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ABSTRACT

This paper presents a smooth hysteresis model for reinforced concrete structural elements based
on the differential equation of the Bouc-Wen model. Stiffness degradation and strength degra-
dation are defined by introducing a damage index that includes both dissipated energy and
maximum displacement. The pinching effect acts directly on the stiffness of the system and
is controlled by an activation energy. The degrading functions are connected to the actual
processes with which the damage occurs, thereby giving each parameter a physical meaning.
The simple formulation of the model allows a straightforward identification of the best fitting
parameters and an easy interpretation of the results. Applications to the cyclic behaviour of
reinforced concrete structural elements demonstrate that the model is well capable of describing
complex hysteretic behaviours involving degradation and pinching effects.
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1. Introduction

The hysteresis phenomenon is observed in various mechanical systems. For instance, engineering
structures often exhibit hysteretic behaviour under severe cyclic loads caused by earthquakes (Ro-
ufaiel & Meyer, 1987). Repeated cyclic deformations frequently cause a deterioration of the char-
acteristics of reinforced concrete (RC) mechanical systems. In fact, building structures may ex-
perience opening and closing of cracks, post-yielding and buckling of metallic elements (Kashani,
Salami, Goda, & Alexander, 2018), strength and stiffness deterioration, and other local inelas-
tic behaviours (Sivaselvan & Reinhorn, 2000). All these phenomena contribute to the structural
damage. An accurate prediction of the behaviour resulting from a cyclic loading must take into
account the damage of the structure. Therefore, constitutive models capable of representing non-
linear deterioration are required.

The evaluation of the seismic damage of structures needs, firstly, a definition of a suitable
measure for the damage itself. Most of the damage indicators available in literature involve two
quantities: the energy dissipated during the inelastic cycles of hysteresis and the displacement
ductility, defined as the ratio between maximum displacement and yielding displacement. For
instance, Park and Ang (1985), Kunnath, Reinhorn, and Park (1990), Banon and Veneziano
(1982) and Singhal and Kiremidjian (1996) considered both ductility and dissipated energy to
assess structural damage phenomena. Greco and Marano (2015; 2006) employed a damage in-
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dex involving displacement ductility and hysteretic energy to perform a stochastic analysis of
the cumulative damage in structural systems subjected to ground motions. Elenas (2000) and
Bassam, Iranmanesh, and Ansari (2011) performed, respectively, an evaluation of the damage
of reinforced concrete bridges and reinforced concrete frame structures based on ductility and
energy dissipated by the system. Consequently, mathematical models able to represent hysteretic
cycles with degradation should involve both displacement ductility and dissipated energy.

The simplest models to describe the time-dependent hysteretic behaviour are the bilinear and
trilinear models (see, e.g, Liu, Zordan, Zhang, & Briseghella, 2015; Markou & Manolis, 2016; Ray,
Sarlis, Reinhorn, & Constantinou, 2013). However, the hysteresis actually happens as a smooth
phenomenon. Thus, smooth hysteresis models based on differential equations have been proposed.
One of the most widely established is the Bouc-Wen model (Bouc, 1971; Wen, 1976).

The Bouc-Wen model has been employed for many engineering applications, such as RC
beams and columns (Kunnath, Mander, & Fang, 1997; Lee & Han, 2018; Loh, Mao, Huang, &
Pan, 2011; Wang, Lu, & Ye, 2007), piezoelectric actuators (Zhu & Rui, 2016), seismic isolators
(Domaneschi, 2012; Ismail, Rodellar, & Ikhouane, 2010; Manzoori & Toopchi-Nezhad, 2017),
steel connections (Charalampakis & Dimou, 2010; Kim & Lee, 2019), and others. It has been
demonstrated that the Bouc-Wen model is well-capable of predicting the hysteresis of mechanical
systems. Nevertheless, its mathematical formulation does not include degradation phenomena.
Indeed, numerous authors extended its governing equations in order to consider the degradation
of the system (see, e.g., Baber & Noori, 1985; Erlicher & Bursi, 2008; Kottari, Charalampakis,
& Koumousis, 2014; Pelliciari et al., 2018). In particular, the Bouc-Wen-Baber-Noori (BWBN)
model (Baber & Noori, 1985) has been considerably successful.

The BWBN model is an extension of the Bouc-Wen model, developed through the incorpo-
ration of functions that describe degradation and pinching. However, as pointed out by Marano
et al. (2017), the formulation of the BWBN model is complicated and not all the parameters
involved have a direct physical meaning. Furthermore, degradation and pinching are described
only on the basis of the dissipated energy.

In this work, a smooth hysteresis model for degrading RC structural elements is presented.
The model is based on the differential equation of the Bouc-Wen model, to which appropriate
degrading functions are added in order to depict the cyclic damage. Stiffness degradation and
strength degradation are defined through a damage index that involves both maximum displace-
ment and dissipated energy. Moreover, the pinching effect is depicted along the same lines of the
simple formulation proposed by Pelliciari et al. (2018), incorporating modifications that correct
its physical deficiencies.

The mathematical description of the degradation of the system is based on the physical
processes with which the structural damage takes place. Thereby, each parameter of the proposed
model is physically based and related to a certain damage phenomenon, allowing an easy control
and interpretation of the results. The formulation of the present model is straightforward and
oriented towards practical engineering applications. Indeed, the purpose of this study is to provide
a simple and reliable model able to predict the hysteresis of RC structural elements with pinching
and degradation, including at once a physically-based description of the damage.

