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A DEGREE THEORY, FIXED POINT THEOREMS, AND MAPPING
THEOREMS FOR MULTIVALUED NONCOMPACT MAPPINGS

BY
W. V. PETRYSHYN(l) AND P. M. FITZPATRICKp)

ABSTRACT. We define and study the properties of a topological degree for ultimately
compact, multivalued vector fields defined on the closures of open subsets of certain locally
convex topological vector spaces. In addition to compact mappings, the class of ultimately
compact mappings includes condensing mappings, generalized condensing mappings,
perturbations of compact mappings by certain Lipschitz-type mappings, and others. Using
this degree we obtain fixed point theorems and mapping theorems.

1. Introduction. The object of this paper is two-fold. First, we develop a degree
theory for ultimately compact vector fields defined on closures of open sets lying
in certain Hausdorff locally convex topological vector spaces. Second, using this
theory, we obtain a number of fixed point theorems and mapping theorems for
ultimately compact mappings.

As we shall show in §3, the class of ultimately compact mappings includes, in
addition to multivalued compact mappings, condensing mappings, generalized
condensing mappings, and, in particular, perturbations of multivalued compact
mappings by certain Lipschitz-type multivalued mappings.

In recent years the Leray-Schauder degree theory for single-valued compact
vector fields has been extended, on the one hand, to single-valued mappings of
more general type (see Vaïnikko and Sadovskiî [35] for ball-condensing vector
fields, Sadovskiî [32] for ultimately compact vector fields, Nussbaum [26] for k-
set-contractive vector fields, and others (see [33]), and, on the other hand, to
multivalued compact vector fields by Granas [13], Cellina and Lasota [4], and Ma
[22]).

The degree theory presented in §2 extends and unites the degree results of the
above authors.

Similarly, the classical fixed point theorems of Banach, Schauder, and Tychon-
off have also been extended to more general single-valued mappings (Zabreiko
and Krasnosel'skiï [36], Browder [2], Kirk [16], Göhde [11], Darbo [6], Sadovskiî
[32], Nussbaum [26], Furi and Vignoli [9], Petryshyn [29], and others(3)), and to
multivalued mappings (Ky Fan [18], Bohnenblust and Karlin [1], Glicksberg [10],
Granas [14], Ma [22], Cellina and Lasota [4] for compact mappings; Markin [23],
Browder [3] and Reich [31] for multivalued nonexpansive mappings; Himmel-
berg, Porter and Van Vleck [15] and Danes [5] for multivalued condensing-type
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2 W. V. PETRYSHYN AND P. M. FITZPATRICK

mappings; and others(3)). Most of the fixed point theorems of the above
mentioned authors, in addition to some new fixed point results, will be obtained
in §3 from the degree theory presented in §2.

In §4 we extend some mapping theorems of Ma [22] and Granas [13] to
multivalued condensing and A>set-contractive mappings. In particular, we obtain
invariance of domain theorems for the corresponding vector fields.

2. Degree theory for multivalued ultimately compact vector fields. In what
follows we will denote by A' a separated locally convex topological vector space,
which has the additional property that for each compact subset A there is a
retraction of X onto cö A, where by co" A we mean the closed convex hull of A.
If X is metrizable, then, by a theorem of Dugundji [8], X has the latter property
(in fact, every closed convex subset is a retract of X).

If A CJ, we let K(A) and CK(A) denote the families of closed convex and
compact convex subsets of A, respectively. A multivalued mapping T of
D C X -* 2X is called upper semicontinuous (u.s.c.) provided that, whenever
x E D and V is an open set containing T(x), there is an open set U such that
x EU and, if y E D n U, then T(y) C V. If A C D, then we let T(A)
= Uxe,4 T(x), and denote by A and 3/1 the closure and boundary of A,
respectively. We recall that a u.s.c. mapping F: D -» K(X ) is called a compact
vector field û (I — F)(D) is relatively compact.

In this section we will describe a procedure whereby one may utilize the
topological degree defined for multivalued compact vector fields (see Granas [13],
Ma [22], and Cellina and Lasota [4]) in order to define a topological degree for
more general classes of mappings: perturbations of the identity by the so-called
ultimately compact multivalued mappings. This latter class of mappings includes,
in addition to multivalued compact mappings, multivalued contractions, A>set-
contractions, ¿-ball-contractions, condensing, generalized condensing mappings,
and others, which have been recently studied by a number of authors.

