure 3).
�e CITIC tower has a total construction area of 350,000
square meters, with a total height of 528 meters, 108 �oors
above the ground, 7 basement �oors, and 5 underground
�oors in the tower area. �e base of the CITIC tower has
a square base. From the base to the upper part of the
base, its plane size is gradually tightened inward. From the
narrowest part of the waistline to the top part, the plane
size gradually enlarges. CITIC tower adopts the core-tube
megaframe outrigger conversion truss structure, which has
features such as high altitude, structural heterogeneity, and
large changes in the curvature of the construction curve.
�e construction uses BIM technology to preassemble the
structure and reduce rework and errors in construction.

4.2. Monitoring Sensor Layout. With the continuous devel-
opment of global navigation satellite system (GNSS) [29, 30]
technology, deformation data such as settlement, vertical
compression, and horizontal displacement can be obtained
with real-time kinematic (RTK) technology performing
dynamic deformation observation of supertall buildings. In
the study, two GNSS receivers were placed as reference
stations outside the walls on the north and east sides of
the building, and eight GNSS receivers were installed as
monitoring stations on the core barrel and the frame. �e
GNSS antenna is �xed on the core barrel and the four corners
of the frame by special brackets. EachGNSS host is connected
to the cable through the cable and transmits the monitoring
data to the data center through the data transfer unit (DTU).
�e speci�c deployment of base stations and monitoring
stations is shown in Figures 4 and 5.

�e shape acceleration array (SAA) system [31, 32] is a
high-precision sensor based on MEMS accelerometer and
consists of several rigid test sections connected by �exible
joints. Each test section has a length of 200∼500mm and has
an internal triaxial accelerometer and thermometer. �ere is
a special section between every 8 test sections, equipped with
a microprocessor and a digital temperature sensor. For the
SAA laid in the vertical direction, there is a �xed section at
the front end of each test sensor for connecting a wired or
wireless signal transmission device, and there is a �xed device
at the end for �xing the entire SAA, as shown in Figure 6.
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Figure 3: Concept and structure �gure of CITIC tower. (a) CITIC tower concept design. (b)CITIC tower schematic.
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Figure 4: GNSS receiver placement. (a) Location �gure of reference stations and observation stations. (b) Receiver antenna �gure.
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Figure 5: GNSS deformation monitoring system diagram consists of GNSS receiver, DTU, control center, and reference station.
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Table 1: Monitoring data of CITIC o�ce building.

Serial number Time Z [mm] Temperature [∘C] Wind speed [m⋅s−1] Light intensity [Lx]

1 2017-10-11 0:00 28.281 14.1 5.8 2.732

2 2017-10-11 1:00 27.556 14.3 5.4 2.452

3 2017-10-11 2:00 28.428 14.2 5.5 2.543

4 2017-10-11 3:00 29.779 14.9 5.4 2.654

5 2017-10-11 4:00 30.250 14.8 4.9 2.687

6 2017-10-11 5:00 27.895 14.1 5.2 2.754

-- -- -- -- -- --

69 2017-10-13 21:00 49.753 11.9 6.7 2.543

70 2017-10-13 22:00 49.341 11.6 7.5 2.654

Standard test
section

Special section

Flexible joint
Microprocessor Temperature sensor

Figure 6: Shape acceleration array system, consisting of standard
test section, �exible joint, and special section.

Assuming S is the length of the test section and T
is the angle between two test sections calculated by the
accelerometer, the deformation value �F in the direction of
the standard section can be obtained. Adding �U to each
section is the total amount of deformation, shown as

�F = T ∙ S (15)

According to the CITIC tower’s architectural character-
istics, two SAAs are placed in PVC sleeves and embedded
along the vertical axis of the outside of the core tube. �e
ends are �xed on the �oor of the structure and the front end
is connected to a wireless serial modem (WSM) to achieve
long-distance communication.

4.3. Data Processing. As shown in Table 1, from the time of
October 10, 2017, the displacement monitoring data of 70
consecutive phases acquired at a sampling frequency of one
hour are taken as samples, of which the �rst 55 training
sample sets are used as a priori samples for the network
pretraining, and the last 15 samples for the deformation
analysis and prediction.

During the construction phase, the core barrel is subject
to environmental cross-wind loads, temperature di�erences
between the inside and outside of the shell structure, and
changes in light intensity, which are easily subject to dynamic
deformation. �e training data set consists of core barrel
displacement data, temperature, wind speed, light intensity,
and time series. During the training of the model, the
in�uence factors such as temperature, wind speed, and light
intensity are taken as the characteristic values of the network
input layer, and the displacement data of the core cylinder is
used as the output feature vector.