The paper is organized as follows. In Section 2, an outline of the Bouc-Wen model is provided.
The damage index is then introduced and the functions that account for the mechanical degrada-
tion of the system are described, including the pinching effect. Section 3 provides an overview of
the parameter optimization strategy, which is based on a genetic algorithm (GA). Consequently,
in Section 4, the effectiveness of the proposed model is verified by its application to the cyclic
behaviour of a circular RC bridge pier and two rectangular RC columns. Such structural systems
exhibit complex cyclic behaviours, involving significant damage. Finally, conclusions are drawn
in Section 5.
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2. Hysteresis model for degrading systems

In this section, the Bouc-Wen model of hysteresis is briefly introduced. At the same time, each
improvement that allows to account for degrading phenomena is discussed.

2.1. Preliminaries on the Bouc-Wen model

The equation of motion for a single-degree-of-freedom system is

mẍ+ cẋ+ Fs [x(t), z(t), t] = F (t), (1)

where x is the relative displacement of the mass of the system m with respect to the ground,
c is the linear viscous damping coefficient, Fs [x(t), z(t), t] is the non-damping restoring force,
z(t) is the hysteresis displacement and F (t) is the external excitation. The overdots indicate the
derivative with respect to the time, thus ẋ and ẍ represent velocity and acceleration, respectively.

The Bouc-Wen model gives the following expression for the restoring force:

Fs [x(t), z(t), t] = αkx(t) + (1 − α)kz(t), (2)

where k is the elastic stiffness of the system and α is the ratio between the final tangent stiffness
kf and the elastic stiffness (0 ≤ α ≤ 1). Equation (2) is composed of two contributions: the linear
elastic component αkx(t) and the hysteresis component (1 −α)kz(t), which depends on the past
history of stresses and strains.

The hysteresis displacement z(t) is given by the differential equation

ż(t) = Aẋ(t) −
[

β|ẋ(t)||z(t)|n−1z(t) + γẋ(t)|z(t)|n
]

, (3)

with the initial condition z(0) = 0. The parameters β, γ, and n control the shape of the hysteresis
cycles, while A determines the tangent stiffness. As is well-known in literature (Charalampakis
& Koumousis, 2008b; Ma, Zhang, Bockstedte, Foliente, & Paevere, 2004), the aforementioned
parameters are redundant. Thus, A is commonly set to unity in order to eliminate this redundancy.
However, since in this work the parameter A will be used in the mathematical developments for
the description of the degradation, this position will be performed later (see Section 2.3). Note also
that Ismail, Ikhouane, and Rodellar (2009) gave the following conditions for the Bouc-Wen model
parameters in order to satisfy the thermodynamic admissibility, the accordance with Drucker and
Il’iushin stability postulates and the uniqueness of the solution:

β > 0, −β ≤ γ ≤ β,

β + γ > 0, γ − β ≤ 0,

n ≥ 1.

(4)

The hysteresis energy dissipated by the system is defined as the area under the hysteresis
restoring force F h [z(t), t] = (1 −α)kz(t) along the total displacement x(t). The hysteresis energy
can be normalized with respect to the mass, as follows (Foliente, 1995; Ortiz, Alvarez, & Bedoya-
RúıZ, 2013):

ǫ(t) =

∫ x(t)

x(0)

F h [z(t), t]

m
dx = (1 − α)ω2

0

∫ t

0
z(τ)ẋ(τ)dτ. (5)

Some authors found out that for many structural systems the two parameters β and γ are
related to each other. For instance, Sues, Mau, and Wen (1988) suggested that β = γ for steel
structures and β = −3 γ for RC structures, whereas Sengupta and Li (2013) applied a Bouc-
Wen model to RC beam-column joints, obtaining β = −5 γ. Ye and Wang (2007) estimated the
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Bouc-Wen model parameters considering both the cases of softening and hardening behaviour.
The results showed that for a system with softening β ∼= 2 γ, while for a system with hardening
β ∼= − γ. In view of the above, it appears reasonable to establish a linear proportionality between
the parameters β and γ

γ = η0β. (6)

Given this position, the conditions (4) reduce to

β > 0, −1 < η0 ≤ 1, n ≥ 1. (7)

Note that, with the position (6), the constraints on the variability of the parameters are now
decoupled, as expressed by Equation (7). This simplifies the mathematical formulation of the
model and represents a great advantage during the identification of the optimal parameters.

Substituting Equation (6) into Equation (3), the differential equation for the hysteretic dis-
placement becomes

ż(t) = Aẋ(t) − β
[

|ẋ(t)||z(t)|n−1z(t) + η0ẋ(t)|z(t)|n
]

. (8)

2.2. Damage index

As already pointed out, the most popular damage indicators involve both hysteretic dissipated
energy and maximum displacement (Park & Ang, 1985). Hence, in this work the authors propose
a model that connects the degradation phenomena to the following dimensionless damage index:

di(t) = ρǫ
ǫ(t)

fyxu
+ ρx

|xmax(t)|

xu
, (9)

where xu is the ultimate displacement under a monotonic loading, fy = Fy/m is the yielding force
normalized with respect to the mass and xmax(t) is the maximum displacement of the system
until the time t. Equation (9) brings two new parameters into the hysteresis model: ρǫ and ρx.
Their purpose is to weigh the influence of the degradation due to the energy dissipation and the
maximum displacement, respectively.

