
A Degenerate ]Parabolic Equation 
Modelling the Spread of an Epidemic (*). 

~.~r UGItI 

S u m m a r y .  - We consider the Cauchy problem ]or a degenerate parabolic equation, not in divergence 
]orm, representing the di]]usive approximation o] a model for the spread of an epidemic in a 
closed population without remotion. We prove existence and uniqueness o] the weak solution, 
de]ined in a suitable way, and some qualitative properties. 

1 .  - I n t r o d u c t i o n .  

In  this paper  we shall consider the diffusive approximat ion (see [10]) of a model 
of the type  proposed in [4], [7] for the spread of epidemic in a closed populat ion 
wi thout  remotion.  

The populat ion is divided in suseeptibles s ~ d  infectious i, and s + i = 1 (after 
normalizing the to ta l  populat ion to 1). The evolution law for s is: 

(1.1) ~s(x, t) _ s(x, t ) ( K ( x  -- y ) i ( y ,  t) dy  
~t J 

where the convolut ion kernel  is positive and with compact  support.  
We shall consider a one dimensional problem in the whole space. I t  can be 

found (see [3]) tha~ (1.1), af ter  suitable re-scaling, has the following diffusive ap- 
proximat ion:  

(1.2) s~ = s s~- -  s(1 - -  s) in R • (0, T) . 

This approximat ion is meaningful  only when s is sufficiently smooth and 0 <s~<l .  
~ o r e o v e r  (see (1.1)) s should be decreasing in t ime and such tha t  the set P ( s ) =  
= {x: s(m, t) > 0} is constant  in t ime. 

If  we want  tha t  a solution of (1.2) has these quali tat ive properties we have to 
impose some conditions on the initial da tum s(x~ O ) =  So(X). Mo~e precisely: 

/r 

(HA) Soe C2(R), 0 < s 0 < l ,  So-- ( 1 - -  s0)<0 for m e ~  . 

(*) Entrata in Redazione il 20 dicembre 1984. 
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Morgagni, 67/A I, 50134 Firenze, Italia. 
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The Cauehy problem for (1.2) is quite interesting since equation (1.2) is a non 
linear parabolic equation degenerating in the points (x, t) such tha t  s(x, t) -- O, and 
not in divergence form. Therefore we will s i n@ it with assumptions on the initial 
da tum so less restrictive than  (HA). 

5fore precisely we will assume throughout  the paper: 

(HB) SoU C(R), So mfiformly Lipschitz in tt, (with Lipschitz constant M), 0<So<~l 
for x ~ R .  

Since the equation (1.2) is a degenerate parabolic equation we cannot expect 
in general to have classical solutions. Because of the close apparent relation of 
(1.2) with s filtration equation with absorption (see [1]), the more natural  4efini- 
tion of s weak solution of the Cauchy problem for equation (1.2) with initial da tum 
s(x, O) = So(X) (we will refer to this problem as Problem 1) seems to be the following: 

DEFI:NrrlO~ 1. - A function s(x, t) is a weak solution to Problem 1 if: 

1) 0<s~<l ,  s ~ C ( R x ( 0 ,  T)), ]s(x~,t)--8(x",t)l<2~]x'--x"], Vt>O, x ' , x"~R,  
~@ positive constant;  

2) s satisfies the following i n t e ~ a l  equation 

T 

(1.3) f f[--]~s-'~-s.(]s). + ] s ( 1 -  s)] dx dt--f](x, O)so(X)dx : 0  
o R R 

~or any t(x, t ) e  F,  ~ = {] e CI(R • T]), / with compact support in x, 
vt, ?(x, T) = 0}; 

3) whenever s is positive, it is a classical solution of equation (].2). 
Let  us give some examples of explicit weak solutions (in the sense of Defini- 

tion 1) : 

(1.5) 

s~(x, t) = (1 - cos ( X - X o ) ) ( 1  + 2  - e 

{ sl,  E x -  Xol < 2~ 
s 2 ( z , t ) =  o ,  [ X - X o l > 2 ~  

s3(x, t) = !1 § X cos ( x -  xo)l (1 + 

--J_ 

exp t , 0 < c~<l 
6 

s~(x, t) = 

I @ A - - e  

1 
Ix - X o -  ~t < are cos 8 a ,  

1 
0 , Ix -- xo-- z] ~> are cos ~ .  

p 0 -1 e x  

A > I ~  O < e < l  
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However  we shall give a counterexample (Section 3) proving tha t  in general 
there  is no uniqueness in the class of weak solutions defined by  Definition 1. As a 
ma t t e r  of fact  this class contains solutions which do not  satisfy the assumptions 
of the diffusive a~pproximation (1.2) of (1.1). 

