A Degenerate Parabolic Equation
Modelling the Spread of an Epidemic (*).

MavrA UcHz

Summary. — We consider the Cauchy problem for a degenerate parabolic equation, not in divergence
form, representing the diffusive approvimation of a model for the spread of an epidemic in a
closed population without remolion. We prove existence and uniqueness of the weak solution,
defined in o suitable way, and some qualitative properties.

1. - Introduction.

In this paper we shall consider the diffusive approximation (see [10]) of a model
of the type proposed in [4], [7] for the spread of epidemic in a closed population
without remotion.

The population is divided in susceptibles s and infectious 4, and s + ¢ = 1 (after
normalizing the total population to 1). The evolution law for s is:

os(x, t)

1.1) 5 = s t)fK(x~y)i(y, t) dy

where the convolution kernel is positive and with compact support.
We shall consider a one dimensional problem in the whole space. It can be

found (see [3]) that (1.1), after suitable re-scaling, has the following diffusive ap-
proximation:

(1.2) 8= 88— 8(1 —s) in Rx(0,7).

This approximation is meaningful only when s is sufficiently smooth and 0<s<1.
Moreover (see (1.1)) s should be decreasing in time and such that the set P(s) =
= {&: s(z, 1) > 0} is constant in time.

If we want that a solution of (1.2) has these qualitative properties we have to
impose some conditions on the initial datum s(x, 0) = s,(). More precisely:

(HA)  5eC(R), 0<s,<l, s;—(L—s)<0 for zeR .

(*) Entrata in Redazione il 20 dicembre 1984,
Indirizzo dell’A.: Universitd degli Studi, Istituto Matematico « Ulisse Dini», Viale G. B.
Morgagni, 67/A I, 50134 Firenze, Italia.
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The Cauchy problem for (1.2) is quite interesting since equation (1.2) is a non
linear parabolic equation degenerating in the points (z, {) such that s(z, ) = 0, and
not in divergence form. Therefore we will study it with assumptions on the initial
datum s, less restrictive than (HA).

More precisely we will assume throughout the paper:

(HB) s,€ O(R), s, uniformly Lipsehitz in R, (with Lipschitz constant M), 0 <s,<1
for z eR.

Since the equation (1.2) is a degenerate parabolic equation we cannct expect
in general to have classical solutions. Because of the close apparent relation of
(1.2) with a filtration equation with absorption (see [1]), the more natural defini-
tion of a weak solution of the Cauchy problem for equation (1.2) with initial datum
8(w, 0) = s,(w) (we will refer to this problem as Problem 1) seems to be the following:

DerFINITION 1. — A function s{(w, ) is a weak solution to Problem 1 if:

1) 0<s<l, s€ ORX(0,T)), |s(x', 1) —s(@", )] <M|x'—a"|, V>0, &/, s'€R,
M positive constant;

2) s satbisfies the following integral equation

T

(1.3) [ fi=tis -+ sfsre + 30 = )1 o @t @, 0)sof@) dw = 0
o R R

for any f(z,t) e P, F = {fe C{{R x[0, T1), { with compact support in z,
Vi, f(, T) = O}§

3) whenever s is positive, it is a classical solution of equation (1.2).
Let us give some examples of explicit weak solutions (in the sense of Defini-
tion 1):

9 -1
$,(, 1) == (1 — cos (m~xo))(1 —|——ccexp t) , 0<e<

$1, @ — @] € 27
Sa(@y 1) = 0, |ov— o> 2m

1+ 4—¢ -1
¢

(1.4) se(@, 1) = |1 + A cos (# — %) (1 —+ exp t) ,

A>1,0<e<1

1
855, |[—m—a|< are cos — .

sy, ) =

1
0, |r—ay—an|> are cos — .
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However we shall give a counterexample (Section 3) proving that in general
there is no uniqueness in the class of weak solutions defined by Definition 1. As 2
matter of fact this class contains solutions which do not satisfy the assumptions
of the diffusive approximation (1.2) of (1.1).

Thus we will be led to another definition of weak solution for which we ghall
prove uniqueness and existence (Section 4). To get both results we shall construect
(Section 2) a sequence of classical approximations and we shall study the behaviour
of such a sequence. As & byproduct we shall prove that:

(1.5) Supp s = supp s, O<i<T,

where, as usual, supp f = P(f).