Note that the magnitude of both ǫ(t) and xmax(t) is not known a priori. On the contrary,
it depends on the excitation to which the mechanical system is subjected. Therefore, it is not
possible to normalize Equation (9) in a way that ρǫ and ρx vary in the range between 0 and 1.

2.3. Stiffness and strength degradation

For systems with softening behaviour, the following derivatives can be computed (Baber & Wen,
1980):

ki =

(

∂F

∂x

)

z=0

= αk + (1 + α)kA, (10)

kf =

(

∂F

∂x

)

z=zu

= αk, (11)

where the ultimate value of the hysteretic displacement, zu, is expressed by

zu =

[

A

β0(1 + η0)

]
1
n

. (12)
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Figure 1. Effect of the parameter δk on the hysteresis cycles (stiffness degradation).

The ultimate hysteretic restoring force component can be thus defined as (Cunha, 1994)

F u
h = (1 − α)kzu = (1 − α)k

[

A

β0(1 + η0)

]
1
n

. (13)

The stiffness degradation can be introduced into the model by expressing ki as a function that
degrades with the damage index di(t). Nevertheless, the elastic stiffness k should not be subjected
to any degradation. Thus, looking at Equation (10), one can conclude that the degradation of
the stiffness must be entirely included into the parameter A, by substituting this parameter with
a function of di(t).

In order to decouple stiffness and strength degradation, the ultimate hysteretic restoring force
component must remain constant while the degradation of the function A(di) occurs. Therefore,
the parameter β0 in Equation (13) is replaced by a function βk(di), in such a way that the
following relation holds:

F u
h = (1 − α)k

[

A(di)

βk(di)(1 + η0)

]

1
n

= const. (14)

It is often assumed that the damage of a structural system evolves with the dissipation of
energy following a negative exponential law (see, among the others, Bažant, Pan, & Pijaudier-
Cabot, 1987; Lanzoni & Tarantino, 2014, 2015, 2016; Mazars, 1986; Miehe, 1995; Tarantino,
2014). Thus, the following form for the function A(di) is adopted:

A(di) = e−δkdi(t), (15)

where δk is a parameter that controls the amount of stiffness degradation. Obviously, for δk = 0,
the model does not exhibit stiffness degradation. Note that the redundancy of the Bouc-Wen
model described in Section 2.1 is now removed by turning the parameter A into the function
A(di), where the only unknown parameter is δk. At this point, given (15), Equation (14) is
satisfied if

βk(di) = β0e
−δkdi(t). (16)

This procedure allows incorporating the whole description of the stiffness degradation into the
function βk(di).

Figure 1 shows the effect of variations of δk on the hysteresis cycles. The higher the value of
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Figure 2. Effect of the parameter δf on the hysteresis cycles (strength degradation).

δk, the more the degradation of the stiffness is pronounced. It is worth noting that the maximum
value of the force acting on the system is not influenced by the stiffness degradation.

In the following, the strength degradation is described separately from the stiffness degrada-
tion and the two formulations will be combined at the end of the present section. Similarly to what
has been done above, the degradation of the strength is introduced in a way that it is decoupled
from the degradation of the stiffness. This is done by defining the ultimate hysteretic restoring
force F u

h as a degrading function of di(t). Hence, the initial stiffness ki must remain constant.
This means that, looking at Equation (10), the parameter A must be constant. Therefore, the
degradation of the strength is introduced by replacing β0 with βf (di) into Equation (13), with
βf (di) defined by the following exponential law:

βf (di) = β0e
nδfdi(t), (17)

where δf is a parameter that controls the amount of strength degradation. Note that for δf = 0
there is no strength degradation.

Substituting Equation (17) into Equation (13), the following relation is obtained:

F u
h = (1 − α)k

[

A

βf (di)(1 + η0)

]
1
n

= (1 − α)k

[

A

β0(1 + η0)

]
1
n

e−δfdi(t), (18)

which states that the degradation of the strength follows a negative exponential law with the
damage index di(t). Note that when strength and stiffness degradation are combined, the param-
eter A is replaced by the function A(di) expressed by Equation (15), where the redundancy of
the Bouc-Wen model has already been removed. In addition, it should be pointed out that the
description of the strength degradation is entirely included in the function βf (di), in analogy with
βk(di) for the stiffness degradation.

Figure 2 shows the effect of variations of δf on the hysteresis cycles. Increasing the value of
δf , the degradation of the strength increases. It is noted that the initial slope of the cycles, which
represents the initial stiffness ki, remains unchanged.