Thus we will be led to another  definition of weak solution for which we shall 
prove uniqueness and existence (Section 4). To get bo th  results we shall construct  
(Section 2) a sequence of classical approximations and we shall s tudy the behaviour  
of such a sequence. As a byproduc t  we shall prove that :  

(1.5) supp s = supp So, 0 < t < T ,  

where, as usual, supp 1 ~-P(]). 
Moreover the solutions with compact  support  have mean values not  increasing 

in t ime. Actual ly in the assumption (HA) we can prove tha t  the solution itself is 
not  increasing in t ime (see Section 5). 

Let  us remark  tha t  (1.5) implies tha t  Problem 1 is not  really a free boundary  
problem (as it  happens in general for degenerate parabolic equations of the filtra- 
t ion type) .  Actual ly the <~ free bomldaries ~> are given only by  sets of the type  
{x = Xo~ 0 < t < i } ,  Xo such tha t  so(xo)= 0. The question whether  t is finite or not  
is part ia l ly  answered in Section 5, bu t  it  is still open in the general case. 

~inal ly let us remark  tha t  the main results of this paper  hold also for equation 
of the type :  

u~ := l (u)u~ § g(u) 

under  suitable assumptions on ] and g (se e Section 5, Remark  5.2). 

2. - Approx imat ing  so lut ions .  

2.1. De/inition and properties o] the approximating solutions. 

Let  us first remark  t ha t  if So(X)> e > 0 then it exists a unique classical solution s 
of Problem (1) (see e.g. [8]). 

Moreover if 0 < So <1  then  0 < s < 1. More precisely it can be proved by  com- 
parison with spatia.lly homogeneous solutions tha t  if 0 < e <So < 1 -  e, then:  

(2.1) o < l ( ~ , t ) < s ( x , t ) < t ( 1 - s , t ) ,  x e R ,  t > 0 .  

Here l(c, t) = c(c § (1 - -  c) exp t)-~. 
In  order to construct  a sequence of classical approximations let us define (as 

usual in l i terature;  see [9]) {s~ to be a decreasing sequence of C~(R) functions 
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converging uni formly  to So(X) on any  finite in terval  and such t ha t  Vn: 

1 
(2.2) - <~~ Is~ l < M .  

n 

Now set Vn, S~ to be: 

(2.3) SO(x) = 

4(x)  ] x l < n - 2  

Z n -- l < Ixt ~..- n 

h,,(x) n - -  2 < [x I < n - -  1 

where h,(x)~ C~(R), Vn, and it  is such t ha t  

s~ ]hrl<max (1, M), ~o~ C~(l~l<n). 

It is immedia te ly  verified t ha t  {S~ has the same propert ies  of {s~ 
For  any  n we can define %~(x, t) to be the unique posit ive classical solution of 

the p rob lem:  

(2.t)  

= S~ 8x--- T - -  .j 

S,,(x, 0) = S~ Ixl < n 

% . ( + n ,  t) = J. o < t < / ' .  

in R .  - {(~, t): I~1 < n,  0 < t < r }  

By means  of the  way  we constructed S~, we can show t h a t  {S~} is a non increas- 

ing sequence and 0 < S . < i ,  Vn. Moreover we have  a "uniform bound for the  x 

der ivat ive:  

(2.5) !s~1<~1r in R .  

with 2~r depending on M, T but  not  on n. 
In fac t  w = %~.~ satisfies the following equat ion:  

w ~ - -  % . % ~ - -  ww~ + w(1 - -  2S.) = 0 

for which a m a x i m u m  principle holds. Thus we need bounds for S ~  on the  para-  

bolic boundary  of R~. 
Since I(dS~ ] / )  we have  only to es t imate  S ~ ( i n ,  t). Let  us 

consider S.~(n~ t). 
Since N~(n, t ) =  I is a m a x i m u m  for S~ in R~, we have  t ha t  S~(n, t)>O. An 

upper  bound for N~(n, t) is obtained compar ing S,, with the  funct ion ]~ = 1 -  
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- -  A s e n  ( x  - -  n -~  a )  in Q, ,=  { ( x , t ) : n - - l < x < n ,  0 < t < T } ,  where A is a fixed 
constant > (sen 1)-h The function /,, is a s tat ionary solution in Q~. Similarly to 
est imate S~( - -  n~ t). 