Moreover the solutions with compact support have mean values not increasing
in time. Aectually in the assumption (HA) we can prove that the sclution itself is
not increasing in time (see Section 5).

Let us remark that (1.5) implies that Problem 1 is not really a free boundary
problem (as it happens in general for degenerate parabolic equations of the filtra-
tion type). Actually the «free boundaries» are given only by sets of the type
{@ = x,, O<t<i}, @, such that s,(w,) = 0. The question whether ¢ is finite or not
is partially answered in Section 5, but it is still open in the general case.

Finally let us remark that the main results of this paper hold also for equation
of the type:

under suitable assumptions on f and g (see Section 5, Remark 5.2).

2. - Approximating solutions.

2.1. Definition and properties of the approximating solutions.

Let us first remark that if sy,(z)>¢ > 0 then it exists a unique classical solution s
of Problem (1) (see e.g. [8]).

Moreover if 0 < s;<<1 then 0 < s<1. More precisely it can be proved by com-
parison with spatially homogeneous solutions that if 0 < e<<s,<1 —¢, then:

(2.1) O<l(§,t)<s(m,t)<l(l—e,t), ZER, t>0.
Here (¢, t) = ¢(e + (L —¢) exp )~

In order to construct a sequence of classical approximations let us define (as
usual in literature; see [9]) {s2(«)} to be a decreasing sequence of C°(R) functions
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converging uniformly to s,(#) on any finite interval and such that Va:

(2.2)

S|

<spy<1,  |sy(@)| < M.
Now set ¥n, 8%(x) to be:

s3@)  |m|l<n—2

(2.3) 8%x) =1 1 n—1<|zl<n

n

ho(o) n—2<|pj<n—1
where h,(x) € O°(R), Vn, and it is such that
@) <h @<l, |b|<max(l, M), 8 C(jz|<n).

It is immediately verified that {8°(x)} has the same properties of {s°(x)}.
For any » we can define §,(x,?) to be the unique positive classical solution of
the problem:

08, 028, .
5 = Sn—ég;——ﬂn(l—-ﬂn} in R,= {(x,1): || <m, 0<t< T}

(2.4) Sa(z, 0) = 82%z)  |oj<m

Sp(Fn, t) =1 0<t< T,

By means of the way we constructed S,, we can show that {S,} is a non increas-
ing sequence and 0 < 8,<1, Yn. Moreover we have a uniform bound for the x
derivative:

2.5) 8.0|<# in R,

with M depending on M, T but not on n.
Infact w = 8,, satisfies the following equation:

Wy — S Wy — ww, + w(l —28,) =0

for which a maximum principle holds. Thus we need bounds for §,, on the para-
bolic boundary of E,.

Since |(d8°/dw)(#)| <max (1, M) we have only to estimate 8o(£m, t). Let us
consider 8,.(n, ?). )

Since 8,(n, 1) = 1 is a maximum for §, in R,, we have that S..(n,?)>0. An
upper bound for 8,.(n,t) is obtained comparing S, with the function fo=1—
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—Asen{x—n +x) in Q.= {(&t): n —1<aw<n 0<t< T} where 4 is a fixed
constant > (sen 1)-*. The function f, is a stationary solution in @,. Similarly to
estimate 8,.(— n, ). ’

The uniform bound for |§,,| implies the uniform Hélder continuity of §, with
respect to f, that is it exists a positive constant M, depending only on M such that

(2.6) |8, (2, V') — 8o, 1) < Myt —1']*  in R, .

Infact v = 8, can be regarded as solution of the following equation: 8,v,,— v, =
= 8,(1—8,), with 0 <e<S8,<1, 0<8,(1—8,)<1. Therefore we can apply the
result of {6] and get (2.6).

By means of (2.5), (2.6) and of the fact that {S,} is not increasing we get that
S, — 8(x,1) a8 m — + oo, where § is a continuous function of # and #, Lipschitz
continuous in @, 0<S<1. Moreover there exists a subsequence of {8,}, which we
again denote by {S,}, such that {S,.; converges weakly in L” for any p € (1, o).
The limiting function §, is the weak derivative of § and it satisfies (2.5), that is
18,| <M in Rx(0, T).

