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Abstract: In this paper, by means of the implication operator → on a completely distributive lattice M, we

define the approximate degrees of M-fuzzifying convex structures, M-fuzzifying closure systems and M-

fuzzifying Alexandrov topologies to interpret the approximate degrees to which amapping is anM-fuzzifying

convex structure, an M-fuzzifying closure system and an M-fuzzifying Alexandrov topology from a logical

aspect. Moreover, we represent some properties ofM-fuzzifying convex structures as well as its relations with

M-fuzzifying closure systems and M-fuzzifying Alexandrov topologies by inequalities.

Keywords: Fuzzy topology, Fuzzy closure system, Fuzzy convex structure

MSC: 54A40, 52A01

1 Introduction

Convexities exists in many mathematical structures, such as standard convexity in vector spaces, order

convexity in posets, lattice convexity in lattices, geodesic convexity inmetric spaces and so on. By abstracting

the common properties of different types of convexities, abstract convexity theory had risen and was used to

deal with set-theoretic structures satisfying axioms similar to that all kinds of concrete convex sets satisfy.

Some more details about abstract convexity theory (also called convex structures) can be found in [1].

Since Zadeh introduced the notion of fuzzy subsets, fuzzy subsets have been applied to various branches

of mathematics, such as fuzzy topology [2–5], fuzzy convergence [6–14], fuzzy rough sets [15] and so on.

Considering the combinations of fuzzy set theory and convex structures, Rosa [16] and Maruyama [17]

independently proposed the notion of L-convex structures, where L is a completely distributive lattice.

For this kind of fuzzy convex structures, Pang et a. [18–23] provided several characterizations of L-convex

structure in a topological way and provided a categorical approach to L-convex structures. Considering L

being a continuous lattice, Jin and Li [24] further discussed the relationship between stratified L-convex

structures and convex structures from a categorical aspect.

From a logical aspect, Shi and Xiu [25] introduced the concept of M-fuzzifying convex structure based

on a completely distributive lattice M. In this situation, Shi and Li [26] generalized the notion of restricted
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hull operators to M-fuzzifying restricted hull operators and used it to characterize M-fuzzifying convex

structures. Afterwards, Xiu et al. [27, 28] discussed the relationship betweenM-fuzzifying interval spaces and

M-fuzzifying convex spaces from a categorical point of view. Recently, Xiu and Pang studied the relationship

betweenM-fuzzifying convex structures andM-fuzzifying closure systems [29] and provided the base axioms

and subbase axioms [30]. Also, Xiu and Pang [31] provided a degree approach to special mappings in M-

fuzzifying convex spaces.

In a more general sense, Shi and Xiu [32] further proposed the notion of (L,M)-fuzzy convex structures.

In this framework, Li [33] provided a categorical approach to enrich (L,M)-fuzzy convex structures. Xiu and Li

[34] provided a degree approach to study the relationship between (L,M)-fuzzy convex structures and (L,M)-

fuzzy closure systems.Up tonow, the theory of fuzzy convex structures has deservedmore andmore attention.

In this paper, we will focus on the logical extension of M-fuzzifying convex structures by using the logical

operations on the lattice background M. From a logical aspect, we will use the implication operation “→"

onM to define the approximate degrees ofM-fuzzifying convex structures,M-fuzzifying closure systems and

M-fuzzifying Alexandrov topologies to describe the approximate degree to which a mapping C : 2X −→ M

is an M-fuzzifying convex structure, an M-fuzzifying closure system and M-fuzzifying Alexandrov topology,

respectively. Then we will investigate M-fuzzifying convex structures in a degree approach and demonstrate

the relationship among M-fuzzifying convex structures, M-fuzzifying closure systems and M-fuzzifying

Alexandrov topologies by some inequalities.

2 Preliminaries

Throughout this paper, (M,∨,∧) denotes a completely distributive lattice. The smallest element and the

largest element inM are denoted by⊥ and⊤, respectively. 2X denotes the powerset of X. The binary relation

≺ on M is defined as follows: for a, b ∈ M, a ≺ b if and only if for every subset D ⊆ M, b ≤
∨

D always

implies the existence of d ∈ D with a ≤ d. A complete lattice M is completely distributive if and only if

b =
∨

{a ∈ M : a ≺ b} for each b ∈ M. For any b ∈ M, define β(b) = {a ∈ L : a ≺ b}.

In a completely distributive latticeM, there exists an implication operation→: M ×M −→ M as the right

adjoint for the meet operation ∧, defined by

a → b =
∨

{c ∈ L | a ∧ c ≤ b}.

We will often use, without explicitly mentioning, the following properties of the implication.

(1) c ≤ a → b ⇐⇒ a ∧ c ≤ b;

(2) a → b = ⊤ ⇐⇒ a ≤ b;

(3) a →
(
∧

i bi
)

=
∧

i (a → bi);

(4)
(
∨

i ai
)

→ b =
∧

i (ai → b);

(5) (a → c) ∧ (c → b) ≤ a → b;

(6) (a → b) ∧ (c → d) ≤ a ∧ c → b ∧ d.

Definition 2.1 ([25]). An M-fuzzifying convex structure on X is a mapping C : 2X −→ M which satisfies:

(MYC1) C (∅) = C (X) = ⊤;

(MYC2) C (
⋂

i∈I Ai) ≥
∧

i∈Ω C (Ai);

(MYC3) C (
⋃d

i∈I Ai) ≥
∧

i∈Ω C (Ai),

where
⋃d

i∈I Ai means that {Ai : i ∈ I}
d
⊆ 2X, i.e., {Ai : i ∈ I} is an up-directed subfamily of 2X, and

⋃d
i∈I Ai =

⋃

i∈I Ai. For an M-fuzzifying convex structure C on X, the pair (X, C ) is called an M-fuzzifying

convex space.

Definition 2.2 ([35]). An M-fuzzifying closure system on X is a mapping S : 2X −→ M which satisfies:

(MFYS1) S(∅) = S(X) = ⊤;
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(MFYS2) S(
⋂

i∈I Ai) >
∧

i∈I S(Ai).

For an M-fuzzifying closure system S on X, the pair (X, S) is called an M-fuzzifying closure space.

