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It has long been expected that quantum degenerate gases of molecules would open access to a

wide range of phenomena in molecular and quantum sciences. However, the very complexity that

makes ultracold molecules so enticing has made reaching degeneracy an outstanding experimental

challenge over the past decade. We now report the production of a Fermi degenerate gas of ultracold

polar molecules of potassium–rubidium (KRb). Through coherent adiabatic association in a deeply

degenerate mixture of a rubidium Bose-Einstein condensate and a potassium Fermi gas, we produce

molecules at temperatures below 0.3 times the Fermi temperature. We explore the properties of this

reactive gas and demonstrate how degeneracy suppresses chemical reactions, making a long-lived

degenerate gas of polar molecules a reality.

Ultracold polar molecules have received attention

as ideal candidates to realize a plethora of proposals in

molecular and many-body physics. These include the

development of chemistry in the quantum regime [1],

the emulation of strongly interacting lattice spin mod-

els [2–6], the production of topological phases in op-

tical lattices [7–10], the exploration of fundamental

symmetries [11–15], and the study of quantum in-

formation science [16–18]. While magnetic atoms

also exhibit long-ranged dipolar interactions and can

be used to carry out these proposals [19, 20], polar

molecules offer more tunable, stronger interactions

and additional degrees of freedom. A low-entropy,

quantum degenerate sample is a prerequisite for many

of these explorations.

The intrinsic complexity of molecules relative to

atoms, owing to the additional rotational and vibra-

tional degrees of freedom, has made their cooling

to ultralow temperatures one of the most significant

experimental challenges in molecular physics [21].

While the direct laser cooling of certain diatomic

molecules has progressed enormously in recent times

so that magneto-optic [22–25] and pure optical [26]

trapping have been demonstrated, phase space density

in these systems remains many orders of magnitude

away from degeneracy. To date, by far the coldest di-

atomic molecules have been made by cooling atoms

to a few hundred nanokelvin (10
−9 K) and coherently

associating the ultracold atoms into deeply bound

molecules using a Fano-Feshbach resonance [27] fol-

lowed by stimulated Raman adiabatic passage (STI-

RAP) [28].

Thus far, KRb [28], NaK [29, 30], RbCs [31, 32],

NaRb [33], and LiNa [34] have successfully been pro-

duced in deeply bound molecular states. Typically,

such molecules can be produced in numbers ranging

from hundreds to tens of thousands and at tempera-

tures ranging from 250 – 600 nK. Reaching degener-

acy in these experiments has been impeded by two

major factors: the production of an adequate mixture

of atoms to make a sufficient number of molecules,

and rapid molecular loss. Challenges in producing a

suitable mixture can be technical or physical, such as

the immiscibility of two Bose-Einstein condensates

(BECs) [35]. Molecules can be lost due to chemical

reactions; for example, KRb undergoes the exother-

mic 2KRb → K2 + Rb2 reaction [36, 37]. Even

molecules predicted to have endothermic reactions

show large inelastic loss due to the complex nature

of the scattering process, which is still being investi-

gated [29, 33, 38]. Indeed, the lowest entropy sam-

ples of ground-state molecules have been produced

in a three-dimensional optical lattice, where chem-

ical reactions cannot occur, with an entropy of just

2.2kB per particle [39]; however, producing quan-

tum degenerate molecules in a bulk gas remains an

outstanding experimental goal.

In this paper, we report the production of 10
5

fermionic 40K87Rb molecules at 250 nK and as many

as 2.5×10
4 molecules at 50 nK, the latter correspond-
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FIG. 1. a. Production of Fermi degenerate molecules. Beginning with degenerate gases of Rb and K, Feshbach

molecules are created by sweeping a magnetic field through a Fano-Feshbach resonance. The weakly bound molecules

are coherently transferred to the ground state using STIRAP. The resulting molecules reflect the degeneracy of their

parent atoms. b. Degenerate gases of atoms and molecules. Slices through images of atomic mixtures (2 averages,

16 ms TOF, upper row) and ground state molecules (4 averages, 10 ms TOF, lower row) for molecular T/TF ranging

from 0.3 to 1. Inset images show false-color 2D column density, with blue corresponding to K and red to Rb. The

TOF images reflect the differing momentum distributions of the atoms and molecules.