Consider an arbitrary fixed point (w,, %) such that S(x,, f)>a > 0. Then it
exists a suitable rectangular neighborhood of (2, t,), N,, where 1>8,>8>a/2. By
means of a standard argument (see [8], [5]), we get that {S..}, {Sus}y {Sas} are
cquibounded and equicontinuous in some neighborhood ¢ N,. Therefore S e (%1
in a neighborhood of (%,,%,) and satisfies equation (1.2). (Let us remark that (2.5)
implies |8.|<M in P(S), 8, strong derivative).

2.2. Tirst property of the support of 8.

Let us now prove the following proposition:

ProposITION 1. — For any 6 > 0 it is:
2.1 8w, 1) =8z, t')exp [— C(t —t)], I>t'>6>0

where C is a fixed positive constant depending on 4.
We shall show that (2.7) holds for 8,, with C not dependent on n. Inequality
(2.7) for 8, comes from the following estimate of S

nrr.

ProrosITIioN 2.

(2.8) Suee>—2P(8), T>t56>0, l|o|<n

where 2P(6) = (1 — exp (— 0))-*
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~ Proor oF ProPOSITION 2. — The proof is based on an argument first introduced
in ([2]) and on the observation that:

A(p)>0

where A(u) = U;— Spthpy— 28,8, — 4* + |4, p = Snsa-
Sinee p is ]qounded (p_(:};n, {) = 0), eomparing p with the function g(f) = — (1 —
— exp (— (t——t)))—l, t>1t> 0, such that A(g) = 0, one gets (2.8). [

Proor orF PropPOSITION 1. — Sinee 8, is solution of equation (1.2), by means of
(2.8) we get (2.7) for 8, and then, passing to the limit as n -» + oo, Proposi-
tion 1. O

Let us remark that (2.8) implies that:
(2.9) 8w, t) + Plx—x)* 18 a convex funetion of » for I'>¢t> 46> 0

where #, is any fixed point € R.
Moreover by means of a result of [11] (Lemma 10.1), of (2.8) and (2.5) we
have that 8§ satisfles the integral identity (1.3).

2.3. Time invariance of the support of S.

Let us now observe that since 8, is a positive solution of equation (1.2) it is
also a solution of the following equation:

(2.10) —g—t(log 8) = 8,— (1 — 8).

Integrating the above equation in R = (g, b) x{(0, T) where (a, b)C (—n,n) we
get the following integral identity:
b b Z‘ :
(2.11) f log 8,(z, T) do = [log 83(x) d + [ 1802ty ) — Sule, 1)) dt— f f (1—8,) de dt .
o R

a 9

Sinee §, and S,;m are bounded indipendently of n {see (2.3)) we have that:

(2.12)

b b
[102 8,(@, T) do — [102 8302 daﬂ <O(T, 3, (b — ) .

a a

By means of the continuity of § :nl_iggo 8., it is easy to see that:

(2.13) supp s, = supp S, 1), O0<t<T.
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Moreover the local integrability (or not integrability) of log s, is preserved. To
be more precise let us define, for any i:

214) 1) = U e, 2 < supp fi, 0 | [log o, ) da] < oo}

1

Then we have:

(2.18)  L(s) = I{8), O0<t<T, Smit)=0, zeR L), O<ti<T.

A

REMARK 2.1. — If s is any weak solution in the sense of Definition 1 we have that
s<A8,, in R, for any ». Infact S, is a positive elagsical solution with initial datum
Sh>s, and boundary data larger than s (s<1 by definition). Hence whenever
8§ =2~8,4+¢e¢>0, itis s >0 and by definition classical so we can use standard
comparison techniques.

Therefore s< 8 = lim &,. This implies that:

(2.16) it Sz, %) =10 then s{w, %) =0.

Actually the above result holds for any definition of weak solution that preserves
the continuity of s, 0 <s<1 and the point (3) of Definition 1 (that is that s is classical
in P(s)).

3. — Not uniqueness of weak solutions in the sense of Definition 1. A counterexample.

We shall first show that s,, given in Sec. 1 (1.4), is not the unique solution of
Problem 1 with initial datum: ‘

(3.1) So= 0|1 + A4 cos (z — m,)|(1 + A).