Definition 2.3 ([5, 36]). An M-fuzzifying Alexandrov topology on X is a mapping τ : 2X −→ M which

satisfies:

(MFYT1) τ(∅) = τ(X) = ⊤;

(MFYT2) τ(
⋂

i∈I Ai) ≥
∧

i∈I τ(Ai);

(MFYT3) τ(
⋃

i∈I Ai) ≥
∧

i∈I τ(Ai).

For an M-fuzzifying Alexandrov topology τ on X, the pair (X, τ) is called an M-fuzzifying Alexandrov

topological space.

3 The approximate degree ofM-fuzzifying convex structures

In this section, wewill equip eachmapping from 2X toMwith some degree to become anM-fuzzifying convex

structure. Then we will use some inequalities to give some degree representations for the properties of M-

fuzzifying convex structures.

For convenience, let PM(2
X) be the set of all mappings from 2X to M, i.e., PM(2

X) = {C | C : 2X −→ M}.

Then for each C ∈ PM(2
X), define

(1) D⊤(X, C ) = C (∅) ∧ C (X).

(2) D⋂(X, C ) =
∧

{Ak:k∈K}⊆2X
(
∧

k∈K C (Ak) → C (
⋂

k∈K Ak)).

(3) D⋃
d (X, C ) =

∧

{Ak:k∈K}
d

⊆2X
(
∧

k∈K C (Ak) → C (
⋃d

k∈K Ak)).

Now we give some logical explanations to the above notations. If D⋂(X, C ) = ⊤, then C (
⋂

k∈K Ak) ≥
∧

k∈K C (Ak) for each {Ak : k ∈ K} ⊆ 2X. This means D⋂(X, C ) is a logical extension of the axiom (MYC2).

Furthermore, D⋂(X, C ) denote the degree to which C is closed under arbitrary intersections. Similarly,

D⋃
d (X, C ) presents the logical extension of the axiom (MYC3), which denotes the degree to which C is closed

under arbitrary up-directed unions.

Next let us give the main definition of this section.

Definition 3.1. For each C ∈ PM(2
X), define Dcon(X, C ) as follows:

Dcon(X, C ) = D⊤(X, C ) ∧ D⋂(X, C ) ∧ D⋃
d (X, C ).

Then Dcon(X, C ) is called the approximate degree to which C is an M-fuzzifying convex structure on X.

Obviously, C is an M-fuzzifying convex structure on X if and only if Dcon(X, C ) = ⊤.

The above definition allowsus to talk on the degree towhich an arbitrarymappingC : 2X −→ M becomes

an M-fuzzifying convex structure on X even if C is not. The degree Dcon(X, C ) is a natural measure to which

(X, C ) is an M-fuzzifying convex structure on X. In the sequel, we will show the degree Dcon(X, C ) naturally

suggests many-valued logical extensions of properties that the classical convex structure possesses.

Proposition 3.2. Let {Ct}t∈T be a family of mappings from 2X to M and define
∧

t∈T Ct : 2
X −→ M by

∀A ∈ 2X ,

(

∧

t∈T

Ct

)

(A) =
∧

t∈T

Ct(A).

Then Dcon(X,
∧

t∈T Ct) ≥
∧

t∈T D
con(X, Ct).

Proof. We first verify the following three inequalities.

(1) D⊤(X,
∧

t∈T Ct) =
∧

t∈T D⊤(X, Ct). This can be shown by

D⊤(X,
∧

t∈T

Ct) = (
∧

t∈T

Ct)(X) ∧ (
∧

t∈T

Ct)(∅)
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=
∧

t∈T

(Ct(X) ∧ Ct(∅)) =
∧

t∈T

D⊤(X, Ct).

(2) D⋂(X,
∧

t∈T Ct) ≥
∧

t∈T D
⋂(X, Ct). This can be shown by

D⋂(X,
∧

t∈T Ct) =
∧

{Ak:k∈K}⊆2X
(
∧

k∈K(
∧

t∈T Ct)(Ak) → (
∧

t∈T Ct)(
⋂

k∈K Ak))

=
∧

{Ak:k∈K}⊆2X
(
∧

t∈T

∧

k∈K Ct(Ak) →
∧

t∈T Ct(
⋂

k∈K Ak))

≥
∧

{Ak:k∈K}⊆2X
∧

t∈T(
∧

k∈K Ct(Ak) → Ct(
⋂

k∈K Ak))

=
∧

t∈T

∧

{Ak:k∈K}⊆2X
(
∧

k∈K Ct(Ak) → Ct(
⋂

k∈K Ak))

=
∧

t∈T D
⋂(X, Ct).

(3) The proof of D⋃
d (X,

∧

t∈T Ct) ≥
∧

t∈T D
⋃

d (X, Ct) is similar to (2).

Therefore,

Dcon(X,
∧

t∈T Ct) = D⊤(X,
∧

t∈T Ct) ∧ D⋂(X,
∧

t∈T Ct) ∧ D⋃
d (X,

∧

t∈T Ct)

≥
∧

t∈T D⊤(X, Ct) ∧
∧

t∈T D
⋂(X, Ct) ∧

∧

t∈T D
⋃

d (X, Ct)

=
∧

t∈T(D⊤(X, Ct) ∧ D⋂(X, Ct) ∧ D⋃
d (X, Ct))

=
∧

t∈T D
con(X, Ct).

In the aboveproposition, if
∧

t∈T D
con(X, Ct) = ⊤, thenDcon(X,

∧

t∈T Ct) = ⊤. This implies that ifDcon(X, Ct) =

⊤ for each t ∈ T, then Dcon(X,
∧

t∈T Ct) = ⊤. It is exactly the many-valued extension of the following

conclusion with respect to M-fuzzifying convex structures: if {Ct : t ∈ T} is a family of M-fuzzifying convex

structures on X, then so is
∧

t∈T Ct.

In [25], Shi and Xiu provided a method of constructing a new M-fuzzifying convex structure in the

following way.

Proposition 3.3. Let (Y ,D) be an M-fuzzifying convex space and f : X −→ Y be a surjective mapping. Define

a mapping f −1(D) : 2X −→ M by

∀A ∈ 2X , f −1(D)(A) =
∨

{

D(B) : f −1(B) = A
}

.