Stiffness and strength degradation have been described above by establishing proper degrad-
ing functions of the damage index. However, as already pointed out by Pelliciari et al. (2018),
the rate of degradation of the stiffness of a system might not always maintain the same propor-
tionality to the energy (in this case to the damage index). For instance, the degradation rate
could be stronger at the beginning of the inelastic phenomena. Then, when the system is severely
damaged, its proportionality to the damage index could become less. Thus, the increasing of
stiffness degradation rate is here controlled introducing a negative exponential function pk(di)
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Figure 3. Effect of the parameter ψ on the function A(di), which defines the stiffness degradation.

into Equations (15) and (16):

A(di) = e−δkdi(t)pk(di), (19)

βk(di) = β0e
−δkdi(t)pk(di), (20)

pk(di) = e−ψdi(t), (21)

where ψ is a parameter that controls the rising of stiffness degradation. Specifically, for ψ = 0 the
stiffness degradation rate follows the increasing of di(t) through the exponential law expressed by
Equation (15). Instead, as ψ increases, the stiffness degradation rate decreases its proportionality
to di(t) as the event proceeds. The limit situation is ψ → ∞, for which A(di) → 1. Therefore, in
this last case, no stiffness degradation occurs. In order to clarify the role of ψ, its effect on the
hysteresis cycles is displayed in Figure 3.

At this point, the effects of both strength and stiffness degradation are combined by defining
a single function that includes both degradation phenomena

β(di) = βk(di)βf (di) = β0e
−[δkpk(di)−nδf ]di(t), (22)

and the differential equation for the degrading hysteresis model assumes the form

ż = A(di)ẋ− β(di)
(

|ẋ||z|n−1z + η0ẋ|z|n
)

= e−δkdipk(di)ẋ− β0e
−[δkpk(di)−nδf ]di

(

|ẋ||z|n−1z + η0ẋ|z|n
)

,
(23)

where the function pk(di) is expressed by Equation (21). For the sake of clarity, the dependence
on the time t has been omitted.

Equation (23) governs the hysteresis model including the degradation of stiffness (controlled
by the parameters δk and ψ) and the degradation of strength (controlled by the parameter δf ).
In the following, the pinching effect will be introduced.

2.4. Pinching effect

A phenomenological and straightforward way of simulating the pinching phenomenon is to con-
sider it as a degradation process that acts on the stiffness of the system. More precisely, it can be
represented as a reduction of the stiffness that occurs in a central range of the force-displacement
curve, followed by an increase in the outside regions. It goes without saying that this is not a strict
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Figure 4. Activation of the pinching effect through the parameter ǫp.

definition, being the nature of pinching accidental and extremely complex. Nevertheless, this def-
inition was employed by Marano et al. (2017) and Pelliciari et al. (2018), obtaining promising
results from the application on RC bridge piers.

In the aforementioned works, the authors described this effect through a Gaussian function.
However, in their model, this effect starts at the beginning of the event. Hence, the pinching
affects every hysteresis cycle, including the very first ones. This is obviously not consistent with
the reality, or at least it does not happen for every kind of structural elements and for every
displacement history. Therefore, in this work, the same analytical description of the pinching will
be adopted, but with the introduction of a new parameter that acts as an activation energy for
the pinching effect.

The pinching function is defined as a normalized Gaussian function with mean equal to zero

gp(x) = e−
1
2 ( x

σ )
u

. (24)

The higher the value of the exponent u, the steeper the stiffness change, while the standard
deviation σ controls the width of the Gaussian bell (see Pelliciari et al., 2018, for a more detailed
description). The function gp(x) is then introduced directly into the elastic stiffness k, that turns
into a degrading stiffness through the following relation:

kp(ǫ) = k [1 − fǫ(ǫ)ρpgp(x)] , (25)

where ρp ∈ [0, 1] and fǫ(ǫ) is defined as

fǫ(ǫ) = 1 − e
−

1
2

[

ǫ(t)

ǫp

]8

. (26)

The parameter ρp defines the amount of reduction with respect to the elastic stiffness (ρp = 0
means no pinching), while the function fǫ(ǫ) has been introduced in order to make the pinching
effect start at a certain activation energy, defined by the parameter ǫp. The exponent in Equation
(26) has been set to 8 in order to provide a fast activation of the pinching effect as soon as ǫp
is reached. This high exponent does not produce singularities or numerical problems. Note that,
regarding the simulation of the pinching phenomenon, the introduction of fǫ(ǫ) represents the
novelty of this work with respect to what was proposed by Pelliciari et al. (2018).

Figure 4a presents the effect of ǫp on the force-displacement response of the system. As ǫp
increases, the activation of the pinching is delayed. The corresponding shape of the function fǫ(ǫ)
is shown in Figure 4b. It is clearly visible that when the system reaches the activation energy ǫp the
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Table 1. Summary of the parameters of the model and their roles.

Parameter Role

1 α ratio of linear to nonlinear response
2 k elastic stiffness
3 β0 hysteresis shape control
4 η0 hysteresis shape control
5 n hysteresis shape control
6 ρx max. displacement degradation
7 ρǫ energy degradation
8 δk stiffness degradation
9 δf strength degradation
10 ψ stiffness degradation rate control
11 σ pinching width
12 u pinching slope
13 ρp pinching severity
14 ǫp pinching activation energy

value of fǫ(ǫ) goes rapidly from 0 to 1, which causes the starting of the pinching effect. It should
be noted that the case ǫp = 0 can not happen, because it would produce a singularity. However,
since a real system never exhibits a pinching phenomenon that starts at the very beginning of
the event, this case is not of interest.