The uniform bound for IS~I implies the uniform tt61der continuity of S~ wi~h 
respect to t, that is i t  exists a positive constant M~ depending only on M such tha t  

(2.6) IS.(x,t ')--S~(x,t')I<M~lt'--t 'l ~ in R~. 

Iafact  v = S. can be regarded as solution of the following equation: S~v~--vt  
== S . (1- -S~) ,  with 0 <  ~ < S . < 1 ,  0 < S . ( 1 - - S ~ ) < 1 .  Therefore we can apply the 
result of [6] and get (2.6). 

By  means of (2.5), (2.6) and of the fact tha t  {S~} is not  increasing we get tha t  
S~ --> %(x, t) as n ~ + ~ ,  where S is a continuous function of x and t, Lipschitz 
continuous in x, 0 < S < I .  Moreover there exists a subsequence of {S~}, which we 
again denote by {S~}, such tha t  {S.~} converges weakly in L" for any p e (1, c~). 
The limiting function S~ is the weak derivative of S and it satisfies (2.5), tha t  is 
IS~]<l~ in R• T). 

Consider an arbitrary fixed point (xo~ to) such tha~ S(xo, t o ) > a >  O. Then it 
exists a suitable rectangular neighborhood of (Xo~ to),-7r where I>S .>S>a/2 .  By 
means of a s tandard argument  (see [8], [5]), w e  get tha t  {S.~}, {S,~}, {S.~} are 
equibounded and equicontinuous in some neighborhood c N0. Therefore S ~ Cm 
in a neighborhood of (x0, to) and satisfies equation (1.2). (Let us remark tha t  (2.5) 
implies [S.~I<M in _P(S), S~ strong derivative). 

2.2. First property o] the support o/ S. 

Let us now prove the following proposition: 

P~OPOSITIO~ I. - For ~ny ~ > 0 it is: 

(2.7) S(x, t)>S(x, t') exp [-- C(t--t:)], t > t ' > ~  > 0 

where C is a fixed positive constant depending on b. 
We shall show tha t  (2.7) holds for S~, with C not dependent on n. 

(2.7) for Sn comes from the following estimate of S ~ :  

I:)I~OPOSITIO~ 2. 

Inequal i ty  

(2.8) s . ~ > -  2p(~),  

where 2P(c~) == (1 - -  exp (-- c$)) -1. 

1 ' > t > ~ > o ,  ]xl<n 
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P u o o F  oF PUOPOSITION 2. - The  p roof  is ba sed  on an a r g u m e n t  first  i n t r o d u c e d  
in  ([2]) and  on the  o b s e r v a t i o n  t h a t :  

A(p) >/o 

where  A(u) = u , - -  S~u~.-- 2S~u~- -  u ~ ~- ]u[, p = S ..... 
Since p is b o u n d e d  (p(~:n, t) = 0), c o m p a r i n g  p wi th  the  func t ion  q(t) = - -  (1 - -  

- -  exp  ( - -  (t - -  t)))-~, t > t > 0, such  tha% A(q) = 0, one gets  (2.8). []  

P ~ o o F  oF PROPOSITIOI,~ 1. - Since S~ is so lu t ion  of e q u a t i o n  (1.2), b y  m e a n s  of 

(2.8) we get  (2.7) for  S~ and  ~hen, pass ing  ~o the  l imi t  as n - +  ~ -0% Propos i -  
t ion  1. [] 

L e t  us r e m a r k  ~hat  (2.8) impl ies  t h a t :  

(2.9) S(x, t) § P ( x  - -  xo) ~ is a convex  func t ion  of x for  :r > t > d > 0 

where  xo is a n y  f ixed po in t  ~ tt. 
M o r e o v e r  b y  m e a n s  of a resu l t  of [11] ( L e m m a  10.1), oi (2.8) and  (2.5) we  

h a v e  t h a t  S satisfies t he  integra,1 idenf~ity (1.3). 

2.3. Time invarianee o] the support o] S. 

Le t  us now observe  t h a t  si~lce S~, is a pos i t ive  so lu t ion  of equa t i on  (1.2) it  is 

also a solu t ion  of ~he fol lowing equa t ion :  

(2.10) O--t (log s) = s ~ - -  (1 - -  s ) .  