More preecisely we shall prove that it exists a positive (classical) solution to
Problem 1 with the same initial datum 3,.

Letus consider the sequence {8,} constructed in Sec. 2, with initial data SN Bo-
By the results of Sec. 2 we have that Sn\S as % — -+ oo,

Then the following proposition holds:

PROPOSITION. — S(#, t) is a positive classical solution to Problem 1 with initial
datum §,.

ProoF. - Clearly to prove the propesition it is sufficient to show that S(z, 1) > 0
in RX(0, 7]: By means of (2.7) we have that S(z,?) > 0 for 2 P(5,), 0 < t<T.
Hence we have only to prove that S(z,#) > 0 for z € R\P(5,), 0 < t<T. Congider
any ¥ such that §,(%) = 0, without loss of generality we can set # = 0.
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Since in this case, log § € L} (R), by means of (2.12) we have that

log S(2, t) € It

Ry, O0<i<T.
Now let us define R(a) = (~— a, a) x(0, T).
Since 8, is a classical solution of equation (2.10) we have that for any ¢ > 0:

(32) 0= [[ [—flog Su + Suufeot+ (1~ S,)f] de it

R(m/2)

33) 0= [[[—filog 8, + Suufo + (1 — 8] du it +
Bim/2)\ R(g) '

- [UF(es 1) Sualey ) — fl— ey ) Suul ey )] @

for any f(z,t) € 0y (R(x/2)) and for any n.
By means of the results of Sec. 2 and since, for 0 < ¢< T, log § € L}, (R) we can
pass to the limit as # — 4 oo in (3.2) and hence we get that § satisfies relation (3.2).
Therefore it is easy to show that the first term of the right hand side of (3.3)
converges to zero as ¢ — 0 uniformly in #.
Hence we have:
T

(3.4) Hm | [f(e, t) Snale, 1) — f(— &, 1) 8pu{— &, 1) ]di = 0

&=>0
0

uniformly in #, Vf € C7 (R(7/2)).
Let us now take f(z, t) = g(x)h(t), g(z) =1, [»|<n/t.
With. this choice of f, it follows from (3.4) that:

5 lim - ff nr yg Snm(— Y, t)) dt dy =0=

-0 €
Sn(ey t) + Sn(— &, t) -39 Sn(oa t):l at

€ &

7
= lim { h(3) [
&0

0

uniformly in #.

Therefore (3.5) holds also for S.

Now 1f we agsume by contradiction that it exists a positive time £ such that
8(0,%) = 0, (0 < t<T) we get from (2.7) that S§(0,%) = 0, 0 < t<L.

Let us take h(t) = 0, t<t< T, then (3.5) implies

lim | R(t) (&L)—Ee—m——i) dt=0.

&e—>0
]
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On the other hand, since by construction Sy(x)>3§, and S, are positive, we have
8,>s, for any n. Therefore S(z,t)>s,(x, t) and hence (see 1.4):

S(e, 1) + S(—&,1)
8

>0>0
that is a contradiction. O

REMARK 3.1. — Let us remark that the proof is based on the observation that
relation (3.2) helds for 8 and not for s, becaunse of the finite jump of s;. across © = 0.
Moreover (3.4) implies that 8§, is continuous, a.e. in {, across o = 0.

We give now more general assumptions on the initial datum s,, under which
unigueness is not to be expected.

In general we cannot expect uniqueness if it exists a x,, x,€ L(s,) such that
8{w,) = 0 and:

(3.6) lim 2@ _ g (or lim @), 0).

w—ut ¥ — @y z—zy & — Ly

In the above assumptions we can repeat the previous argument, taking as com-
parison function for S a suitable solution of type s, (see (1.4)), and hence prove
that lim 8,(x0, 1) = S{®o, 1) > 0, 0 < t < T\

On the other hand s, = s; + $,, Where

Soy, W< Soy B>
S10 = 1 Sp= .

0, T > & o, z < %

If we define s, and s, to be weak solutions of Problem 1 with initial data s,, and
8,0 Tespectively, then (see Remark 2.1, Seec. 2):

;=0 2>z, §=0 x5, 0<i<T.