Then (X, f −1(D)) is an M-fuzzifying convex space.

Now let us give a degree description of this result by an inequality.

Proposition 3.4. Let f : X −→ Y be a surjective mapping and D ∈ PM(2
Y ). Define f −1(D) : 2X −→ M by

∀A ∈ 2X , f −1(D)(A) =
∨

{

D(B) : f −1(B) = A
}

.

Then Dcon(X, f −1(D)) ≥ Dcon(Y ,D).

Proof. We first verify the following three inequalities.

(1) D⊤(X, f
−1(D)) ≥ D⊤(Y ,D). This can be shown by

D⊤(X, f
−1(D)) = f −1(D)(X) ∧ f −1(D)(∅)

=
∨

f −1(B)=X D(B) ∧
∨

f −1(B)=∅D(B)

≥ D(Y) ∧ D(∅)

= D⊤(Y ,D).

(2) D⋂(X, f −1(D)) ≥ D⋂(Y ,D). That is,

∧

{Ak:k∈K}⊆2X
(
∧

k∈K f
−1(D)(Ak) → f −1(D)(

⋂

k∈K Ak))

≥
∧

{Bk:k∈K}⊆2Y
(
∧

k∈K D(Bk) → D(
⋂

k∈K Bk)).
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Take any α ∈ M such that

α ≤
∧

{Bk:k∈K}⊆2Y

(
∧

k∈K

D(Bk) → D(
⋂

k∈K

Bk)).

Then for each {Bk : k ∈ K} ⊆ 2Y , it follows that α ∧
∧

k∈K D(Bk) ≤ D(
⋂

k∈K Bk). In order to show

α ≤
∧

{Ak:k∈K}⊆2X

(
∧

k∈K

f −1(D)(Ak) → f −1(D)(
⋂

k∈K

Ak)),

we need only show that for each {Ak : k ∈ K} ⊆ 2X,

α ∧
∧

k∈K

f −1(D)(Ak) ≤ f
−1(D)(

⋂

k∈K

Ak),

i.e.,

α ∧
∧

k∈K

∨

f −1(B)=Ak

D(B) ≤
∨

f −1(B)=
⋂

k∈K Ak

D(B).

Take each β ∈ M such that β ≺ α ∧
∧

k∈K

∨

f −1(B)=Ak
D(B). Then β ≤ α and for each k ∈ K, there exists Bk ∈ 2Y

such that f −1(Bk) = Ak and D(Bk) ≥ β. This implies
∧

k∈K D(Bk) ≥ β. Put C =
⋂

k∈K Bk. Then

f −1(C) = f −1(
⋂

k∈K

Bk) =
⋂

k∈K

f −1(Bk) =
⋂

k∈K

Ak .

Further, it follows that

∨

f −1(B)=
⋂

k∈K Ak

D(B) ≥ D(C) = D(
⋂

k∈K

Bk) ≥ α ∧
∧

k∈K

D(Bk) ≥ β.

By the arbitrariness of β, we obtain that for each {Ak : k ∈ K} ⊆ 2X,

α ∧
∧

k∈K

f −1(D)(Ak) ≤ f
−1(D)(

⋂

k∈K

Ak).

This means that

α ≤
∧

{Ak:k∈K}⊆2X

(
∧

k∈K

f −1(D)(Ak) → f −1(D)(
⋂

k∈K

Ak)).

By the arbitrariness of α, we obtain

∧

{Ak:k∈K}⊆2X

(
∧

k∈K

f −1(D)(Ak) → f −1(D)(
⋂

k∈K

Ak))

≥
∧

{Bk:k∈K}⊆2Y

(
∧

k∈K

D(Bk) → D(
⋂

k∈K

Bk)),

as desired.

(3) The proof of D⋃
d (X, f −1(D)) ≥ D⋃

d (Y ,D) is similar to (2).

As a result, we get

Dcon(X, f −1(D)) = D⊤(X, f
−1(D)) ∧ D⋂(X, f −1(D)) ∧ D⋃

d (X, f −1(D))

≥ D⊤(Y ,D) ∧ D⋂(Y ,D) ∧ D⋃
d (Y ,D)

= Dcon(Y ,D).

Subspaces, product spaces and quotient spaces are important concepts in M-fuzzifying convex spaces. Next

we will give the corresponding degree description with respect to these three concepts. For this, we first

present their definitions, respectively.
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Definition 3.5 ([25]). Let (X, C ) be anM-fuzzifying convex space, ∅ = ̸ Y ⊆ X. Then (Y , C |Y ) is anM-fuzzifying

convex space on Y, where

∀A ∈ 2Y , (C |Y )(A) =
∨

{C (B) : B ∈ 2X , B ∩ Y = A}.

We call (Y , C |Y ) a subspace of (X, C ).

Definition 3.6 ([25]). Let (X, CX) be anM-fuzzifying convex space and let f : X −→ Y be a surjectivemapping.

Define CY : 2Y −→ M by

∀B ∈ 2Y , CY (B) = CX(f
−1(B)).

ThenCY is anM-fuzzifying convex structure on Y. The pair (Y , CY ) is called the quotient space of (X, CX)with

respect to f .

Definition 3.7 ([28]). Let {(Xi , Ci)}i∈I be a family of M-fuzzifying convex spaces, where I = {1, 2, ...n}, and

let X be the product of {Xi}i∈I , that is, X =
∏

i∈I Xi. Define
∏n

i=1 Ci : 2
X −→ M by

∀A ∈ 2X , (

n
∏

i=1

Ci)(A) =
∨

∏
i∈I Ai=A

∧

i∈I

Ci(Ai).

Then
∏n

i=1 Ci is an M-fuzzifying convex structure on X. The pair (X,
∏n

i=1 Ci) is called the product of

{(Xi , Ci)}i∈I .

Now let us use some inequalities to represent these concepts with some approximate degrees, respectively.

Proposition 3.8. Let C ∈ PM(2
X) and ∅ ≠ Y ⊆ X. Define C |Y by

∀A ∈ 2Y , C |Y (A) =
∨

{C (B) : B ∈ 2X , B ∩ Y = A}.