The restoring force is then computed by substituting the elastic stiffness k with the degrading
stiffness kp(ǫ), expressed by Equation (25), into Equation (2)

Fs [x(t), z(t), t] = αkp(ǫ)x(t) + (1 − α)kp(ǫ)z(t). (27)

In conclusion, the parameters of the model are the following:

α, k, β0, η0, n, ρx, ρǫ, δk, δf , ψ, σ, u, ρp, ǫp.

Table 1 summarizes the role that each parameter has on the definition of the hysteresis cycles.
Although the model is composed of a significant number of parameters, each one has a specific
physical meaning. Moreover, the pinching effect acts directly on the stiffness of the system through
the parameters σ, u, ρp and ǫp, which can be easily identified and controlled. The relatively
simple formulation of the degrading phenomena and the pinching effect brings benefit to the
interpretation of the results and the use of the proposed model.

3. Parameters optimization algorithm

The values of the model parameters must be identified on the basis of experimental data. The
aim is to find the optimal set of parameters, which provides the simulated response of the system
that best fits the experimental one.

The set of parameters is collected into a vector θ, named parameter vector. The optimal
parameter vector is denoted as θ

∗ and it is the one that minimizes an objective function (OF ),
which is a measure of discrepancy between numerical and experimental response. For the model
proposed in this work, the parameters variation is constrained by defining the lower bound θ

l

and the upper bound θ
u.

Since the model must provide the best simulation of the cyclic behaviour of the system during
the whole event, the OF must be an integral measure over the whole set of experimental data.
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Therefore, the OF is defined as

OF (θ) =

∫ xf

x0
|[Fe(x) − Fs(θ, x)] dx|

∫ xf

x0
|Fe(x)dx|

, (28)

where xi and xf are the initial and final displacement records, Fe(x) is the force derived from
the experimental data and Fs(θ, x) is the one simulated by the model. Hence, as expressed by
Equation (28), the objective function is here defined as a normalized integral of the difference
between experimental force and simulated force.

It is clear that the problem of minimization of the objective function described above is not
simple. This is mainly due to the complexity of the differential equation that governs the hystere-
sis model (Equation (23)). Therefore, for such complex optimization problems, an evolutionary
approach is usually adopted (Greco & Vanzi, 2019; Quaranta, Marano, Greco, & Monti, 2014).

Many identification of the parameters of structural models via a genetic algorithm (GA) can
be found in literature. Marano, Quaranta, and Monti (2011) developed a modified real-coded
genetic algorithm to identify the parameters of structural systems subjected to dynamic loads.
Sengupta and Li (2013) used a GA to calibrate the parameters of a modified BWBN model
applied to RC beam-column joints. Charalampakis and Koumousis (2008a) developed a hybrid
evolutionary algorithm based on a GA, which was employed for the prediction of the behaviour of
a steel cantilever beam. Sireteanu, Giuclea, and Mitu (2010) used a GA to identify the Bouc-Wen
model parameters for elastomeric isolators and buckling restrained dissipative braces, while Ha,
Kung, Fung, and Hsien (2006) performed the identification of a Bouc-Wen model via a real-coded
genetic algorithm (RGA), for the case of piezoelectric actuators.

In view of this, the genetic algorithms represent suitable tools for complex identification
problems. Thus, in this work, the optimization of the objective function is performed via a genetic
algorithm.

4. Application to reinforced concrete structural elements

In the following, the model is applied to a RC bridge pier subjected to a cyclic test carried out in
the lab of the Fuzhou University. Firstly, the experimental test is presented. Then, the parameters
of the model are calibrated using the experimental data. Furthermore, comparisons with the
results obtained with a model deprived first of the contribution of the maximum displacement
(ρx = 0) and second of the dissipated energy (ρǫ = 0) are performed. This allows to assess the
benefits of the introduction of both the energy and the maximum displacement into the damage
index. Two further applications are then reported in order to ensure the reliability of the proposed
model.

4.1. Experimental test

The identification of the model parameters is performed on the basis of the experimental data
of a RC bridge pier. The experiment was carried out in the lab of the Fuzhou University (Xue
et al., 2018). The pier considered is named R16-1B and it comes out from a repairing process of
the original pier P16-1B, which was previously damaged by a cyclic test. The pier P16-1B had a
circular cross section and it was made of Chinese concrete C30, steel HRB335E for the longitudinal
reinforcement and steel R235 for the transversal reinforcement (JTG D62-2004, 2004). Its height
and diameter were 1.17 m and 0.42 m, respectively. The repairing consisted in the restoration of
the damaged portion of the longitudinal steel reinforcement by means of turned rebar parts and
substitution of the stirrups and the damaged concrete parts with HPFRC (High Performance
Fiber Reinforced Concrete). A detailed description of the repairing process can be found in
(Albanesi, Lavorato, Nuti, & Santini, 2009; Lavorato & Nuti, 2015; Lavorato, Nuti, Santini,
Briseghella, & Xue, 2015; Savino, Lanzoni, Tarantino, & Viviani, 2018).
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Figure 6. Experimental test performed in the lab of the Fuzhou University.