T (nK) Rb Number T/Tc K Number T/TF KRb Number T/TF

230 6 × 10
5 > 1 1.2 × 10

6 0.3 1.0(1) × 10
5 1.0(1)

110 2 × 10
5

0.9 1 × 10
6 0.2 5.0(5) × 10

4 0.54(3)

50 7 × 10
4

0.5 5 × 10
5 0.1 3.0(5) × 10

4 0.33(3)

TABLE I. Atom and molecule conditions corresponding to Fig 1b.

ing to T/TF = 0.3, where TF is the Fermi tempera-

ture. By generating the molecules from two deeply

degenerate gases of 40K and 87Rb in a crossed optical

dipole trap (xODT), we demonstrate that molecules

can be produced at a range of values of T/TF, which

depend sensitively on the initial atomic conditions.

The molecular density profile is shown to be a Fermi-

Dirac distribution, and we measure a corresponding

deviation from the classical internal energy of the

system. Finally, we demonstrate that quantum degen-

eracy is accompanied by a suppression of chemical

reactions due to the reduction of density fluctuations

in the center of the Fermi gas.

It is well understood that the efficiency of ultracold

molecule production is limited at low temperatures by

rapid three-body recombination of the atomic species
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as well as the spatial mismatch between atomic den-

sity distributions [40–42]. For KRb, however, in the

limit where the K number vastly exceeds the Rb num-

ber, these effects can be mitigated, and the conversion

to molecules with respect to the minority species can

be high [42]. Furthermore, if the gases are deeply

degenerate, the atoms’ low entropy can be inherited

by the molecules, resulting in a degenerate molecular

gas as illustrated in Fig. 1a. A large atom number

before molecular association has allowed us to take

this approach, and has afforded us the flexibility to

produce KRb molecules over a wide range of temper-

atures, densities, and T/TF.

After collecting ∼109 Rb atoms and 7 × 10
7 K

atoms in a vapor-cell MOT, we cool the atoms to

degeneracy by performing RF evaporation in an op-

tically plugged quadrupole trap followed by evap-

oration in a xODT [43]. After optical evapora-

tion is complete, the xODT is recompressed such

that K experiences harmonic trapping frequencies of

(ωx, ωy, ωz) = 2π × (45, 250, 80) Hz, with gravity

along the y–direction. Trap frequencies are reduced

by a factor of 0.72 and 0.79 for Rb and KRb, re-

spectively, due to differences in mass and AC polar-

izability. Slices through atomic column-integrated

density distributions after 16 ms time of flight (TOF)

for three representative conditions are shown in the

upper row of Fig. 1b, and the corresponding numbers

are given in Table I. While a number of technical

improvements have allowed us to produce a deeply

degenerate mixture with a large number of atoms, a

key improvement has been the implementation of Λ-

enhanced gray molasses on the D1 (42
S1/2 → 4

2
P1/2)

line of K [44] as well as the D2 (52
S1/2 → 5

2
P3/2)

line of Rb [45].

Ground state KRb molecules are produced by

sweeping a magnetic field through an interspecies

Fano-Feshbach resonance at B = 546.6 G to pro-

duce weakly bound Feshbach molecules as illustrated

in Fig. 1a [28]. The molecules are then coherently

transferred to the ground state using STIRAP with

∼90% efficiency. The difference in trapping frequen-

cies between molecules and atoms results in all three

species having different equilibrium positions due to

gravitational sag [46]. So while the molecules have

the same initial temperature as the atoms, the initial

non-equilibrium position sets the molecules in mo-

tion, and the gas rapidly heats up as potential energy

is converted to kinetic energy. To mitigate this effect,

prior to molecule production a one-dimensional op-

tical lattice of 30 molecular recoil energies is turned

on against gravity. This ensures that the molecules

and atoms are at equilibrium at the same position in
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FIG. 2. a. Fermi-Dirac distribution of molecules.