To define the class of ultimately compact multivalued mappings we employ a
construction utilized by Sadovskiï [32] in his development of the index theory for
ultimately compact single-valued vector fields.

Let D C X be closed and T: D -* K(X) be u.s.c. We define a transfinite
sequence (Ka) by induction as follows. Let K0 = cö T(D). Suppose a is an
ordinal such that Kß has been defined for ß < a. If a is an ordinal of the first
kind, let Ka = co T(D n Ka_{); if a is an ordinal of the second kind, we let
Ka — C\ß<aKß. It is easily verified that the following properties hold for (Ka}:

(2.1) each Ka is closed and convex with Ka Q Kß for a > ß.
(2.2) T(Ka n D) C Ka for each ordinal a.

(3) Other contributions have been made in this area (see [3], [33]); we mention only those directly
related to our results in this paper.
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Since the transfinite sequence (Ka} is nonincreasing, there is an ordinal y such
that A"y = Ky+i, and hence Ky = Kß for each ß > y. We define K = K(T,D)
= Kr Then it is clear that T(D n K) C K and, in fact, that

(2.3) co T(D n A) = K.

Definition 2.1. A u.s.c. mapping T: D -> A'(A'), where D is closed, is called
ultimately compact if either ä: n D = 0, where A = A(7; Z)), or if K n Z> # 0,
then T(Z) n AT) is relatively compact.

Recalling that X is called quasi-complete if every closed bounded subset of X
is complete, we see that when X has this property, then T: D -» K(X ) is
ultimately compact if and only if either K D D = 0 or K is compact. In this
case also, our retraction condition on X amounts to the requirement that every
convex compact subset of A" be a retract of X.

Lemma 2.1. Let D C X be open with T: D -* K(X) ultimately compact and such
that 0?r- T(x)for x G 3Z). aírame A" = K(T,D) is such that K <1 D ¥= 0,
and let p be a retraction of X onto K. Then:

(2.4) ifx G Dandx G T(x), then x G K.     _
(2.5) x G Dandx G T(x) if and only ifx e p~'(£) tf«¿* G T(p(x)).

Proof. (2.4) Let * G Z> and assume that x G T(x). It is obvious that x G A"0.
Assume that tj is an ordinal and x E Kß for all /? < tj. If tj is an ordinal of the
first kind, then since A, = co" 7,(A"1_1 n Z>) and x G Ä",_, n 2) we see that
x G A",. If tj is an ordinal of the second kind, then since A, = r\ß<r)Kß we see
that x G A",. Thus it follows that x G A"Y = K.

(2.5) Assume that x E D and * G T(x). Then x G A" by (2.4), and so
p(x) = x, so that x G p~](D) and jc G T(p(x)). On the other hand, assume
x e p~l(D) and x G T(p(x)). Since p is continuous, p(x) G £> and, by defini-
tion, p(x) e A". Thus, by (2.3), T(p(x)) C K, so that x G A and jc G T(x) with
x E D since x G 3 D by assumption.

Definition 2.2. Let D C A" be open and let T: ZT-» A(A') be ultimately
compact with 0 G x - T(x) for all x G 3Z). If A n Z) = 0, then we define the
degree of I - T on D with respect to 0, deg(Z - T, D, 0), to be 0. If K D Z) # 0,
then we let p be a retraction of X onto A and define

(2.6) deg(Z - T, D, 0) = de&(Z - Tp, p"1 (D), 0),

where the right-hand degree is that defined for compact multivalued vector fields
by Ma [22].

The use of a retraction to define the fixed-point index by means of the Leray-
Schauder degree appears in Browder (Symposia Math. 2 (1969), Theorem 1). In
an unpublished communication, R.D. Nussbaum has shown that one may define
a topological degree for single-valued A>set-contractive vector fields by means of
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the Leray-Schauder degree together with a retraction onto Kx (see [25], [26] for
the definition of Kx). In Definition 2.2 we are using a similar approach.

It follows from (2.5) that the right-hand side of (2.6) is well defined. We now
wish to show that the left-hand side of (2.6) is well defined; namely, to show that
it is independent of p. To this end we prove the following

Lemma 2.2. Let T, D and K be as in the previous Definition 2.2. Let A C X be
the convex closure of a compact set and assume that A D K, A D D ^ 0,
T(A fl D) C A, and T(A C\ D) is relatively compact. Then, ifr is a retraction of
X onto A,

(2.7) degc(7 - TV, r"1 (D), 0) = deg(/ - T, D, 0).