I n t e g r a t i n g  the  a b o v e  equa t i on  in R = (a, b) • (0, T) where  (a, b) c ( - -  n, n) we 

ge t  the  fol lowing in tegra l  i d e n t i t y :  

b b 2r 

(2.11) flog s~(x, I')ax : f log s~(x)a~ +f[S~(b, t ) -  S~(a, t)? at-f f(1- s.)a~ at. 
a a 0 R 

Since S~ a n d  S ~  are b o u n d e d  i n d i p e n d e n t l y  of ~ (see (2.5)) we h a v e  t h a t :  

b b 

(2.12) flog S.(x, ~) 4~ -f~og s2(~) ax'< e(r, ~ ,  (b -- a)). 
a a 

B y  m e a n s  of the  c o n t i n u i t y  of S = l im  S,~, i t  is easy  to  see t h a t :  
n - - > +  m 

(2.13) supp  so =- supp  S(x, t ) ,  0 ~ t -~ T .  
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~WIoreover the  local integTability (or not  integTability) of log so is preserved. 
be more precise let us define, for any  t: 

f 
(2.11) Z(]) = m i(x~, x~) c supp ](x, t): 

Then we have:  

~2 

fio.1(.,,).x 

To 

(2.15) L(so) = L(S)  , 0 <. t < T ,  S(x,  t) =_ 0 ,  x ~ l{\L(So) , 0 4 t 4  T .  

t~E1KARK 2.1. -- I f  S is any  weak solution in the sense of Definition 1 we have  t ha t  
s < S~, in R~ for any  q~. I n t ac t  S~ is a posi t ive classical solution wir initial d a t u m  

S~ and boundary  da ta  larger than s ( s < l  by  definition). Hence  whenever  

s = S~ + s, e > 0, it is s > 0 and by  definition classical so we can use s tandard  
comparison techniques.  

Therefore s < S = l im S~. This implies tha t :  

(2.16) if S(xo ~ to) -= 0 then  s(xo, to) = 0 .  

Actual ly  the above result  holds for any  definition of weak solution t ha t  preserves 

~hc cont inui ty  of s, 0 < s  < 1  and  the point  (3) of Definition 1 ( that  is tha t  s is classical 
in P(s)). 

3. - Not uniqueness of  weak solutions in the sense of  Definition 1. A counterexample. 

We shall first show t h a t  sa, given in Sec. ! (1.~), is not  the unique solution of 
P rob lem 1 with  initial  d a t u m :  

(3.Z) go= ell + X cos (x--  xo)l(1 + A)- ' .  

i~[ore precisely we shall p rove  t ha t  it exists a posi t ive (classical) solution to 
P r o b l e m  1 with  the same initial  d a t u m  g0. 

0 Let  us consider the sequence {S,} const ructed in Sec. 2, with initial  da ta  S,,xXaSo. 
By the results of Sec. 2 we have  t ha t  S~",aS as n --> § oo. 

Then the following proposi t ion holds: 

PROPOSITION. -- ~q(X, t) is a posi t ive classical solution to P rob lem 1 with initia! 
d a t u m  go. 

PROOF. - Clearly to prove  the  proposi t ion it is sufficient to show tha t  S@, t) > 0 
in R• T]; By  means of (2.7) we have  t h a t  S ( x , t ) >  0 for x~P(go) ,  0 <  t < T .  
Hence we have  only to prove  t ha t  S(x, t ) >  0 for x e R \ P ( ~ o ) ~  0 < t < T .  Consider 

any  ~, such t ha t  ~o(,Y') ~ 0, wi thout  loss of general i ty  we can set  ~ = 0. 
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Since in this case, log~oeL~oo(R), by  means of (2.12) we have tha t  

log S(x, t) ~ L~oo(R ) , O < t < T .  

5Tow let us define R(a) = (--a,  a ) x  (0, T). 

Since S~ is a classical solution of equat ion (2.10) we have tha t  for any e > O: 

(3.2) 

(3.3) 

~(z12) 

~(:#2)\R(~) 2 

§ f[](s, t)S~(e,  t) - -  ](-- e, t )S~(- -  s, t)] dt 
0 

for any ](x, t )E Co(R(zr/2)) and for any n. 

By  means of the results of Sec. 2 and since, for 0 < t <  T, log S e L~oc(R ) we can 
pass to the limit as n -~. + c~ in (3.2) and hence we get tha t  8 satisfies relat ion (3.2). 

Therefore it is easy to show tha t  the first t e rm of the right hand  side of (3.3) 
converges to zero ~s e - >  0 uniformly in n. 