An azimuthally-averaged molecular density profile with

T/TF = 0.31(2) fit to a Fermi-Dirac distribution (blue

curve) and a Gaussian (red curve). The fit residuals (lower

panel) show the deviation of the Gaussian fit characteristic

of Fermi degeneracy; the solid curve corresponds to the

difference of the residuals. Fitting the wings of the cloud

to a classical distribution (green curve) accurately captures

the temperature but overestimates the density in the cen-

ter. b. Deviation from the classical energy density. The

deviation of the internal energy of the molecular gas from

its classical value as T/TF is reduced. The solid curve is

the expected result for an ideal Fermi gas, and the results

for K are shown for comparison.
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the corrugated potential. After molecules are pro-

duced, unpaired atoms are quickly blasted away with

resonant light [43], the lattice is then ramped off in

5 ms, and no spatial oscillations or rapid heating are

observed.

By varying the initial temperature and atomic

number ratio, we generate molecular gases ranging

from T/TF greater than 1 to less than 0.3. Three

representative conditions are summarized in Table I,

and slices through molecular column density distri-

butions after 10 ms TOF are shown in the lower row

of Fig. 1b; each molecular distribution shown is pro-

duced from the atomic conditions in the upper row

of Fig. 1b. Over this range, the average molecular

density varies from 0.5 − 2 × 10
12 cm−3.

At low T/TF, the effects of degeneracy are clear on

the molecular velocity distribution after TOF. Two-

dimensional absorption images are collected and

fit [43], and Fig. 2a shows the azimuthally-averaged

density profile of a cloud of KRb molecules after

10 ms TOF. The profile is well fit by a Fermi-Dirac

distribution (blue curve, T/TF = 0.31(2)), while the

classical Gaussian distribution (red curve) overesti-

mates the density at the center of the cloud and un-

derestimates it in the wings. This is evident in the fit

residuals, shown in the lower part of Fig. 2a, where

the Gaussian residuals exhibit ripples that are a hall-

mark of Fermi degeneracy [47]. A Gaussian fit to the

wings of the profile (green curve), where the gas looks

essentially classical, captures the temperature of the

molecules but deviates at the center of the cloud.

The Gaussian fit to the entire cloud systematically

overestimates the temperature compared to the Fermi-

Dirac fit since the Pauli exclusion principle prevents

the multiple occupancy of low momentum states. The

difference between the temperatures measured with

the two fits is a strong indicator of the degree of quan-

tum degeneracy [47]. Figure 2b shows the normal-

ized difference between these, δU/UCl = 1 − T/TCl,

for KRb as a function of T/TF, where TCl is the tem-

perature determined from the Gaussian fit. AsT/TF is

decreased, the normalized energy shows a deviation

from the classical value, and for the most degenerate

molecular clouds we currently produce, the deviation

is larger than 30%. For comparison, the same quan-

tity is shown for K at several values of T/TF and both

show good agreement with the theoretical prediction

for an ideal Fermi gas (solid line).

Given the T/TF measured for K prior to molecular

association, we expect an increase in the molecular

T/TF by roughly a factor of 3–4 based on the change

in particle number and trap frequency. However, we

typically measure values of T/TF that are only a factor

of 2.5–3 larger than that of K. At values of T/TF . 0.1

for K, 85% of the Rb is condensed, and the Rb to K

ratio is made to be roughly 1:10 (Table I, third row) in

order to minimize three-body recombination during

magnetoassociation [42, 48]. Under these conditions,

molecules are produced with T/TF . 0.3. Since

the BEC is fairly localized to the center of the K

cloud (Fig. 1b), molecules are only produced in the

lowest-entropy part of the Fermi sea [49], resulting in

molecules that have a lower T/TF than expected from

uniform K conversion over the entire distribution.