Then Dcon(Y , C |Y ) ≥ D
con(X, C ).

Proof. It is enough to prove the following three inequalities.

(1) D⊤(Y , C |Y ) ≥ D⊤(X, C ). By the definition of C |Y , it follows that

D⊤(Y , C |Y ) = C |Y (Y) ∧ C |Y (∅)

=
∨

B∈2X , B∩Y=Y C (B) ∧
∨

B∈2X , B∩Y=∅ C (B)

≥ C (X) ∧ C (∅)

= D⊤(X, C ).

(2) D⋂(Y , C |Y ) ≥ D
⋂(X, C ). That is,

∧

{Ak:k∈K}⊆2Y

(
∧

k∈K

C |Y (Ak) → C |Y (
⋂

k∈K

Ak))

≥
∧

{Bk:k∈K}⊆2X

(
∧

k∈K

C (Bk) → C (
⋂

k∈K

Bk)).

Take any α ∈ M such that

α ≤
∧

{Bk:k∈K}⊆2X

(
∧

k∈K

C (Bk) → C (
⋂

k∈K

Bk)).

Then for each {Bk : k ∈ K} ⊆ 2X, it follows that α ∧
∧

k∈K C (Bk) ≤ C (
⋂

k∈K Bk). In order to show

α ≤
∧

{Ak:k∈K}⊆2Y

(
∧

k∈K

C |Y (Ak) → C |Y (
⋂

k∈K

Ak)),

we need only show that for each {Ak : k ∈ K} ⊆ 2Y ,

α ∧
∧

k∈K

C |Y (Ak) ≤ C |Y (
⋂

k∈K

Ak),
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i.e.,

α ∧
∧

k∈K

∨

B∈2X , B∩Y=Ak

C (B) ≤
∨

B∈2X , B∩Y=
⋂

k∈K Ak

C (B).

Take each β ∈ M such that β ≺ α ∧
∧

k∈K

∨

B∈2X , B∩Y=Ak
C (B). Then β ≤ α and for each k ∈ K, there exists

Bk ∈ 2X such that Bk ∩ Y = Ak and C (Bk) ≥ β. This implies
∧

k∈K C (Bk) ≥ β. Put C =
⋂

k∈K Bk. Then

C ∩ Y = (
⋂

k∈K

Bk) ∩ Y =
⋂

k∈K

(Bk ∩ Y) =
⋂

k∈K

Ak .

Furthermore, it follows that
∨

B∈2X , B∩Y=
⋂

k∈K Ak

C (B) ≥ C (C) = C (
⋂

k∈K

Bk) ≥ α ∧
∧

k∈K

C (Bk) ≥ β.

By the arbitrariness of β, we obtain that for each {Ak : k ∈ K} ⊆ 2X, it follows that α ∧
∧

k∈K C |Y (Ak) ≤

C |Y (
⋂

k∈K Ak). This means that

α ≤
∧

{Ak:k∈K}⊆2X

(
∧

k∈K

C |Y (Ak) → C |Y (
⋂

k∈K

Ak)).

By the arbitrariness of α, we get
∧

{Ak:k∈K}⊆2Y

(
∧

k∈K

C |Y (Ak) → C |Y (
⋂

k∈K

Ak))

≥
∧

{Bk:k∈K}⊆2X

(
∧

k∈K

C (Bk) → C (
⋂

k∈K

Bk)),

as desired.

(3) The proof of D⋃
d (Y , C |Y ) ≥ D⋃

d (X, C ) is similar to (2).

As a result, we get

Dcon(Y , C |Y ) = D⊤(Y , C |Y ) ∧ D⋂(Y , C |Y ) ∧ D⋃
d (Y , C |Y )

≥ D⊤(X, C ) ∧ D⋂(X, C ) ∧ D⋃
d (X, C )

= Dcon(X, C ).

Proposition 3.9. Let CX ∈ PM(2
X) and f : X −→ Y be a surjective mapping. Define CY : 2Y −→ M by

∀B ∈ 2Y , CY (B) = CX(f
−1(B)).

Then Dcon(Y , CY ) ≥ D
con(X, CX).

Proof. It is enough to prove the following three inequalities.

(1) D⊤(Y , CY ) ≥ D⊤(X, CX). By the definition of CY , it follows that

D⊤(Y , CY ) = CY (Y) ∧ CY (∅)

= CX(f
−1(Y)) ∧ CX(f

−1(∅))

≥ CX(X) ∧ CX(∅)

= D⊤(X, CX).

(2) D⋂(Y , CY ) ≥ D
⋂(X, CX). It can be checked as follows:

D⋂(Y , CY ) =
∧

{Bk:k∈K}⊆2Y
(
∧

k∈K CY (Bk) → CY (
⋂

k∈K Bk))

=
∧

{Bk:k∈K}⊆2Y
(
∧

k∈K CX(f
−1(Bk)) → CX(f

−1(
⋂

k∈K Bk))

=
∧

{Bk:k∈K}⊆2Y
(
∧

k∈K CX(f
−1(Bk)) → CX(

⋂

k∈K f
−1(Bk))

≥
∧

{Ak:k∈K}⊆2X
(
∧

k∈K CX(Ak) → CX(
⋂

k∈K Ak))

= D⋂(X, CX).
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(3) The proof of D⋃
d (Y , CY ) ≥ D⋃

d (X, CX) is similar to (2).

As a result, we get

Dcon(Y , CY ) = D⊤(Y , CY ) ∧ D⋂(Y , CY ) ∧ D⋃
d (Y , CY )

≥ D⊤(X, CX) ∧ D⋂(X, CX) ∧ D⋃
d (X, CX)

= Dcon(X, CX).

Proposition 3.10. Let {Xi}i∈I be a family of nonempty sets, where I = {1, 2, ...n}, let Ci ∈ PM(2
Xi ) for each

i ∈ I and let X be the product of {Xi}i∈I , that is, X =
∏

i∈I Xi. Define C : 2X −→ M by

∀A ∈ 2X , C (A) =
∨

∏
i∈I Ai=A

∧

i∈I

Ci(Ai).

Then Dcon(X, C ) ≥
∧

i∈I D
con(Xi , Ci).