This means that s = s, + s, is a weak solution with initial datum s, and it is
such that s(x,, f) = 0, 0 <t L. Therefore we can expect to have at least two solu-
tions: § (positive in x,) and s; + s,.

Let us remark that solutions of the type s - s, or s; do not satisfy the as-
sumptions of diffusive approximation not only because of their regularity but also
because the solution with initial datum s, should be strictly larger then s; + s,,
® 7 2, (see (1.1)). ‘

Therefore we have that the class of weak solutions according with Definition 1
is « too large ».

We shall try in the following Section to give a new definition of weak solution
which exeludes functions of the type s + s, or s,.
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4. — A new definition of weak solution.

The results of Section 2, in particular (2.15) and Remark 2.1, hint that the
Cauchy problem (1.2) is actually, in general, the «sum » of initial-boundary values
problems (of Dirichlet type) in bounded or unbounded domains. Moreover on each
of these domains the local integrability of log s, is preserved.

Therefore we will give a new definition of weak solution which takes inte account
thege features of the problem.

DerFINITION 2. — A function s(a, t) is a weak solution of Problem 1 if:

(1) same as in Definition 1;

{2) s satisfies the following integral identity:
r
(4.1) ”(w gilog s + g.s. + (1 —s)) do dt —fg(x, 0) log s, daz = 0
o R R

for any
gz, ) e@ = {ge F: g =0 on (R\L(s,)) X[0, T, g, 0) log so L* (supp s,)}
(F as in Definition 1, L(s,) defined in (2.14));
(3) same as in Definition 1;
(4) s=0 in (R\L(s,)) x[0, T].
It is immediately seen that the functions s,, s,, s; given in Sec. 1, (1.4), are weak

solutions in the sense of Definition 2 and that s, is not any more a solution.
With this new definition we ean give an existence and uniqueness theorem.

THEOREM 1. — In the assumption (HB) on s,, there exists a unique weak sgolu-
tion, in the sense of Definition 2, of Problem 1.

ProOF. — Let us consider the sequence {§,} construeted in section 2. Condi-
tions (1), (3), (4) were already proved in Sec. 2 for § = lim §,. Since for any n, S,
is a classical solution of equation (1.2), and hence of (2.10), the integral equation
(4.1) holds for 8, for any g € @, (of course with 8 instead of s,). By means of the
requirement that g(z, 0) log s,€ LY(supp $,), of the integral equation ifself and of the

T
results of Seetion 2 we have that f f»— g.log 8, dz dt is bounded indipendently on .
o R

Therefore we can take the limit in the integral equation for S§,, as n — 4 oo and
we get that § = lim 8, satisfies condition (2). Hence § iy a weak soluntion in the
sense of Definition 2.
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To prove the uniqueness we will consider § = lim §, and s any weak solution
with the same initial datum s,. As we already noted (see Remark 2.1) we have
s<8. By definition s =8=0 in (R\I(s,)) x[0, T].

Therefore we have to prove the uniqueness of boundary value problems in
bounded or unbounded domain. We will prove uniqueness in the case of a semi-
infinite domain (say L(s,) = (0, 4 o0)). The proof for bounded domain and for
L(s,) = R can be given in the same way.

We shall use a sort of energy estimate (see [9]). Since s and § are both weak
solutiong, the following equation must hold:

T

(4.2) [ [ g.010g 8 —1og 5) + g.(8.— 5.) — g(S — )] dw dt = 0.
R

]

It is easy to see that (4.2) holds also if g has bounded weak first derivative with
respect to .

Let us define a sequence of smooth funetions a,, such that: a,(z) = 1 for 2/n<
<z<n—1; a,(x) = 0 for O<w<dfn, x>n; 0<a, <1, for Ifn<e<2/n, n —1l<w<n;
a,(x) uniformly bounded with respect to n for n — 1<z <n; 0<a,(x) <on, for 1/n<
<w<2/n, ¢ positive fixed constant, @,>0 smooth for z < 0.