At such low temperatures, the conversion from Rb to

Feshbach molecules can be as high as 50%, indicating

that there is good local phase space overlap between

potassium and the rubidium condensate. It is the

same principle of strong phase space matching that

allowed for the efficient production of ground state

molecules in a 3D optical lattice [39]. In contrast,

at high T/TF, where we produce the largest number,

conversion is typically 15% of Rb (Table I, first row).

When degenerate molecules are produced, the gas

is not necessarily in equilibrium due to the fact that the

spatial and momentum distributions of the molecules

reflect the overlapping distributions of the Rb BEC

and the K degenerate Fermi gas. However, our ob-

servation of a Fermi-Dirac distribution (Fig. 2a) is

consistent with a molecular gas that is close to equi-

librium, and we find that degeneracy persists for the

lifetime of the molecules. Furthermore, that the mea-

sured expansion energy as a function ofT/TF (Fig. 2b)

is consistent with that of K also serves as evidence

that the molecules are produced near equilibrium.

Given that KRb molecules are fermions, inter-

molecular scattering must occur in the p-wave chan-

nel since this is the lowest energy antisymmetric

collision channel. As such, the intermolecular po-

tential, shown in Fig. 3a, exhibits a centrifugal bar-

rier through which molecules must tunnel in order

to chemically react. According to the Bethe-Wigner

threshold law [50–52], the tunneling rate (and there-

fore reaction rate), is proportional to the temperature,

so that chemical reactions must slow down at low

temperatures [36]. Examples of density loss curves
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FIG. 3. a. Intermolecular Potential. The intermolec-

ular p-wave (l = 1) scattering potential for KRb [36];

molecules react once they have tunneled through the bar-

rier. b. Density Loss. As reactions occur, molecular

density decays according to a two-body rate law. The rate

constant decreases with decreasing temperature in accor-

dance with the Bethe-Wigner threshold law.

and their corresponding fits (see below) for two tem-

peratures are shown in Fig. 3b. At low temperature,

the density decays at a slower rate compared to at

high temperature.

When a molecular collision leads to a reaction,

the product molecules are ejected from the trap with

high energy, leaving the remaining molecules unaf-

fected. However, collisions tend to occur in the cold-

est, densest part of the cloud so that the lowest energy

molecules react and are lost preferentially, leading to

anti-evaporation and an overall heating of the cloud.

We typically observe linear heating with rates rang-

ing from h = 10–30 nK/s, which are slightly larger

than a simple anti-evaporation model would suggest.

However, this rate is small enough so that the molec-

ular T/TF remains close to its initial value over the

course of the molecules’ lifetime.

The reduction of density is determined by both

the loss of KRb molecules as well as the increase in

temperature. We fit our data to a simple two-body

model that includes the effect of heating [36],

dn

dt
= −βn2 − 3

2

n

T

dT

dt
, (1)

where n is the average classical molecular density of

the bulk gas; the temperature is a measured, linear

function of time, T = T0 + ht; and β is the two-

body loss coefficient. Since two-particle threshold

behavior predicts β = bT , the fitting of the data with

Eq. 1 allows us to determine b [43].

Measurements of β as a function of initial tem-

perature are shown in Fig. 4a. Data points with a blue

face correspond to T/TF ≤ 0.6 and those with a red

face to T/TF > 0.6; the solid red curve is the value

calculated by multi-channel quantum defect theory

(MQDT) [36, 53]. While points with T/TF > 0.6

follow the predicted MQDT trend closely, those with

T/TF ≤ 0.6 show deviations at all temperatures. If

instead we consider β/T , which we expect to be con-

stant, as a function of T/TF, the data collapse onto

a common trend independent of initial temperature.