Proof. Suppose that {pi : X −→ Xi}i∈I is the family of projection mappings. Next we verify the following

three inequalities.

(1) D⊤(X, C ) ≥
∧

i∈I D⊤(Xi , Ci). By the definition of C , it follows that

D⊤(X, C ) = C (X) ∧ C (∅)

=
∨

∏
i∈I Ai=X

∧

i∈I Ci(Ai) ∧
∨

∏
i∈I Ai=∅

∧

i∈I Ci(Ai)

≥
∧

i∈I Ci(Xi) ∧
∧

i∈I Ci(∅)

=
∧

i∈I(Ci(Xi) ∧ Ci(∅))

≥
∧

i∈I D⊤(Xi , Ci).

(2) D⋂(X, C ) ≥
∧

i∈I D
⋂(Xi , Ci). It suffices to show the following inequality:

∧

{Ak:k∈K}⊆2X

(
∧

k∈K

C (Ak) → C (
⋂

k∈K

Ak))

≥
∧

i∈I

∧

{Bk,i:k∈Ki}⊆2
Xi

(
∧

k∈Ki

Ci(Bk,i) → Ci(
⋂

k∈Ki

Bk,i)).

Take any α ∈ M such that

α ≤
∧

i∈I

∧

{Bk,i:k∈Ki}⊆2
Xi

(
∧

k∈Ki

Ci(Bk,i) → Ci(
⋂

k∈Ki

Bk,i)).

Then for each i ∈ I and {Bk,i : k ∈ Ki} ⊆ 2Xi , it follows that

α ∧
∧

k∈Ki

Ci(Bk,i) ≤ Ci(
⋂

k∈Ki

Bk,i).

In order to show

α ≤
∧

{Ak:k∈K}⊆2X

(
∧

k∈K

C (Ak) → C (
⋂

k∈K

Ak)),

we need only show that for each {Ak : k ∈ K} ⊆ 2X,

α ∧
∧

k∈K

C (Ak) ≤ C (
⋂

k∈K

Ak),

i.e.,

α ∧
∧

k∈K

∨

∏
i∈Ik

Bk,i=Ak

∧

i∈I

Ci(Bk,i) ≤
∨

∏
i∈I Ai=

⋂
k∈K Ak

∧

i∈I

Ci(Ai).

Take each β ∈ M such that

β ≺ α ∧
∧

k∈K

∨

∏
i∈I Bk,i=Ak

∧

i∈I

Ci(Bk,i).
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Then β ≤ α and for each k ∈ K, there exists {Bk,i : i ∈ I} such that
∏

i∈I Bk,i = Ak and
∧

i∈I Ci(Bk,i) ≥ β. This

implies
∧

i∈I

∧

k∈K

Ci(Bk,i) =
∧

k∈K

∧

i∈I

Ci(Bk,i) ≥ β.

Then it follows that
⋂

k∈K Ak =
⋂

k∈K

∏

i∈Ik
Bk,i =

⋂

k∈K

⋂

i∈Ik
p←i (Bk,i)

=
⋂

i∈I

⋂

k∈K p
←
i (Bk,i) =

⋂

i∈I p
←
i (
⋂

k∈K Bk,i)

=
∏

i∈I

⋂

k∈K Bk,i .

This implies that
∨

∏
i∈I Ai=

⋂
k∈K Ak

∧

i∈I

Ci(Ai) ≥
∧

i∈I

Ci(
⋂

k∈K

Bk,i) ≥ α ∧
∧

i∈I

∧

k∈K

Ci(Bk,i) ≥ β.

By the arbitrariness of β, we obtain that for each {Ak : k ∈ K} ⊆ 2X,

α ∧
∧

k∈K

∨

∏
i∈Ik

Bk,i=Ak

∧

i∈I

Ci(Bk,i) ≤
∨

∏
i∈I Ai=

⋂
k∈K Ak

∧

i∈I

Ci(Ai).

This means that

α ≤
∧

{Ak:k∈K}⊆2X

(
∧

k∈K

C (Ak) → C (
⋂

k∈K

Ak)).

By the arbitrariness of α, we obtain

∧

{Ak:k∈K}⊆2X

(
∧

k∈K

C (Ak) → C (
⋂

k∈K

Ak))

≥
∧

i∈I

∧

{Bk,i:k∈Ki}⊆2
Xi

(
∧

k∈Ki

Ci(Bk,i) → Ci(
⋂

k∈Ki

Bk,i)),

as desired.

(3) The proof of D⋃
d (X, C ) ≥

∧

i∈I D
⋃

d (Xi , Ci) is similar to (2).

Therefore, we get

Dcon(X, C ) = D⊤(X, C ) ∧ D⋂(X, C ) ∧ D⋃
d (X, C )

≥
∧

i∈I D⊤(Xi , Ci) ∧
∧

i∈I D
⋂(Xi , Ci) ∧

∧

i∈I D
⋃

d (Xi , Ci)

=
∧

i∈I(D⊤(Xi , Ci) ∧ D⋂(Xi , Ci) ∧ D⋃
d (Xi , Ci)

=
∧

i∈I D
con(Xi , Ci).

4 The approximate degrees ofM-fuzzifying closure systems and

M-fuzzifying Alexandrov topologies

In this section, we will apply the approximate degree approach to M-fuzzifying closure systems and M-

fuzzifying Alexandrov topologies. Then we will study their relations with the degree of M-fuzzifying convex

structures by some inequalities.

Adopting the notations D⊤ and D⋂. We first give the following definition.

Definition 4.1. For each C ∈ PM(2
X), define Dclo(X, C ) as follows:

Dclo(X, C ) = D⊤(X, C ) ∧ D⋂(X, C ).

Then Dclo(X, C ) is called the approximate degree to which C is an M-fuzzifying closure system on X.

Obviously, C is an M-fuzzifying closure system on X if and only if Dclo(X, C ) = ⊤.
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IfDclo(X, C ) = ⊤, thenD⊤(X, C ) = ⊤ andD⋂(X, C ) = ⊤. This implies (MFYS1) and (MFYS2) hold. Conversely,

For each C ∈ PM(2
X), if it satisfies (LFYC1) and (LFYC2), then Dclo(X, C ) = ⊤. Hence we obain

Proposition 4.2. For each C ∈ PM(2
X), C is anM-fuzzifying closure system on X if and only ifDclo(X, C ) = ⊤.