Hence we have:  
T 

(3A) l i r a / [ ] ( e  , t )S~(e,  t) -- f(--  e, t) S~( - -  e, t)] dt : 0 
8"-~0 ,3 

0 

uniformly in n, V] e C o (R(z/2)). 

Let  us now take /(x, t ) =  g(m)h(t), g(x)--= 1, ]xi<~/4. 
With  this choice of J, it  follows from (3.4) tha t :  

e T 

0 0 ~/' 

o 

uniformly in n. 
Therefore (3.5) holds also for S. 
Now if we assume by  contradict ion tha t  it  exists a positive t ime t such tha t  

S(0, {) = 0, (0 < i < T )  we get f rom (2.7) tha t  S(0, t) = 0, 0 < t < t .  
Let  us take h(t) = 0, t < t < 2 ' ,  then  (3.5) implies 

7 

0 



MAI:I~A UGHI: A degenerate parabolic equation modelling, etc. 393 

On the other  hand, since by  construction S~ s0 and S~ are positive, we have 
S,,>~s3 for any n. Therefore S(x, t)>s3(x, t) and hence (see 1.4): 

that is a contradiction. [] 

S(e, t) + S ( -  e, t) > C > o 
8 

RaW,AleX 3.1. - Let  us remark  tha t  ~he proof is based on the observation tha t  
relat ion (3.2) holds for S and not  for sa because of the finite jump of ss~ across x ---- 0. 
3~oreover (3A) implies t ha t  S~ is continuous, a.e. in t, across x ----- 0. 

We give now more general assumptions on the initial da tum So, under  which 
uniqueness is not  to be expected. 

In  general we cannot  expect  uniqueness if it  exists a Xo, xo~L(so) such tha t  

So(Xo) -~ 0 and: 

(3.6) l i m : ~  ( o r l i m  s~ =/=0). 
~-~x~ - -  Xo x--~xo X - -  X o 

In  the above assumptions we can repeat  the previous argument ,  taking as com- 
parison funct ion for S a suitable solution of type  st (see (1.4)), and hence prove 
tha t  lira S.(xo, t) = S(xo, t) > O, 0 < t ~< T. 

On the other  hand  So = s~o + s20 wherc 

80, X ~ 3 2 o  { 8o, 2 ~ X o  
81o ~ y 6'2o 

O,  X >/ X o O,  X <~ X o 

I f  we define st and s2 to be weak solutions of Problem 1 with initial data  Sto and 
s2o respectively, then  (see Remark  2.1, Sec. 2): 

sl-~O X>Xo, s 2 = 0  X<Xo~ 0 < t < T .  

This means tha t  s = st + s2 is a weak solution with initial da tum so and it is 
such tha t  s(xo, t) = O, O<~t<~T. Therefore we can expect  to have at least two solu- 
tions: S (positive in xo) and st-9 s2. 

Let  us remark  tha t  solutions of the type  st + s~ or s~ do not  satisfy the as- 
sumptions of diffusive approximat ion not  only because of their  regular i ty  bu t  also 
because the solution with initial da tum so should be str ict ly larger then  sl + s2, 
x ~ xo (see (1.1)). 

Therefore we have t ha t  the class of weak solutions according with Definition 1 
is <~ too large ,~. 

We shall t ry  in the following Section to give a new definition of weak solution 
which excludes functions of the type  st + s2 or sa. 
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4. - A n e w  def in i t ion  o f  w e a k  so lut ion .  

The results of Section 2, in psr t icular  (2.15) and Remark  2.1, hint  tha t  the 
Cauehy problem (1.2) is actually,  in general, the  <~ sum ~> of init iM-boundary vMues 
problems (of Dirichlet type) in bounded or unbounded domains. ?r on each 
of these domains the local integrabil i ty of log So is preserved. 

Therefore we will give a new definition of weak solution which takes into account 
these features of the problem. 

(4.1) 

DEFINITION 2. - A funct ion s(x, t) is a weak solution of Problem 1 if: 

(1) same as in Definition 1; 

(2) s satisfies the following integral ident i ty:  

o R R 

for any 

g(x, t) e G --  {g e _F: g ==- 0 on (R\L(so)) • [0,/~], g(x, 0) log so e L ~ (supp so)} 

($' as in Definition 1, L(so) defined in (2.14)); 

(3) same as in Definition 1; 

(4) s ~ 0 in (R\L(so)) • [0, T]. 