We now set

t

9ala, 1) = 0,(a) [ (S, y) — s(, ) dy -

T

Let us substitute the function ¢, in the equation (4.2). Recalling that § =s=0
in (R\I(8,)) X[0, T} = (— o0, 0] X[0, 7] we have (see [9]), for any T > 0:

(4.3) f fan(s_ s)(log 8 — log s) dw dt = —% f an(f(S — $)s dy)zdw +

0 1/n 1Un 7
T 2/n 7 n t
([ [+ f)(a;(f(sw, v) — sie, y))dy)(sw—sa)dx at +
0 1i/n ¢ n—1 7

+ f f f an@)(8(3, 1) — 5(2, 0)(8(2, 9) — (2, 9)) dw At dy = I, + T, + I, 4 I, .

¢ 0 i/n

Now to estimate I, we shall use Cauchy inequality:

ab < 2

IR

1
2!____b
Y

where €' is a positive constant to be chosen later, a = (§ — s)(w, 1), b = (8 — 8)(=, ¥).
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On the other hand, since 0<s<8<1 we have

8
log 8§ —log s :f%dy>(8—s).
Set:

:j fan S—spdedt, 0<z<T.

0 1/n
From (4.3) referred to [1/n, n] x[0, 7], 0 <7< T, we get:

0<Fo(v)<I,+ I, + TF 1)+ = f}.ﬂ

for any =, for any 0 < v<T.
Setting ¢ = T we get:

T

0<Pu(0)<2(L] + L) + I[P dy, 0<r<I.

0

By means of Gronwall inequality we get:

0<F () <O(L| + L), 0<<T,

C constant not depending on n.
Clearly |I,] and |I;| are uniformly bounded with respect to n. Hence it is
(8 — s)ze L1((0, T) X (0, + o0)}. Moreover:

L<C max (S(=, t) — s(, 1))

{%, £)E[1ym, 2/n]1X [0, 2]

Il < fflS-s]dmdt<C’1Té(ff ——szdwdt).

0 n—1 n—1

Sinee (§ — s)* is eontinuous and integrable in (0, T') X (0, + o) and (8§ —s)2=0,

for x = 0, we get:
+oo

T
f (S—s)dedt=0
n-—>+oo
i.e. uniqueness. [

REMARK 4.1. — Let us remark that we cannot have continuous dependence of
the weak solution on the initial datum, even if consider a sequence of classical
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solutions. To be more precise let us consider s, satisfying assumption (3.6). Let us
define a sequence s7 s, such that sj(2) = 0, lo — x| <1/m, s7 satisfying assumption
(HB). For any sy we can construct a sequence of classical approximations S, ,, as
in Section 2. It is easy to see that we can extract from §,, a subsequence S, .
converging to a continuous function S.

By the result of Section 2 (see (2.13)) we have that S(@,, t) = lim 8, (@5 8) =0.
Therefore, see Section 3, § is not the weak solution with initial datum s,.

5. — Some properties of weak solutions.

First of all let us remark that we have a monotone dependence result.

PROPERTY 1. — If 85,(2) < 8po(w) then for the corresponding weak solutions s, s,
we have

8 <8, -

By means of the results of Section 2 (see (2.13)) and of the uniqueness result
we have the following:

PrOPERTY 2. —~ (Zero speed of propagation of disturbances)
supp s, = supps, O0<i<T.

Of course here we cannot say in general that s(z, f) is decreasing in time. Instead
for the solutions with compact support we have that the mean value of s is decreasing:

PrOPERTY 3. — If so(z) has compact support then the function

_ 1
S(t) :m f S(ZI), t) dx

supp so

is not increasing (|supp s,| is the measure of supp s,).

Proor. — Let us consider the sequence S, of classical approximations constructed
in Sec. 2. For any =, 8, is solution of equation (1.2). By integration in a rectangle
B = (a, b) x(¥', t"), (&, b) D sUpp S,, We get:

b t"

f Sz, ') do < f 8, (x, ') do + f (8,(By £) 80Dy 1) — 8,(ay 1) Suala, 1)) di .

a &’
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Since S,, are bounded uniformly w.r. to n and 8, 0, outside the supp s,
(see (2.14)), we get

03t <3(), "={>0.
Let us now remark that in the assumption (HA) we do have the following:

PropERTYY 4. — If the assumption (HA) on s, holds then s(z, t) is a not increasing
function of time.