We find that at T/TF ≤ 0.6, β/T shows a strong de-

viation from the Bethe-Wigner threshold law, while

above T/TF = 0.6, β/T is constant, with a measured

value of β/T = 0.84(6)×10
−5 cm3s−1K−1 (black line

in Fig. 4b, error range shown in gray). This value

is in excellent agreement with the predicted MQDT

value [36, 53] of β/T = 0.8(1) × 10
−5 cm3s−1K−1

(red line in Fig. 4b). Our value is somewhat

lower than the previously measured value of β/T =
1.2(3) × 10

−5cm3s−1K−1 [36], with the discrepancy

likely arising from the use of the corrugated potential

to suppress gravitational sag in the current experi-

ment.

Below T/TF = 0.6, the measured β/T drops to

values as low as 0.21(8) × 10
−5 cm3s−1K−1. This

apparent deviation from a constant value is due to

the change in density correlations as the gas becomes

deeply degenerate. For a classical gas, the density sets

the length scale of interparticle separation, which is

much larger than the deBroglie wavelength,Λ. In this

case, large density fluctuations occur on the molecu-

lar scale, and two particles can easily find a config-
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uration to scatter in the p-wave channel. In a Fermi

degenerate gas, however, the probability of finding

two molecules within a short distance of each other

decreases as T/TF is lowered due to anti-bunching,

with the average interparticle spacing being set by

the deBroglie wavelength itself and ultimately by the

Fermi wavevector, 2π/kF. This is the same physi-

cal phenomenon that gives rise to the Pauli pressure

and the reduced compressibility of a Fermi gas. This

causes an effective blockade that results in reduced

density fluctuations [54–56] such that p-wave scatter-

ing and chemical reactions are suppressed beyond the

Bethe-Wigner prediction. The suppressed collision

rate manifests itself within our model as a reduction

in the measured β/T for the bulk gas, though the

true two-body reaction rate constant is unaffected by

degeneracy for any given molecular collision.

This effect is captured in the average relative

number density fluctuation 〈δn2(r)〉/〈n(r)〉, which

is shown as a blue line in Fig. 4b as a function

of T/TF. The curve is scaled to the MQDT value

of β/T for T/TF > 1, but otherwise has no fitting

parameters. That this simple consideration qualita-

tively describes the change in reaction rate suggests

that the reduced particle fluctuations are the primary

effect slowing chemical reactions. Density fluctua-

tions are most strongly suppressed in the center of

the trap [43] where the majority of chemical reac-

tions occur, which is a possible explanation for why

some points fall below the expected fluctuation sup-

pression curve. Similar suppression of loss due to

strong correlations has been observed in the three-

body recombination rate of a one-dimensional Bose

gas in which the particles have undergone fermion-

ization [57]. Furthermore, this effect is reminiscent

of the reduction of the elastic s-wave collision rate

observed in fermionic atoms [58, 59]; however, in the

elastic case, the reduction of the elastic cross section

is attributed to the unavailability of empty states to

scatter into, which is not relevant for inelastic colli-

sions.

While the qualitative agreement between the data

and the suppression of density fluctuations is sugges-

tive, a complete theory must capture the subtle higher

order effects that give rise to deviations from Eq. 1.

In particular, it is important to consider the degree

to which molecules thermalize after some are lost

to chemical reactions. Furthermore, as T/TF is de-
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FIG. 4. a. Reaction rate constant as a function of tem-

perature. The reaction rate constant β for temperatures

ranging from T = 70 – 450 nK. Blue-filled points corre-

spond to T/TF ≤ 0.6 and red-filled points to T/TF > 0.6.

The red curve is the value expected from MQDT. b. Sup-

pression of chemical reactions. Temperature-normalized

reaction rate constants from a as a function of degeneracy.

The measured β/T , as determined by fitting the average

density to the solution of Eq. 1, appears to decrease sharply

when T/TF < 0.6 due to the suppression of fluctuations.

The solid black line and gray bar are the average β/T for

T/TF > 0.6 and corresponding error range. The red line is

the MQDT value and the blue curve is the average relative

density fluctuations.

creased well below 0.3, collisions become dominated

by molecules near the Fermi surface so that the mean

relative collision energy deviates from the classical

equipartition value to the quantum value of 3

4
kBTF per

particle. We expect that the true two-body loss rate

will thus remain finite even at absolute zero, but the

bulk Fermi gas will be increasingly stable as density
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fluctuations vanish at T = 0.