I t  is immedia te ly  seen tha t  the functions s~ s.~, s4 given in Sec. 1, (1.4), are weak 

solutions in the sense of Definition 2 and tha t  s3 is not  any more s solution. 
With this new definition we can give an existence and uniqueness theorem. 

Tm~O~E~[ 1. - In  the assumption (tIB) on so, there exists a unique weak solu- 
tion, in the sense of Definition 2~ of Problem 1. 

PROOF. - Le t  us consider the sequence {S.} constructed in section 2. Condi- 
tions (1), (3), (4) were already proved in See. 2 for S = lira S,,. Since for any n, S.  
is a classical solution of equat ion (1.2), and hence of (2.10), the integral equat ion 
(4.1) holds for S,~ for any  g ~ G, (of course with S,~ instead of So). By  means of the 
requi rement  tha t  g(x~ 0) log so ~ Z~(supp so), of the integral equat ion itself and of the 

57 

results of Sect ion 2 we have tha t  f f - -  g, log S,, dx dt is bounded indipendent ly  on n. 
o ]R 

Therefore we can take the limit in the integral equat ion for S~,, as n -~ -~- co and 
we get tha t  S =-l i ra  S~ satisfies condition (2). Hence S is a weak solution in the 

sense of Definition 2. 
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To prove  the uniqueness we will consider S = lira Sn a n d  s any  weak solution 
with the same initial  d a t u m  so. As we al ready noted  (see I~emark 2.1) we have  

s ~< S. B y  definition s ~ S --= 0 in (R\L(s0)) • [0, 2v]. 

Therefore we have  to prove  the uniqueness of boundary  value problems in 

bounded or unbounded  domain.  We will p rove  uniqueness in the  case of a semi- 
infinite domain  (say L(So) ---- (0, -~ z~)). The proof for bounded  domain  arid for 

L(So) = R can be given in the  same way. 

We shall use a sort  of energy es t imate  (see [9]). Since s and  S are bo th  weak 
solutions, the  following equat ion mus t  hold: 

(~.2) f f [ -  g~(log s - log ~) + g ~ ( ~ -  ~)  - g ( S -  ~)] d~ dt = O. 
o t l  

I t  is easy to see t ha t  (4.2) holds also if g has bounded weak first der ivat ive  with 
respect  to x. 

Le t  us define a sequence of smooth  functions a~, such tha t :  as(x) ~ 1 for 2 I n <  
< x < n - - 1 ;  an(x) = 0 for O < x < l / n ,  x > n ;  0 < a ~ < l ,  for 1 / n < x < 2 / n ,  n - - l < x < n ;  

a'.(x) uni formly  bounded  with  respect  to n for n - - i < x < n ;  0 < a : ( x ) < o n ,  for 1 I n <  
< x < 2 / n ,  c posi t ive fixed constant ,  a . > 0  smooth  for x <  0. 

We now set 

gn(x, t) = a~,(x) f (S(x,  y) - -  s(x, y)) dy . 
T 

Let  us subst i tu te  the  funct ion g,~ in the equat ion (4.2). Recalling t ha t  S ~ s --= 0 
in (R\L(so)) •  T] --~ ( - -0% 0] • 2r] we have  (see [9]), for any  T >  0: 

(4.3) ;; (f ) a~(S --  s) (log S - -  log s) dx dt = 1 2 - - j  an ( S - - s ) ~ d y  d x +  

O 1/n 1/n T 
; 2in f n t 

0 i/n 0 n--I 2 

T y 

0 0 1/n 

Now to es t imate  I4 we shall use Cauehy inequal i ty :  

1__52 ab <<. Ca~ 4- 2C 

where C is a posit ive constant  to be chosen later,  a = (S - -  s)(x, t), b = (S - -  s)(x, y). 
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On the other  hand,  since 0 < s < S < 1 we h~ve 

Set: 

,g 

l o g S - - l o g s = f ~ d y > ( S - - s ) .  
s 

i/ F~(~) = a~(S s) "~ dx dt 
O 1/n 

0 < z<T. 

F r o m  (4.3) referred to [ l /n,  n] x[0,  ~], 0 < T<T, we get:  

T 

0 

for any  % for any  0 < ~ < T .  

Set t ing C = T we get :  

T 

+ Iz l) + ffFo(y) dy, 0 < 7:<Y. 
0 

By means of Gronwall  inequal i ty  we get :  

0<F . (~ )<0 ( I f0 I  + 7~1), 0 <  ~ < r ,  

C constant  not  depending on n. 
Clearly 11=] and l/d are uni formly  bounded with respect  to n. 