Proor. — Let us consider the classical approximations 8, and set v = 8,;. Then
v satisfies the following equation:

Vy— Snwmx + 1)(1 - ZSn— S’Mcm) =0

which is a linear uniformly parabolic equation with bounded coefficient (depending
on #). Since agsumption (HA) holds we can choose the sequence S) so that on the
parabolic boundary of R,, v<0. By the maximum principle we get v<0 in R,.
Since the estimate does not depend on # we get that §,(z, t) is a not inereasing fune-
tion of ¢ for any » and hence property 4.

REMARX 5.1. — (i} By means of Property 4 and since §, is a positive solution
of equation (1.2) we have that in the assumption (HA)

(5.1) Spaz<1l—8,<1 for any » in R, .

Taking into account the lower estimate of S,., (2.8) we have that the sequence
{Spew} is uniformly bounded w.r. to n and that S.(— 2P(5) —1 + 8,) <8,,<8%.

Therefore the limiting function § € ¢+1(R X (0, T')) and has bounded weak second
derivative w.r. to . .

(i) It is easy to see that S is a weak solution also in the sense of Definition 1.
Moreover we can prove that it is unique. Therefore in the assumption (HA) the
two definitions of weak solution are equivalent.

The proof of uniqueness of the weak solution. (Def. 1) is based on the following
result: Any weak solution in the sense of Definition 1 which is positive in (%, %),
t,>0 remains positive for {>17, (we will omit the proof for sake of brevity). Then
the proof proceeds in a similar way as the one of Theorem 1.

(iii) Let us finally remark that property 4 and its consequences hold also in
weaker assumptions than (HA) (namely s, satisfies (HB) and 5, — (1 —8,) <0 for
# €SUPP S,, in the sense of distribution). O

We have already remarked in the Introduction that Problem 1 is nof really a
free boundary problem. Infact because of Property 2 and of (2.15) (i.e. §=0 on
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R\L(8,)), we have that s(a,, t) can be = 0 only if s,(#,) = 0. Hence the free bound-
aries can only be vertical segments of the type {z = =,, 0<t<f}. The question
whether ¢ is finite or not has been already partially answered.

Clearly if @, R\L(s,) then t = -+ oo, and the same is true for any zero if as-
sumption (HA) holds. On the other hand in assumption (3.6) we have { = 0. In
general we do not know what happens but we can give two other partial results.

PROPERTY 5. — If z,¢ L(s,) and so(z)<1 + sen (@ + a), for |¢ — x| <72, where a
is a constant such that sen (x, + a) = —1, then s{z,, ) = 0, t>0.

Proor. — Let us congider Q(x, {) weak solution of Problem 1 with initial datum

q(x) = min ((1 -+ sen (z - @), 1) = lim min((l + (1 —%) sen (» + a)), l)z

m—>+©

= lim ¢,,(x) .
m—>t o
By monotone dependence we have s<¢. Since, for any m, g, is the minimum
of two positive stationary solutions, it iz Q(w, t) <gn.(#) and hence Q(z,?)<q(x),
Q(zy, 1) <q(wo) == 0 for t>0. So Property 5 is proved. O

PROPERTY 6. — If @, L(s,) and it exists a positive constant A sueh that s,(x)<
<A(r — x,)2 then s(z,, 1) = 0, 0<t < $4.

Proor. - iOonsider the solution of the equation wu, =wuu,, given by wu,=
= (A(z —2)2+1/m)(1—2A41)~* for any m >0 and 0<t<<}4. It is easily seen
that s<u,, for any m and hence s<u, 0<t << 4.

REMARK 5.2. — Finally let us remark that the main results obtained in this
paper hold for the nonnegative bounded solutions (as long as they exist) of the
equation:

(5.2) W= (%) Uss + g{u) ,
where f and ge 0%, f(0) = 0, f(u) > 0 for » > 0, 1/f(#) not integrable near u = 0,
g(0) = 0, g(%)/f(w) bounded near u = 0.

The more convenient definition of weak solution is again Definition 2 where
we substitute the function log y with

o(y) :ff—(%dn-

Let us stress that the « zero speed of propagation » depends mainly on the not
divergence form of the equation and on f.

26 - Annali di Matematica
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Added in proof. — An equation similar to (1.2) has been studied independently by R. DAL
Passo - 8. LuckBAUs, On a degenerate diffusion problem wot in divergence form, to appear.
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