The production of a Fermi degenerate gas of dipo-

lar molecules opens new paths in ultracold molecular

science. In a bulk gas, we now have the opportunity to

study chemical reactions in a regime where quantum

degeneracy and quantum fluctuations compete with

classical chemical reaction dynamics. Furthermore,

this work shows great promise for the exploration

of degenerate molecules in electric fields, where the

strong dipole-dipole interaction dominates. In this

limit, we expect to see interaction-induced effects

such as the deformation of the Fermi surface and the

development of exotic many-body correlations.
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FIG. S1. Experimental sequence. The upper panel

shows the number of Rb, K, and KRb, while the lower

panel shows the temperature of the mixture over the course

of the experimental cycle. A single curve is shown for

temperature since the atomic species remain thermalized.

The time axis is not to scale.

Preparation of degenerate atomic species. In

an atomic vapor cell (P ∼ 10
−7 torr), a dual species

magneto-optic trap (MOT) cools and traps Rb and

K atoms. Once the MOT is fully loaded, a com-

pressed MOT stage further cools the atoms, which is

followed by sub-Doppler cooling. Both bright andΛ–

enhanced gray molasses are sequentially performed

on the D2 transition of Rb for 2 and 8 ms, respec-

tively, and the atoms reach a final temperature of

10 µK. Simultaneously, Λ–enhanced gray molasses

is performed for 10 ms on the D1 transition of K,

which reaches a final temperature of 20 µK. After

reloading the atoms into the quadrupole field, adia-

batic compression raises their temperature to 100µK,

and 1 × 10
9 Rb and 7 × 10

7 K are captured in the

|F,mF 〉 = |2, 2〉 and |9/2, 9/2〉 states, respectively.

Atoms are spatially transported ∼1 m to a high-

vacuum science cell (P ∼ 10
−11 torr) by physically

translating the anti-Helmholtz coils producing the

quadrupole field. The quadrupole trap is plugged

with a blue-detuned beam (20 µm waist, 760 nm),

and magnetic evaporation is performed with a chirped

driving of the |2, 2〉 → |1, 1〉 transition of Rb using a

microwave horn at 6.8 GHz. Potassium is sympathet-

ically cooled, and at the end of magnetic evaporation,

6 × 10
6 of each species remain at 4 µK.

Once magnetic evaporation is complete, a crossed

optical dipole trap (xODT) is turned on to capture

the cold atoms, and the quadrupole field and plug

beam are ramped off while a bias field of 30 G

is turned on. The xODT is formed by two ellipti-

cal beams at 1064 nm with waists of 45 × 170 µm

crossing at 45
◦. Optical evaporation is performed

by exponentially ramping the beams to variable cuts

(∼1/10 of their initial value) and then recompress-

ing the trap such that the K trap frequencies are

(ωx, ωy, ωz) = 2π × (45, 250, 80) Hz. Depending

on the final trap depth, the atom number and temper-

ature can be varied significantly. Typically, 10
6 Rb

and 1.4 × 10
6 K atoms at 300 nK, or 7 × 10

4 Rb and

5 × 10
5 K atoms at 50 nK can be produced.

During optical evaporation the atoms are

transferred to the Feshbach states using adiabatic

rapid passage (ARP). Rubidium is transferred from

|2, 2〉 → |1, 1〉 and K from |9/2, 9/2〉 → |9/2,−9/2〉;
each is transferred with about 98% efficiency and

untransferred atoms are blasted out of the trap

with resonant light. Once optical evaporation and

state transfer are complete, the bias field is ramped

to 550 G in preparation for molecule production.

The progression of atom numbers and temperature

throughout the experimental cycle is shown in

Fig. S1.