Proposition 4.3. For each C ∈ PM(2
X), Dcon(X, C ) ≤ Dclo(X, C ).

Actually, there are close relations betweenM-fuzzifying closure systems andM-fuzzifying convex structures.

In [29], Pang and Xiu provided a transforming method from M-fuzzifying closure systems to M-fuzzifying

convex structures in the following way.

Proposition 4.4 ([29]). Let (X, C ) be an M-fuzzifying closure space. Define a mapping C
* : 2X −→ M by

∀A ∈ 2X , C
*(A) =

∨

⋃
d
λ∈Λ Bλ=A

∧

λ∈Λ

C (Bλ).

Then C
* is an M-fuzzifying convex structure on X.

Now let us give an approximate degree description for the above proposition.

Proposition 4.5. Let C ∈ PM(2
X) and define C

* : 2X −→ M by

∀A ∈ 2X , C
*(A) =

∨

⋃
d
λ∈Λ Bλ=A

∧

λ∈Λ

C (Bλ).

Then Dcon(X, C *) ≥ Dclo(X, C ).

Proof. We first verify three inequalities in the following.

(1) D⊤(X, C
*) ≥ D⊤(X, C ). By the definition of C

*, we have

D⊤(X, C
*) = C

*(X) ∧ C
*(∅)

=
∨

⋃
d
λ∈Λ Bλ=X

∧

λ∈Λ C (Bλ) ∧
∨

⋃
d
λ∈Λ Bλ=∅

∧

λ∈Λ C (Bλ)

≥ C (X) ∧ C (∅)

= D⊤(X, C ).

(2) D⋂(X, C *) ≥ D⋂(X, C ). It suffices to show the following inequality.

∧

{Ak:k∈K}⊆2X

(
∧

k∈K

∨

⋃
d
j∈Jk

Bk,j=Ak

∧

j∈Jk

C (Bk,j) →
∨

⋃
d
t∈T Bt=

⋂
k∈K Ak

∧

t∈T

C (Bt))

≥
∧

{Bk:k∈K}⊆2X

(
∧

k∈K

C (Bk) → C (
⋂

k∈K

Bk)).

Take any α ∈ M such that

α ≤
∧

{Bk:k∈K}⊆2X

(
∧

k∈K

C (Bk) → C (
⋂

k∈K

Bk)).

Then for each {Bk : k ∈ K} ⊆ 2X, it follows that α ∧
∧

k∈K C (Bk) ≤ C (
⋂

k∈K Bk). Now we need only show that

for each {Ak : k ∈ K} ⊆ 2X,

α ∧
∧

k∈K

∨

⋃
d
j∈Jk

Bk,j=Ak

∧

j∈Jk

C (Bk,j) ≤
∨

⋃
d
t∈T Bt=

⋂
k∈K Ak

∧

t∈T

C (Bt).

Take each β ∈ M such that

β ≺ α ∧
∧

k∈K

∨

⋃
d
j∈Jk

Bk,j=Ak

∧

j∈Jk

C (Bk,j).
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Then β ≤ α and for each k ∈ K, there exists an up-directed set {Bk,j : j ∈ Jk} such that
⋃d

j∈Jk
Bk,j = Ak and for

each j ∈ Jk, C (Bk,j) ≥ β. By the completely distributive law, it follows that

⋂

k∈K

Ak =
⋂

k∈K

d
⋃

j∈Jk

Bk,j =
⋃

f∈
∏

k∈K Jk

⋂

k∈K

Bk,f (k).

Put Cf =
⋂

k∈K Bk,f (k) for each f ∈
∏

k∈K Jk. Since {Bk,j : j ∈ Jk} is up-directed, it is trivial to verify that

{Cf : f ∈
∏

k∈K Jk} is up-directed. Then for each f ∈
∏

k∈K Jk, it follows that

C (Cf ) = C (
⋂

k∈K

Bk,f (k)) ≥ α ∧
∧

k∈K

C (Bk,f (k)) ≥ β.

This implies
∧

f∈
∏

k∈K Jk
C (Cf ) ≥ β. Since {Cf : f ∈

∏

k∈K Jk} is up-directed and
⋂

k∈K Ak =
⋃d

f∈
∏

k∈K Jk
Cf , it

follows that
∨

⋃
d
t∈T Bt=

⋂
k∈K Ak

∧

t∈T

C (Bt) ≥
∧

f∈
∏

k∈K Jk

C (Cf ) ≥ β.

By the arbitrariness of β, we obtain that for each {Ak : k ∈ K} ⊆ 2X,

α ∧
∧

k∈K

∨

⋃
d
j∈Jk

Bk,j=Ak

∧

j∈Jk

C (Bk,j) ≤
∨

⋃
d
t∈T Bt=

⋂
k∈K Ak

∧

t∈T

C (Bt).

This means that

α ≤
∧

{Ak:k∈K}⊆2X

(
∧

k∈K

C
*(Ak) → C

*(
⋂

k∈K

Ak)).

By the arbitrariness of α, we obtain that
∧

{Ak:k∈K}⊆2X

(
∧

k∈K

C
*(Ak) → C

*(
⋂

k∈K

Ak)) ≥
∧

{Bk:k∈K}⊆2X

(
∧

k∈K

C (Bk) → C (
⋂

k∈K

Bk)),

as desired.

(3) D⋃
d (X, C *) ≥ D⋂(X, C ). It suffices to show the following inequality.

∧

{Ak:k∈K}
d

⊆2X

(
∧

k∈K

∨

⋃
d
j∈Jk

Bk,j=Ak

∧

j∈Jk

C (Bk,j) →
∨

⋃
d
t∈T Bt=

⋃
d
k∈K Ak

∧

t∈T

C (Bt))

≥
∧

{Bk:k∈K}⊆2X

(
∧

k∈K

C (Bk) → C (
⋂

k∈K

Bk)).

Take any α ∈ M such that

α ≤
∧

{Bk:k∈K}⊆2X

(
∧

k∈K

C (Bk) → C (
⋂

k∈K

Bk)).