(S--s)~eL'((O, T) X(0, § oo)). 1Koreover: 

]&[ < r max (S(x, t) - s(x, t)) 
(z, t)~[lJn, S/n] X [0~ f] 

IIs]<C ]S--s]dxdt<C~T �89 (S--s)~dxdt  . 

O ~--I O n--i 

~ e n e e  it is 

Since (S - -  s) ~ is continuous and  integrable in (0, T) X (0, Jr oo) and (S - -  s) 2 = 0, 

for x = 0, we get :  
y + c o  

0 o 

i.e. uniqueness.  [] 

R ~ A ~ X  4.1. - Le t  us r e m a r k  t h a t  we cannot  have  continuous dependence of 

the weak solution on the initial da tum,  even if consider a sequence of classical 
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solutions. To be more precise let us consider so satisfying assumption (3.6). Let us 

define a sequence s~/ASo such tha t  s~(x) = O, Ix - -  xol < l /m ,  s~ satisfying assumption 
(t tB).  For  any s~ we can construct  a sequence of classical approximations Sn,~ as 
in Section 2. I t  is easy to see tha t  we can ext rac t  f rom S , ~  a snbsequence S~,,m, 

converging to a continuous funct ion S. 
By  the  result of Section 2 (see (2.13)) we have tha t  S(Xo, t) ~ lira ~ , ,  ,(Xo, t) -~ 0. 

Therefore,  see Section 3, S is not  the weak solution with initial da tum so. 

5. - S o m e  propert ies  o f  w e a k  so lut ions .  

Firs t  of all let us remark  tha t  we have a monotone dependence result.  

PROPEI~TY 1. -- H Sol(X)<So2(X) then  for the corresponding weak solutions sl, s2 

we have 

81 ~ 82 �9 

By means of the results of Section 2 (see (2.13)) and of the uniqueness result 

we have the following: 

P~OPE~Tu 2. - (Zero speed of propagat ion of disturbances) 

supp So : supp s ,  0 < t < T .  

Of course here we cannot  say in general tha t  s(x, t) is decreasing in t ime. Ins tead 
for the solutions with compact  support  we have tha t  the mean value of s is decreasing: 

P I ~ O P E I ~ T Y  3 .  --  I f  8o(X) h a s  compact  support  then  the funct ion 

1 
[ s(x, t) 

~(t) -- lsup p so[ 
dx 

Sllpp S0 

is not  increasing (Isupp Sot is the measure of supp So). 

P~ooF. - Le t  us consider the sequence S~ of classical approximations constructed 
in Sec. 2. For  any n, Sn is solution of equat ion (1.2). By  integrat ion in a rectangle 
R -~ (a, b) • (t', t"), (a, b) D supp So, we get:  

b b t" 

@ @ $t 
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Since S~, are bounded uniformly w.r. to n and S~-> O~ outside the suppso 
(see (2.14)), we get 

o<a(t")<-a(t') , t " > t ' > o  . 

Let  us now remark  tha t  in the assumption (I=IA) we do have the  following: 

P~OPE~Tu ~. - If  the assumption (HA) on so holds then  s(x, t) is a not  increasing 
function of t ime. 

PnooF. - Let  us consider the classical approximations S~ und set v = S,,~. Then 
v satisfies the following equation:  

which is a linear uniformly parabolic equat ion with bounded coefficient (depending 
on n). Since assumption (HA) holds we can choose the sequence S o so tha t  on the 
parabolic boundary  of R~, v < 0 .  By  the max imum principle we ge~ v < 0  in R~. 
Since the est imate does not  depend on n we get tha t  S~(x, t) is a not  increasing func- 
t ion of t for any n and hence proper ty  4. 

RE~IA~K 5.1. - (i) By  means of P rope r ty  4 an4 since S~ is a positive solution 
oi equat ion (1.2) we have t ha t  in the assumption (HA) 

(5.1) S . ~  ~ 1 - -  S,~ < 1 for any n in R~. 

Taking into account the lower est imate of S~,~, (2.8) we have tha t  the sequence 
{ S ~ }  is uni formly bounded w.r. to n and tha t  S ~ ( - - 2 P ( d ) - - 1  + S ~ ) < S ~ t K S ,  2. 