The cyclic test, which was carried out firstly on the pier P16-1B and consequently on the pier
R16-1B, consisted in the imposition of a displacement history at the top of the pier. As Figure
5 shows, the displacement history is composed of a first part and a second part. The first part
corresponds to the response of the bridge column to the Tolmezzo accelerogram (Xue et al., 2018),
referred to an earthquake occurred in Italy in 1976. The second part represents the response of
the bridge column to the Tolmezzo accelerogram scaled to double. The Tolmezzo accelerogram
has been selected because it is representative of a strong earthquake for the bridge analysed.
The second part (scaled to double) has been added in order to further investigate the hysteresis
behaviour of the pier when subject to severe damage.

The test setup is composed of a vertical load system and an horizontal actuator (Figures 6a
and 6b). The vertical load system applies a constant load of 266 kN on the top of the pier while
the horizontal actuator impresses the displacement history. The constant vertical load represents
the bridge deck load, properly scaled. As a result, the force-displacement curve is obtained. More
details on the mechanical characteristics, the repairing process and the test setup are reported in
(Xue et al., 2018). Figure 7 presents a schematic representation of the cross section of the pier
R16-1B.

Similar experimental loading systems have been employed by several authors in order to
obtain the behaviour of RC columns under cyclic lateral loading and a constant axial load, which
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Figure 7. Cross section of the pier R16-1B.

simulates the dead load deriving from the superstructure (see, among the others, Colomb, Tobbi,
Ferrier, & Hamelin, 2008; He, Sneed, & Belarbi, 2013; Sun, Wang, Du, & Si, 2011).

4.2. Calibration of the model parameters

The experimental force-displacement data of the pier R16-1B are used to perform the identifi-
cation of the optimal parameters of the model, which are gathered in the following parameter
vector:

ϑ =
[

α k β0 η0 n ρx ρǫ δk δf ψ σ u ρp ǫp
]

. (29)

As pointed out by Pelliciari et al. (2018), a suitable value of u for the description of the behaviour
of RC piers is u = 4. Thus, its value is fixed and the identification involves only the remaining
13 parameters. The values of ultimate displacement and horizontal normalized yielding force for
the pier R16-1B are, respectively, xu = 60 mm and fy = 0.63 kN/kg, considering the presence of
a constant vertical load of 266 kN applied on the top of the pier. The lower and upper bounds
of the parameter vector are reported in Table 2 and the number of generations performed by the
genetic algorithm is fixed to 100.

The identification process is performed in the following three cases:

(1) the damage index includes both maximum displacement xmax(t) and dissipated energy ǫ(t),
as expressed by Equation (9);

(2) the damage index does not include the maximum displacement (ρx = 0), therefore the
degradation phenomena are only function of the dissipated energy ǫ(t);

(3) the damage index does not include the dissipated energy (ρǫ = 0), namely the degradation
phenomena are only function of the maximum displacement xmax(t).

Table 3 lists the optimal parameters and the final OF value for the three cases. As expected, the
introduction of both maximum displacement and dissipated energy in the damage index (case 1)
provides the best final simulated response, reaching an OF around 9.5 %. Instead, the simulations
in cases 2 and 3 provide an OF that is approximately 5 % and 1 % higher, respectively.

Figures 8a, 8b and 8c present the comparison between experimental data (Fexp) and simulated
result (Fs) in terms of force-displacement curves in case 1, 2 and 3, respectively. The simulation in
case 1 (Figure 8a) shows a good fitting of the experimental hysteresis curve during the whole test.
Instead, in case 2 (Figure 8b), it can be observed that the simulated behaviour is not accurate
for the last hysteresis cycles, i.e. when the damage is severe. This is confirmed by the plot of
experimental energy ǫexp and simulated energy ǫs (Figure 9b), which shows that after a certain
point of the test the simulated dissipation of energy is significantly lower than the experimental
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Table 2. Lower and upper boundaries of the parameters.

Parameter Unit of measure Lower boundary Upper boundary

α - 0.03 0.1
k kN/mm 35 60
β0 - 0 0.5
η0 - −1 1
n - 1 2
δk - 1 × 10−4 4 × 10−4

δf - 1 × 10−5 2 × 10−4

ψ - 4 × 10−5 8 × 10−5

σ mm 10 25
ρp - 0.1 0.5
ǫp kN mm/kg 1 100
ρx - 0 3 × 104

ρǫ - 0 3 × 104

Table 3. Best fitting parameters and OF value for the pier R16-1B in case 1 (damage index involving both xmax(t) and
ǫ(t)), case 2 (ρx = 0) and case 3 (ρǫ = 0).

Parameter Unit of measure
Best fitting parameters

Case 1 Case 2 Case 3

α - 0.0489 0.0869 0.0498
k kN/mm 51.341 40.067 42.320
β0 - 0.214 0.0985 0.215
η0 - −0.275 0.188 −0.338
n - 1.061 1.270 1.018
δk - 2.796 × 10−4 2.284 × 10−4 2.709 × 10−4

δf - 3.790 × 10−5 2.620 × 10−5 2.686 × 10−5

ψ - 6.896 × 10−5 6.676 × 10−5 7.667 × 10−5

σ mm 16.032 12.734 19.709
ρp - 0.292 0.138 0.339
ǫp kN mm/kg 43.220 35.673 47.716
ρx - 2.645 × 104 0 2.928 × 104

ρǫ - 1.526 × 103 1.492 × 104 0

OF 9.53 % 14.94 % 10.60 %
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(a) Case 1 (damage index involving both maximum displace-
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(b) Case 2 (ρx = 0).