Production and imaging of ground state KRb. In

order to prevent gravitational sag from inducing oscil-

lations in the ground state molecules, a vertical lattice

formed by two counter-propagating beams (170 µm

waist, 1064 nm) is adibatically ramped on. It is found

that a lattice depth of 30 EKRb
r is sufficient to suppress

the effects of gravitational sag. Once molecules are

produced, the lattice is ramped off in 5 ms.

In the corrugated trap, weakly bound Fesh-

bach molecules are produced by sweeping the mag-

netic field through the Fano-Feshbach resonance at

546.6 G. The field is swept from 556 G to 545.6 G in

3 ms. Conversion from unbound atoms to Feshbach

molecules varies significantly depending on the ini-

tial temperature of the atoms, and it can be as high as

50% at low temperature and as low as 15% at high

temperature.
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Molecules are transferred to the rovibronic ground

state using stimulated Raman adiabatic passage (STI-

RAP). The two STIRAP lasers, which operate at

968 nm and 689 nm, are each locked to a common

high-finesse optical cavity using the Pound-Drever-

Hall method. The STIRAP sequence is 4 µs long,

and has a transfer efficiency of ∼90%; the reported

molecule numbers are corrected for this efficiency.

Immediately after molecule production, unpaired

atoms are removed from the trap to mitigate molecule

loss. To remove K, a 30 µs pulse of resonant light

is applied to blast K out of the trap while leaving

the molecules unaffected. To remove leftover Rb,

which is in the |1, 1〉 state, four ARP + blast sequences

are applied to ensure the total removal of Rb. The

molecule number and temperature are found to be

unaffected by the atom removal.
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FIG. S2. a. Heating Rate. The typical temperature of

a molecular gas as a function of time. b. Degeneracy

Loss. Despite the heating, T/TF remains small so long as

ht ≪ T0.

To image molecules, the xODT is diabatically

turned off and the STIRAP sequence is reversed

to produced Feshbach molecules once again. The

magnetic field is then jumped across the resonance

to dissociate the weakly bound molecules into

free atoms and the K atoms are imaged on the

|9/2,−9/2〉 → |11/2,−11/2〉′ cycling transition

after a variable amount of time of flight. We may

also image Feshbach molecules directly without

dissociation, by using resonant light to separate the

molecules into free atoms. In this case, we must

account for the reduced absorption cross section

compared to free atoms, which we find to be about

0.7 times smaller.

Image Fitting. The molecular cloud is imaged from

the side at an angle of θ = 22.5◦ with respect to the

principal axes of the trap. The imaging axes are

x̂1 =

x̂ sin θ + ẑ cos θ
√

2

(S1a)

x̂2 = ŷ. (S1b)

The 2D column density distributions are fit to

either a classical distribution for T/TF∼1 or a Fermi-

Dirac distribution for T/TF≪ 1.

For the classical distribution, we fit to

nCl(x̂1, x̂2) = n0e
−∑

2

i=1

x̂
2
i

2σ2
i + c, (S2)

with n0, {σi}, and c as fitting parameters. Respec-

tively, these are the peak density, the size of the cloud

along each imaging axis, and the imaging offset. The

cloud sizes are related to the classical temperature of

the gas via

σi =

√
1 + (ωiτ)2
ωi

√
kBT

m
, (S3)

where kB is Boltzmann’s constant, m = 127 amu is

the molecular mass, ωi is the trap frequency along

the ith direction, and τ is the time of flight.