Then for each {Bk : k ∈ K} ⊆ 2X, it follows that α ∧
∧

k∈K C (Bk) ≤ C (
⋂

k∈K Bk). Now we need only show that

for each {Ak : k ∈ K}
d
⊆ 2X,

α ∧
∧

k∈K

∨

⋃
d
j∈Jk

Bk,j=Ak

∧

j∈Jk

C (Bk,j) ≤
∨

⋃
d
t∈T Bt=

⋃
d
k∈K Ak

∧

t∈T

C (Bt).

Take each β ∈ M such that

β ≺ α ∧
∧

k∈K

∨

⋃
d
j∈Jk

Bk,j=Ak

∧

j∈Jk

C (Bk,j).

Then β ≤ α and for each k ∈ K, there exists an up-directed set {Bk,j : j ∈ Jk} such that
⋃d

j∈Jk
Bk,j = Ak and for

each j ∈ Jk, C (Bk,j) ≥ β. Let

A =

d
⋃

k∈K

Ak =

d
⋃

k∈K

d
⋃

j∈Jk

Bk,j .
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Define a mapping σ : 2Afin −→ 2X by

∀F ∈ 2Afin , σ(F) =
⋂

{Bk,j|F ⊆ Bk,j}.

It is easy to check that

A =
⋃

F∈2A
fin

F =
⋃

F∈2A
fin

σ(F) =
⋃

F∈2A
fin

⋂

F⊆Bk,j

Bk,j .

Obviously, σ is order-preserving. Since 2Afin is up-directed, we know {σ(F)|F ∈ 2Afin} is up-directed. Now for

each F ∈ 2Afin, put {Bt|t ∈ T} = {Bk,j|F ⊆ Bk,j}. Then

∧

t∈T

C (Bt) =
∧

F⊆Bk,j

C (Bk,j) ≥ β.

This implies

C (σ(F)) = C (
⋂

F⊆Bk,j

Bk,j) = C (
⋂

t∈T

Bt) ≥ α ∧
∧

t∈T

C (Bt) ≥ β.

By the arbitrariness of F, we obtain
∧

F∈2A
fin

C (σ(F)) ≥ β. Since
⋃d

F∈2A
fin
σ(F) = A =

⋃d
k∈K Ak, it follows that

∨

⋃
d
t∈T Bt=

⋃
d
k∈K Ak

∧

t∈T

C (Bt) ≥
∧

F∈2A
fin

C (σ(F)) ≥ β.

By the arbitrariness of β, we obtain that for each {Ak : k ∈ K}
d
⊆ 2X,

α ∧
∧

k∈K

∨

⋃
d
j∈Jk

Bk,j=Ak

∧

j∈Jk

C (Bk,j) ≤
∨

⋃
d
t∈T Bt=

⋃
d
k∈K Ak

∧

t∈T

C (Bt).

This means that

α ≤
∧

{Ak:k∈K}
d

⊆2X

(
∧

k∈K

C
*(Ak) → C

*(

d
⋃

k∈K

Ak)).

By the arbitrariness of α, we obtain that

∧

{Ak:k∈K}
d

⊆2X

(
∧

k∈K

C
*(Ak) → C

*(

d
⋃

k∈K

Ak)) ≥
∧

{Bk:k∈K}⊆2X

(
∧

k∈K

C (Bk) → C (
⋂

k∈K

Bk)),

as desired.

By (1), (2) and (3), we have

Dcon(X, C *) = D⊤(X, C
*)
∧

D⋂(X, C *)
∧

D⋃
d (X, C *)

≥ D⊤(X, C )
∧

D⋂(X, C )
∧

D⋂(X, C )

= Dclo(X, C ).

In order to introduce the approximate degree of M-fuzzifying Alexandrov topologies, we first give the

following notation. For each C ∈ PM(2
X), define

D∪(X, C ) =
∧

{Ak:k∈K}⊆2X

(
∧

k∈K

C (Ak) → C (
⋃

k∈K

Ak)).

Actually, this definition offers an approximate degree description towhichC is closed under arbitrary unions.

Now let us equip each C ∈ PM(2
X) with some degree to which C is anM-fuzzifying Alexandrov topology.
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Definition 4.6. For C ∈ PM(2
X), define Datop(X, C ) as follows:

Datop(X, C ) = D⊤(X, C ) ∧ D⋂(X, C ) ∧ D∪(X, C ).

Then Datop(X, C ) is called the approximate degree to which C is an M-fuzzifying Alexandrov topology on X.

Remark 4.7. For C ∈ PM(2
X), C is an M-fuzzifying Alexandrov topology if and only if Datop(X, C ) = ⊤.

Proposition 4.8. Let C ∈ PM(2
X). Then Datop(X, C ) ≤ Dcon(X, C ).

Proposition 4.9. Let C ∈ PM(2
X) and define C : 2X −→ M by

∀A ∈ 2X , C (A) =
∨

⋃
j∈J Bj=A

∧

j∈J

C (Bj).

Then Datop(X, C ) ≥ Dcon(X, C ).

Proof. We prove it in the following steps.

(1) By the definition of C , we have

D⊤(X, C ) = C (X) ∧ C (∅)

=
∨

⋃
j∈J Bj=X

∧

j∈J C (Bj) ∧
∨

⋃
j∈J Bj=∅

∧

j∈J C (Bj)

≥ C (X) ∧ C (∅)

= D⊤(X, C ).

(2) D⋂(X, C ) ≥ D⋂(X, C ). That is,

∧

{Ak:k∈K}⊆2X

(
∧

k∈K

C (Ak) → C (
⋂

k∈K

Ak)) ≥
∧

{Bk:k∈K}⊆2X

(
∧

k∈K

C (Bk) → C (
⋂

k∈K

Bk)).

By the definition of C , it suffices to show

∧

{Ak:k∈K}⊆2X

(
∧

k∈K

∨

⋃
j∈Jk

Bk,j=Ak

∧

j∈Jk

C (Bk,j) →
∨

⋃
j∈J Bj=

⋂
k∈K Ak

∧

j∈J

C (Bj))

≥
∧

{Bk:k∈K}⊆2X

(
∧

k∈K

C (Bk) → C (
⋂

k∈K

Bk)).