Therefore the l imiting funct ion S e CI,I(R • (0,/~)) and has bounded weak second 

derivat ive w.r. to x. 

(if) I t  is easy to see tha t  S is a weak solution also in the sense of Defmitioa 1. 
Moreover we can prove tha t  it  is unique. Therefore in the assumption (HA) the 

two definitions of weuk solution are equivMent. 
The proof of uniqueness of the weak solution (Def. 1) is based on the following 

result:  Any  weak solution in the  sense of Definition 1 which is positive in (Xo~ to), 
to > 0 remains positive for t>to (we will omit  the proof for sake of brevity).  Then  
the  proof proceeds in a similar way ~s the one of Theorem 1. 

(iii) Le t  us finally remark  tha t  p roper ty  4 and its consequences hold also in 
weaker assumptions than  (HA) (name!y so satisfies ( t tB) ~nd s~--(1- s0)<0 for 

x e supp so, in the sense of distribution).  [] 

We have already remarked in the In t roduc t ion  tha t  Problem 1 is not  reMly a 
free boundary  problem. Infac t  because of P roper ty  2 and of (2.15) (i.e. S ~ 0 on 
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R\L(So)),  we have  t h a t  S(Xo, t) can be = 0 only if So@o) = 0. Hence  the  free bound- 
aries can only be ver t ical  segments  of the  t ype  {x = xo, 0~<t~<t}. The questiort 

whether  t is finite or not  has been a l ready part iMly answered. 
Clearly if xoe R\L(so)  then  t = + c% and the  same is t rue  for any  zero if as- 

sumpt ion  (HA) holds. On the  other  hand  in assumpt ion  i3.6) we have  t = 0. I n  
general  we do not  know what  happens  bu t  we can give two other  par t i a l  results. 

PI~OPEI~TY 5. -- I f  Xo6L(8o) a n d  So(X) %1 @ s e n  (x @ a),  f o r  ]X--Xo]<~z/2, w h e r e  a 

is a cons tant  such t ha t  sen (xo + a) = - - 1 ,  then  s(xo, t) = O, t>~O. 

P~ooF. - Le t  us consider Q(x, t) weak solution of P rob lem 1 with initial d a t u m  

q ( x ) = m i n ( ( l + s e n ( x @ a ) ) , l ) = l i m m i n ( ( l + ( 1 - - 1 ) s e n ( x + a ) ) , l ) :  
m---~+ r \ \  

= lira q~(x). 
~-~+~ 

B y  monotone  dependence we have  s<Q.  Since, for any  m, q~ is the m i n i m u m  

of two posit ive s ta t ionary  solutions, i t  is O(x, t)<q~(x) and hence Q(x, t)<q(x),  
Q(xo, t)<<.q(xo) = o for t > o .  So P rope r ty  5 is proved.  [] 

P ~ o e E ~ Y  6. - I f  Xo~ L(so) and it  exists  a posi t ive constant  A such tha t  So(X)<~ 
<~A(X--Xo) ~ then  S(Xo, t) = O, 0 ~ < t <  1A. 

PnooF. - Consider the  solution of the equat ion ut : uu~. given by  u ~ =  

= ( A ( x - - X o ) 2 + l / m ) ( 1 - - 2 A t )  -~ for any  m > O  and O<~t<�89 I t  is easily seen 
that  s<~u~ for any  m and hence s < u ,  O < t <  I A .  

RE:~IARK 5.2. -- Final ly  let us r e m a r k  t ha t  the  ma in  results obta ined  in this 

paper  hold for the  nonnegat ive  bounded  solutions (as long as t hey  exist) of the  

equat ion:  

(5.2) u~ =/ (u)u~x + g(u) , 

where ] and g e C 1, J ( o ) :  o, ] ( u ) >  0 for u > 0, 1//(u) not  integrable near  u = 0, 

g(O) : O, g(u)/](u) bounded  near  ~ : 0. 

The more convenient  definition of weak solution is again Definition 2 where 

we subst i tu te  the  funct ion log y wi th  
y 

~b(y) = d~ .  

1 

Let  us stress t h a t  the (~ zero speed of p ropaga t ion  ~> depends main ly  on the not  
divergence fo rm of the equat ion and on f. 

2 6  - A n n a l l  d l  M a t e ~ l i e a  
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Added i~ proo]. - An equation similar to (1.2) has been studied independently by R. DxL 
PASSO - S. LUCKHAUS, On a degenerate di]/~esion problem not in divergence ]orm, to appear. 
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