In the process of sample priming, gross errors and noise
elimination are �rst performed. Select the �rst 55 periods of
data as a priori samples for network pretraining, and the last
15 samples for deformation analysis and prediction.

Due to the large range of deformation �uctuations and the
large magnitude di�erence between the input factors of each
group, the logarithmic interpolation algorithm (as shown in
(16) was used to normalize the displacement deformation
value Û.

Û = 0.1 + 0.8 log����/���� UU��� (16)

where U��� and U��� min represent the maximum and
minimum values of the predicted output deformation; Û
and U represent the normalized and original deformation
information.

4.4. Parameter Determination. In the network topology
determination process, the precise determination of network
depth, the number of hidden layer nodes, and various
training parameters are the key to accurate prediction.

In the process of model building, the network depth
means the number of network layers of the model. In the
process of layer-by-layer network training, reconstruction
error (RE) is generated, which is an important indicator to
measure network stability. In the case of a certain input layer
data pattern, the network reconstruction error is calculated
to e�ectively determine the network depth. As shown in
Figure 7, the model gradually increases the network depth
during the application process.

As shown in Figure 7(a), when the network depth is 1,
the reconstruction error oscillates violently and tends to fall
rapidly.�e error range is mainly concentrated on 15∼28mm,
which re�ects the lack of network depth. In Figure 7(b), in the
early period, the reconstruction error changed dramatically,
and it begins to show a slowing trend in the later period.
�e error range is mainly concentrated on 0.5∼1.7mm, and
the overall training e�ect of the network is the best. In
Figures 7(c) and 7(d), the network reconstruction error
is concentrated on 0.8∼3.4mm and 0.7∼3.9mm, and the
network shows irregular �uctuations and the reconstruction
error value has accumulated. �erefore, the network depth is
determined to be 2 layers.
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Figure 7: Reconstruction error of hidden layer. (a) Number of hidden layer is 1. (b) Number of hidden layer is 2. (c) Number of hidden layer
is 3. (d) Number of hidden layer is 4.

According to (17), the number of hidden layer nodes is
determined by a comparison test.

W = √J + Y + G (17)

where G is the empirical constant and the range is [0, 10]; J
is the number of input layer nodes; Y is the number of output
layer nodes; l is the number of hidden layer nodes.

In this prediction of deformation for supertall buildings,
take the number of input layer nodes m=4, the number of
output layer nodes n=1, and the range of hidden layer nodes
is W ∈ [3, 13]. As shown in Figure 8 and Table 2, the RMSE,
MAE, MRE, and R/% are the evaluation criteria for network
training, and the number of optimal hidden layer nodes is
obtained through statistical analysis.

When the hidden layer node is 7, the RMSE, MAE, and
MRE have the minimum value and the �tting R also has the

largest value. Currently, the model has the best deformation
prediction ability and nonlinear generalization ability.

4.5. Analysis of Forecast Results. As shown in Table 3, LM-
CDBN model, CDBN model, ELM model, and UKF-SVR
modelwere used to predict the 15th period ofmonitoring data
and compared with the deformation value Z. RE and ARE of
each group of results were calculated.

Compared with CDBNmodel, ELM, and improved SVR,
LM-CDBN model has higher prediction accuracy and sta-
bility, and the model's extrapolation ability is better than
other forecast models. �e average relative error of the 15
forecast results is 3.12%. At the same time, the relative error
of the LM-CDBN model prediction is even and stable. �e
prediction results of LM-CDBN model are less volatile than
UKF-SVR. In addition, compared with the CDBNmodel, the
L-M algorithm is used for optimization and improvement,
the generalization ability of the CDBN model is enhanced,
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Table 2: Statistical table of the number of hidden layer’s nodes.

layers RMSE/mm MAE/mm MRE R/%

2 0.0369 0.0167 0.0237 93.52

3 0.0400 0.0213 0.0316 92.98

4 0.0665 0.0342 0.0500 88.31

5 0.0395 0.0214 0.0317 93.07

6 0.0285 0.0117 0.0162 95.00

7 0.0113 0.0052 0.0075 98.01

8 0.0450 0.0236 0.0348 92.10

9 0.0225 0.0091 0.0125 96.05

10 0.0330 0.0135 0.0187 94.20

11 0.0162 0.0066 0.0091 97.16

12 0.0325 0.0159 0.0231 94.29

Table 3: Comparison table of prediction.