-40 -20 0 20 40

x (mm)

-300

-200

-100

0

100

200

300

F
 (

kN
)

F
exp

F
s

(c) Case 3 (ρǫ = 0).

Figure 8. Experimental (Fexp) and simulated (Fs) force-displacement curves for the pier R16-1B.
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(a) Case 1 (damage index involving both maximum displace-
ment and dissipated energy).

(b) Case 2 (ρx = 0).

(c) Case 3 (ρǫ = 0).

Figure 9. Experimental (ǫexp) and simulated (ǫs) energy-time curves for the pier R16-1B.

one. It follows that the description of the damage as a function of the sole hysteretic energy is
not satisfactory for the complex behaviour analysed here, while case 1 provides a more sound and
reliable result (Figure 9a).

Turning to the force-displacement results in case 3 (Figures 8c and 9c), it is noted that the
simulation fits quite well the experimental behaviour. Although, the first hysteresis cycles (i.e.
when the degradation is still not severe) are not adequately described. The surprisingly low value
of the OF (see Table 3), almost as low as the simulation in case 1, is explained by the fact that
the main discrepancy of the simulation is concentrated in the first part of the test, during which
the restoring force of the system assumes relatively low values. Therefore, this discrepancy has
a small influence on the magnitude of the OF , that is an integral measure over the whole event
(Equation (28)). Indeed, the OF alone would denote that the simulation in case 3 is nearly as
accurate as that in case 1. However, it follows from the analysis of the simulated response that
its accuracy is significantly lower than in case 1.

Figure 10 shows the hysteretic response of the system divided into two parts. The dividing
point is the instant of time when the displacement history switches from the first part to the
second part (Figure 5). As already discussed, the simulation in case 1 provides a well fitting of
the experimental behaviour throughout the event (Figures 10a and 10b). Instead, the simulated
behaviour in case 2 is accurate in the first part, while there is a significant discrepancy in the
second part (Figures 10c and 10d). Lastly, the simulation in case 3 is capable of describing the
second part, whereas the first part is affected by a considerable error (Figures 10e and 10f).

In order to provide a comparison of the local accuracy of each simulation, the following relative
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(b) Case 1: second part of displacement history.
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(c) Case 2: first part of displacement history.
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(d) Case 2: second part of displacement history.
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(e) Case 3: first part of displacement history.
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(f) Case 3: second part of displacement history.

Figure 10. Experimental (Fexp) and simulated (Fs) response of the pier R16-1B divided into two parts.
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Figure 12. OF values along with the generations during the identification process for the pier R16-1B in case 1, case 2
and case 3.

error in terms of energy is computed:

eǫ(θ, t) =
|ǫexp(t) − ǫs(θ, t)|

ǫexp(t)
. (30)

The errors made in case 1 (eǫ,1), case 2 (eǫ,2) and case 3 (eǫ,3) are displayed in Figure 11. The plot
confirms all the above observations. In fact, the error in case 3 is higher during the first part of
the test, while the error in case 2 is higher during the second part of the test. The simulation in
case 1 provides the lowest local error during most of the test. Therefore, it is concluded that the
incorporation of both maximum displacement and energy in the damage index brings benefits to
the capability of the model to simulate the hysteresis behaviour of the system.

Finally, Figure 12 shows the value of the objective function with the progress of the generations
in case 1, 2 and 3. For each case, the simulation has already reached a good result after 20
generations. This indicates that the genetic algorithm does not struggle too much to find the
optimal solution, thanks to the relatively simple formulation of the model.

4.3. Further applications of the proposed model

In order to guarantee the reliability of the hysteresis model presented in this paper, two appli-
cations on rectangular RC columns are now presented. The experimental data were obtained

17



0
.5

0
8
 m

0.305 m

Horizontal 

load direction

(a) Column ORC1.

0.203 m

Horizontal 

load direction

0
.2

0
3
 m

(b) Column C5-00.

Figure 13. Cross sections of the two RC columns analysed.

from the PEER database for reinforced concrete elements (Berry, Parrish, & Eberhard, 2004,
https://nisee.berkeley.edu/spd). Since the purpose of the following applications is to further in-
vestigate the reliability of the proposed model, the two cases with ρx = 0 and ρǫ = 0 are not
considered. The previous application already demonstrated that the introduction of a damage
index containing both ρx and ρǫ allows reaching a higher accuracy.

The first application regards the column ORC1, whose cyclic response was experimentally
investigated by Aboutaha and Machado (1999). The column ORC1 was composed of a concrete
with strength 83 MPa, reinforced with eight 25 mm and grade 414 MPa longitudinal reinforcing
bars. The size of the cross section was 305 × 508 mm, while the height of the column was 1.829
m. The transversal reinforcement was formed by 4-legged shear stirrups with a diameter of 10
mm and steel grade 414 MPa, spaced at 75 mm in the potential plastic hinge region and 150 mm
outside that region. The ultimate displacement and horizontal normalized yielding force for the
specimen ORC1 are xu = 109.74 mm and fy = 0.29 kN/kg.