Take any α ∈ M such that

α ≤
∧

{Bk:k∈K}⊆2X

(
∧

k∈K

C (Bk) → C (
⋂

k∈K

Bk)).

Then for each {Bk : k ∈ K} ⊆ 2X, it follows that α ∧
∧

k∈K C (Bk) ≤ C (
⋂

k∈K Bk). In order to show

α ≤
∧

{Ak:k∈K}⊆2X

(
∧

k∈K

C (Bk) → C (
⋂

k∈K

Bk)),

we need only show that for each {Ak : k ∈ K} ⊆ 2X,

α ∧
∧

k∈K

C (Bk) ≤ C (
⋂

k∈K

Bk),

i.e.,

α ∧
∧

k∈K

∨

⋃
j∈Jk

Bk,j=Ak

∧

j∈Jk

C (Bk,j) ≤
∨

⋃
j∈J Bj=

⋂
k∈K Ak

∧

j∈J

C (Bj).

Take each β ∈ M such that

β ≺ α ∧
∧

k∈K

∨

⋃
j∈Jk

Bk,j=Ak

∧

j∈Jk

C (Bk,j).
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Then β ≤ α and for each k ∈ K, there exists {Bk,j : j ∈ Jk} such that
⋃

j∈Jk
Bk,j = Ak and for each j ∈ Jk,

C (Bk,j) ≥ β. By the completely distributive law, it follows that

⋂

k∈K

Ak =
⋂

k∈K

⋃

j∈Jk

Bk,j =
⋃

f∈
∏

k∈K Jk

⋂

k∈K

Bk,f (k).

Put Df =
⋂

k∈K Bk,f (k) for each f ∈
∏

k∈K Jk. Then for each f ∈
∏

k∈K Jk, it follow that

C (Df ) = C (
⋂

k∈K

Bk,f (k)) ≥ α ∧
∧

k∈K

C (Bk,f (k)) ≥ β.

This implies
∨

⋃
j∈J Bj=

⋂
k∈K Ak

∧

j∈J C (Bj) ≥
∧

f∈
∏

k∈K Jk
C (Df ) ≥ β. By the arbitrariness of β, we obtain that for

each {Ak : k ∈ K} ⊆ 2X,

α ∧
∧

k∈K

∨

⋃
j∈Jk

Bk,j=Ak

∧

j∈Jk

C (Bk,j) ≤
∨

⋃
j∈J Bj=

⋂
k∈K Ak

∧

j∈J

C (Bj).

This means that

α ≤
∧

{Ak:k∈K}⊆2X

(
∧

k∈K

C (Ak) → C (
⋂

k∈K

Ak)).

By the arbitrariness of α, we obtain that

∧

{Ak:k∈K}⊆2X

(
∧

k∈K

C (Ak) → C (
⋂

k∈K

Ak)) ≥
∧

{Bk:k∈K}⊆2X

(
∧

k∈K

C (Bk) → C (
⋂

k∈K

Bk)),

as desired.

(3) D∪(X, C ) = ⊤. It suffices to show

∧

k∈K

∨

⋃
j∈Jk

Bk,j=Ak

∧

j∈Jk

C (Bk,j) ≤
∨

⋃
j∈J Bj=

⋃
k∈K Ak

∧

j∈J

C (Bj).

Take each α ∈ M such that

α ≺
∧

k∈K

∨

⋃
j∈Jk

Bk,j=Ak

∧

j∈Jk

C (Bk,j).

Then for each k ∈ K, there exists {Bk,j : j ∈ Jk} such that
⋃

j∈Jk
Bk,j = Ak and for each j ∈ Jk, C (Bk,j) ≥ α. Put

{Ct : t ∈ T} = {Bk,j : k ∈ K, j ∈ Jk}. Then

⋃

k∈K

Ak =
⋃

k∈K

⋃

j∈Jk

Bk,j =
⋃

t∈T

Ct

and
∧

t∈T

C (Ct) ≥
∧

k∈K

∧

j∈Jk

C (Bk,j) ≥ α.

This implies that
∨

⋃
j∈J Bj=

⋃
k∈K Ak

∧

j∈J

C (Bj) ≥
∧

t∈T

C (Ct) ≥ α.

By the arbitrariness of α,

∧

k∈K

∨

⋃
j∈Jk

Bk,j=Ak

∧

j∈Jk

C (Bk,j) ≤
∨

⋃
j∈J Bj=

⋃
k∈K Ak

∧

j∈J

C (Bj),

i.e.,
∧

k∈K

∨

⋃
j∈Jk

Bk,j=Ak

∧

j∈Jk

C (Bk,j) →
∨

⋃
j∈J Bj=

⋃
k∈K Ak

∧

j∈J

C (Bj) = ⊤.
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This means D∪(X, C ) = ⊤.

By (1), (2) and (3), we have

Datop(X, C ) = D⊤(X, C ) ∧ D⋂(X, C ) ∧ D∪(X, C )

≥ D⊤(X, C ) ∧ D⋂(X, C ) ∧ D⋃
d (X, C )

= Dcon(X, C ).

Corollary 4.10. Let (X, C ) be an M-fuzzifying convex space and define C : 2X −→ M by

∀A ∈ 2X , C (A) =
∨

⋃
j∈J Bj=A

∧

j∈J

C (Bj).

Then C becomes an M-fuzzifying Alexandrov topology on X.

5 Conclusions

In this paper, we mainly applied an approximate degree approach to M-fuzzifying convex structures as

well as M-fuzzifying closure systems and M-fuzzifying Alexandrov topologies. In this way, we proposed

the approximate degrees of M-fuzzifying convex structures, M-fuzzifying closure systems and M-fuzzifying

Alexandrov topologies. From a logical viewpoint, we represented the properties of M-fuzzifying convex

structures and investigated the relations amongM-fuzzifying convex structures,M-fuzzifying closure systems

andM-fuzzifyingAlexandrov topologies by some inequalities. In the future,wewill consider the approximate

degree of CP-mappings between M-fuzzifying convex spaces and combine it with the approximate degree of

M-fuzzifying convex structure. In other words, we will apply the approximate degree method to study M-

fuzzifying convex spaces.
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