DATE Z [mm] CDBN [mm] RE [%] LM-CDBN [mm] RE [%] ELM [mm] RE [%] UKF-SVR [mm] RE [%]

10-13 08:00 36.3700 35.6869 1.88 36.2744 0.26 34.0753 6.31 36.9076 1.48

10-13 09:00 35.9685 34.7454 3.40 35.8914 0.21 38.9832 8.38 36.8897 2.56

10-13 10:00 34.1020 33.0588 3.06 34.0540 0.14 38.0791 11.66 33.5363 1.66

10-13 11:00 34.2450 32.6750 4.58 34.1812 0.19 34.6637 1.22 30.5105 10.91

10-13 12:00 39.0745 38.2927 2.00 38.8679 0.53 35.8950 8.14 39.1214 0.12

10-13 13:00 37.1475 35.9385 3.25 37.0167 0.35 39.5860 6.56 38.7017 4.18

10-13 14:00 37.7950 36.8189 2.58 37.6317 0.43 36.9923 2.12 34.8703 7.74

10-13 15:00 41.6840 39.6342 4.92 41.2798 0.97 40.3191 3.27 43.4704 4.29

10-13 16:00 39.1225 38.3562 1.96 38.8977 0.57 43.4842 11.15 41.1197 5.10

10-13 17:00 40.6580 39.2225 3.53 40.2930 0.90 44.4703 9.38 37.4763 7.83

10-13 18:00 47.0815 44.5459 5.39 45.8757 2.56 40.8088 13.32 48.4904 2.99

10-13 19:00 46.3970 44.8205 3.40 45.3267 2.31 44.6929 3.67 47.7502 2.92

10-13 20:00 47.3470 45.7168 3.44 46.0723 2.69 48.1102 1.61 47.8773 1.12

10-13 21:00 51.0815 47.3883 7.23 48.8165 4.43 45.8864 10.17 52.2852 2.36

10-13 22:00 49.5470 47.0194 5.10 47.7546 3.62 47.7797 3.57 49.2904 0.52

Mean Relative Error (MRE)[%] 3.72 -- 1.34 -- 6.70 -- 3.72
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Figure 8: Statistical diagram of the number of hidden layer’s nodes. (a) Red line with respect to the RMSE, blue line with respect to theMAE,
and yellow line with respect to the MRE. (b) Blue line with respect to the R.
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Table 4: Comparison of the result of prediction evaluation.

Evaluation Standard CDBN LM-CDBN ELM UKF-SVR

MRE 0.0296 0.0060 0.0487 0.0283

MAE [mm] 0.0141 0.0023 0.0262 0.0155

RMSE [mm] 0.0212 0.0031 0.0385 0.0223

R [%] 94.9 98.9 91.3 95.1
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Figure 9: Results of �tting and prediction. (a) Fitting result comparison. (b) Forecast result comparison.

and the stability and prediction accuracy of the prediction are
improved.

Similarly, as shown in Table 4, through the numerical
analysis of several evaluation indicators we can see that the
prediction error of LM-CDBN is smaller and the prediction
accuracy is much higher than that of shallow neural network.
Compared with other models, the deep network has higher
feature extraction capabilities and nonlinear regression anal-
ysis capabilities.

As shown in Figure 9(a), although gross errors and noise
were excluded from the experimental data, due to external
in�uences, the collected data still had large �uctuations,
which caused some interference to the actual prediction
work. In addition, under the in�uence of external factors,
signi�cant displacement changes have occurred during the
continuous monitoring of the overall structure of the Chi-
nese dignity, and the tendency of migration has gradually
increased. Compared with other models, the LM-CDBN
model has a high degree of �tting ability and deformation
extraction ability for the displacement change trend. As
shown in Figure 9(b), the LM-CDBN model has better
extrapolation capability of deformation and is more in line
with the actual law of displacement change.

5. Results

A new deformation prediction approach for supertall build-
ing was proposed in the paper. �e LM algorithm was used
to optimize the weighting method of CDBN model in this
approach. �en use this model to predict the deformation of
the supertall building CITIC tower and value the perdition
results using several di�erent methods. In terms of error, the
MAE value of the LM-CDBNmodel is 0.0023 mm, while the
MAE of the CDBN model, the ELM model, and the UKF-
SVR model was 0.0141 mm, 010262 mm, and 0.0155 mm.�e
RMSE of LM-CDBNmodel was 0.0031 mm, while the RMSE
of CDBN model, ELM model, and UKF-SVR model was
0.0212 mm, 0.0385 mm, and 0.0223 mm. In terms of �tness,
the �tting performance of the LM-CDBN model increased
by 64%, 80%, and 64%, compared with the CDBN model,
the ELM model, and the UKF-SVR model. By comparing
experiments and data analysis, we can �nd that the LM-
CDBN model has higher prediction accuracy than three
other models, and the variation law of the prediction data
is more consistent with the actual variation law. Hence, we
can conclude that the LM-CDBN model is suitable for the
variable prediction of supertall buildings and also has better
robustness and deformation prediction ability.
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