The second application concerns the column C5-00, which was tested by Matamoros (2000).
The column C5-00 was composed of a concrete with strength 37.9 MPa. The rectangular cross
section had dimensions of 203 × 203 mm and it was longitudinally reinforced with four bars with
diameter 15.9 mm and yielding strength 572.3 MPa. The height of the column was 0.61 m and the
transversal reinforcement was performed by introducing 2-legged shear stirrups with a diameter
of 9.5 mm and yielding stress 513.7 MPa, at a spacing of 76.2 mm. The column C5-00 has an
ultimate displacement xu = 50.8 mm and an horizontal normalized yielding force fy = 0.84
kN/kg.

Both the columns ORC1 and C5-00 were tested under the imposition of a cyclic horizontal
displacement at the top of the system, while no axial load was applied. The section at the bottom
of the columns was fixed, thus the test configuration was a cantilever. Figures 13a and 13b show
a schematic representation of the cross sections of the columns ORC1 and C5-00, respectively.

The experimental force-displacement hysteresis curves of the two columns are used to perform
the identification of the optimal parameters of the model for both of them. Once again, the
parameter u is fixed to the value 4 (see Section 4.2) and the number of generations performed by
the genetic algorithm is set to 100. The lower and upper bounds of the parameters are the same as
the ones listed in Table 2, with the exceptions of the ranges of k, σ and ǫp. These three parameters
are not dimensionless, therefore their ranges must be adjusted basing on the particular system
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Table 4. Best fitting parameters and OF value for the columns ORC1 and C5-00.

Parameter Unit of measure
Best fitting parameters
ORC1 C5-00

α - 0.0474 0.0350
k kN/mm 21.013 9.314
β0 - 0.0764 0.102
η0 - −0.588 −0.790
n - 1.046 1.124
δk - 2.494 × 10−4 3.250 × 10−4

δf - 4.076 × 10−5 1.641 × 10−4

ψ - 4.576 × 10−5 4.576 × 10−5

σ mm 73.401 10.677
ρp - 0.103 0.221
ǫp kN mm/kg 339.914 35.991
ρx - 2.765 × 104 1.271 × 104

ρǫ - 495.137 531.500

OF 11.39 % 9.92 %

being examined. For this reason, both for the column ORC1 and C5-00, their ranges have been
modified before running the optimization process.

Table 4 lists the optimal parameters and the final OF value for the columns ORC1 and C5-
00. Figures 14a and 14b show the experimental data and the simulated force-displacement curves
for the columns ORC1 and C5-00, respectively. It can be observed that, for both systems, the
hysteresis behaviour simulated by the model is well fitting the experimental one. In fact, the error
in terms of OF is around 10 % in both cases.

It is worth noting that the pronounced strength degradation and pinching effect of the column
C5-00 with respect to the column ORC1 is directly reflected on the values of the parameters δf
and ρp. In fact, as reported in Table 4, the optimal values of δf and ρp for the column C5-00 are
sensibly higher than those for the column ORC1.
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Figure 14. Experimental (Fexp) and simulated (Fs) force-displacement curves for the RC columns analysed.
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5. Conclusions

This paper presents a smooth hysteresis model for RC structural elements with damage and
pinching effects. Its formulation is based on the differential equation of the Bouc-Wen model,
which has been extensively used for the description of the hysteresis of various mechanical systems.

The deterioration of the mechanical characteristics is introduced through a damage index,
that is defined as a linear combination of dissipated energy and maximum displacement. Stiffness
and strength degradation are mathematically described as decoupled phenomena using negative
exponential laws. Furthermore, the pinching effect is introduced in a similar way as what was
done by Marano et al. (2017) and Pelliciari et al. (2018). However, the model proposed in the
abovementioned works involves a pinching phenomenon that starts at the beginning of the event,
affecting also the very first hysteresis cycles. In the present paper, this physical inconsistency is
resolved by including an activation energy for the pinching effect.

The model is applied to the hysteresis loops of a RC bridge pier tested in the lab of the Fuzhou
University. The following three cases are analysed: damage index involving both dissipated energy
and maximum displacement, damage index involving only dissipated energy and damage index
involving only maximum displacement. The results show that the description of the damage as a
function of both dissipated energy and maximum displacement produces a simulation that well
fits the experimental hysteresis curve during the whole test. Instead, modeling the damage as a
function of the sole dissipated energy leads to an inadequate simulation of the behaviour of the
pier when the damage is severe. On the contrary, a description of the degradation considering only
the maximum displacement is not accurate during the first part of the test, where the damage is
still slight.

Two further applications on rectangular RC columns are also presented, with the aim of en-
suring the reliability of the proposed model. The results demonstrate that the model is capable of
reproducing the complex hysteresis behaviour of the structural elements analysed, that involves
stiffness degradation, strength degradation and pinching effect. The simple formulation of the
model allows to perform the identification of the best fitting parameters with a small compu-
tational burden. Moreover, each parameter has a direct physical meaning, which helps in the
interpretation of the results.

The hysteresis model presented in this work is oriented towards practical engineering ap-
plications, with a view to providing an instrument that can be easily managed and applied to
simulate the hysteresis of RC structural elements. Although the applications presented provided
accurate results, the general applicability of the model has to be further investigated. In order to
verify this, future developments will involve simulations on other types of RC elements, such as
beam-column joints, frames, walls, etc.
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