For the Fermi-Dirac distribution, we make the

Thomas-Fermi approximation and fit to

nFD(x̂1, x̂2) = −n0Li2
©«
−ze

−∑
2

i=1

x̂
2
i

2σ2
i

ª®¬
+ c. (S4)

Here, z is the fugacity, which is a fitting parameter

in addition to those described above. Lis(z) is the
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polylogarithm function defined according to

− Lis(−z) = 1

Γ(s)

∫ ∞

0

dx
xs−1

z−1ex + 1
, (S5)

where Γ(s) is Euler’s gamma function. The quantity

T/TF is determined solely by the fugacity according

to (
T

TF

)3

= − 1

6Li3(−z) . (S6)

Density loss fitting. In a classical, harmonically

trapped gas, the in situ average density is given by

n(T) = N

V
=

N

8π3/2 ω̄
3

(
kBT

m

)−3/2
, (S7)

where ω̄ = (ω1ω2ω3)1/3 is the geometric mean trap

frequency. Differentiation of the above equation with

respect to time yields Eq. 1, with ÛN = −βVn2 being

the rate at which particles are lost.

Since, according to the Bethe-Wigner threshold

law, the two-body rate constant is proportional to

temperature, it is convenient to write β = bT , with b

independent of temperature. Then, the rate equation

reads

dn

dt
= −bTn2 − 3

2

n

T

dT

dt
. (S8)

While, in principle, anti-evaporation is the main

source of heating, we observe a linear increase in

temperature over the course of the hold time of the

molecules; an example of which is shown in Fig. S2a.

We therefore, do not fit T , but measure it to be T =

T0 + ht, where h is the heating rate and t is the hold

time. With this, Eq. S8 becomes

dn

dt
= −b(T0 + ht)n2 − 3

2
n

h

T0 + ht
. (S9)

The closed form solution for Eq. S9 is

n(t) =
n0hT

3/2
0

(ht + T0)
(
2n0T2

0

(√
T0 −

√
ht + T0

)
b + h

(√
ht + T0 + 2n0tT

3/2
0

b
)) , (S10)

and density loss curves are fit to this equation.

Example density loss curves and their corresponding

fits are shown in Fig. 3b.

In our analysis, b and n0 are fitting parameters,

while T0 and h are measured. T0 is measured at

time t = 0 by averaging 3–5 images and fitting to

the Fermi-Dirac distribution, while h is measured by

considering the increase in σ2

i
∝ T as a function of

time. Despite the heating, molecular degeneracy is

preserved over the course of the molecules’ lifetime,

as shown in Fig. S2b.

In Figs 4a and 4b, the quantities plotted are β =

bT0 and b = β/T , respectively.

Density fluctuations in an ideal Fermi gas

Within the Thomas-Fermi approximation, the

density distribution of the ideal Fermi gas is given

by

n(r) = − 1

Λ3
Li3/2

(
−ze

−βV (r)
)
. (S11)

In the grand canonical ensemble, fluctuations in den-

sity are described in the thermodynamic limit by

δn(r)2 = 〈n2(r)〉 − 〈n(r)〉2

=

1

β

∂n(r)
∂µ

= − 1

Λ3
Li1/2

(
−ze

−βV (r)
)
. (S12)

Local relative number fluctuations are therefore de-

scribed by

δn(r)2
n(r) =

Li1/2
(
−ze

−βV (r)
)

Li3/2
(
−ze−βV (r)) . (S13)

However, in our experiment, we do not consider
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reactions locally, but rather globally. Therefore, it

is necessary to average over all fluctuations in the

trap. The normalized spatial probability distribution

is given by

f (r) = n(r)
N

= Λ
3

(
mω̄

h

)3
1

Li3(−z)Li3/2
(
−ze

−βV (r)
)
,

(S14)

so that the size of fluctuations averaged over the trap

is

〈δn(r)2〉
〈n(r)〉 =

∫
dr f (r)δn(r)2∫
dr f (r)n(r)

(S15)

The average suppression of fluctuations is com-

pared to the suppression of fluctuations in the center

of the trap in Fig. S3. It is also clear from Fig. S3

that fluctuations are only suppressed at the edge of the

trap (3σ) for T/TF < 0.2, which is consistent with our

expectation that chemical reactions are only strongly

suppressed at the center.
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FIG. S3. Density Fluctuations in an ideal Fermi gas.

Relative density fluctuations in a harmonically trapped

Fermi gas at various positions. The bold line corresponds

to the average over the trap.
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