Proof. We must first show that the left-hand side of (2.7) is well defined.
Clearly T(t(t~1(D))) is relatively compact. Let x E d(T~l(D)). Then, if x
E T(t(x)), x E A, so x E 3Z) and x E T(x), which is a contradiction.

Now assume that D n K = 0. Then T has no fixed points, since any fixed
point of T must lie in D n K. We must show that the left-hand side of (2.7) is
zero. If this were not the case, then 7Y would have a fixed point in t~ '(£>). Such
a fixed point would also be a fixed point of T and lie in D, which is a
contradiction.

We now assume that D n K # 0 and let p be any retraction of X onto K.
Since the fixed point sets of 7V on t~'(/J) and Tp on p~[(D) are both contained
in O = p~l(D) n t~{(D), we see, by the additivity of degrees over domains, that
it suffices to show that deg(7 - 7p,0,O) = deg(/ - TV, O,0).

For x E Ö and t E [0,1] define Ht{x) = tT(p(x)) + (1 - 1)T(t(x)). Then H
is u.s.c. and compact.

We now claim that if x E O and for some (£[0,1], x E H,(x), then
x E T(x) and thus x E 30. So assume that x E O and / E [0,1] are such that
x E H,(x). We note immediately that x E A and so t(x) = x, so that x
E tT(p(x)) + (1 - t)T(x), and x ED. Since T(p(x)) and T(x) are in K0, and K0
is convex, we see that x E K0. Let -n be an ordinal such that x E Kß for ß < r¡.
If 7j is an ordinal of the first kind, then Kv = cö T^^x n D). Since x
E K^i n D, T(x) C Kn. But T(p(x)) C AT and since K C K„, with Kn convex,
we see that x E Kr Now assume that tj is an ordinal of the second kind; since
Kv = (~)ß<riKß we see that x E Kr This shows that x E K. Consequently
p(x) = x and x E T(x), since T(x) is convex, and hence x E O. Our conclusion
now follows from the invariance under homotopy for multivalued compact
vector fields [22].   Q.E.D.

It follows from the above with A = K that our degree is independent of the
particular retraction of X onto K chosen.

Before considering the properties of the degree given by Definition 2.2 we will
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show that it is indeed an extension of the degree for compact vector fields defined
and studied in [22].

Proposition 2.1. Let D C X be open and suppose T: D -* A(A^) is compact with
0 G x - T(x)for each x G 3Z>. Then

degc(Z - T,D,0) = deg(Z - T,D,0).

Proof. If A n D = 0, then the degree on the right is zero by definition. The
degree on the left must also be zero, for otherwise T would have a fixed point
which would lie in A D Z>, so K D D ¥= 0.

UK n D ^ 0, then since T(K n D~) C T(D), we see that T(K n Z5) is
compact. Let p be a retraction of X onto K. Such a retraction exists since
A" = eu T(D r\K) = côT(D n A"). Let O = Z) n p"'(^)- It suffices to show
that

degf(Z - 7p, 0,0) = de&(/ - 7,0,0).

To this end we define for x G 0 and t G [0,1]

Ht(x) = /T(pW) + (1 - t)T(x),

and note that H([0,1] xO) is relatively compact. That x G Z/,(x) for any
t G [0,1] and x G 30 follows from the same argument which has been used in
the proof of Lemma 2.2. Hence, by the invariance under homotopy theorem of
[22], our conclusion follows.   Q.E.D.

Theorem 2.1. Let TandD be as in Definition 2.2. Then ifdeg(I - T,D,0) # 0,
there exists an x G D with x G T(x).

Proof. We have An D ¥= 0. Let p be a retraction of X onto A. Then, by our
hypothesis and Definition 2.2, we see that

degc(Z-7p,p-1(£>).0)*0,

and then there is an x G p~l(D) with x G T(p(x)). Thus x G T(x) by (2.5).
Q.E.D.

Theorem 2.2. Let D C X be open and let H: [0,1] X D -> A(A") be u.s.c, and
such that H([0,1] X D D K) is relatively compact, where K' = K(H,[0,1]XÖ).
Z/x G H,(x)forx G 3Z) and t G [0,1], then

deg(Z - H0,D,0) = deg(Z - HuD,0).

Proof. Let A, - K(HhD) for i = 0, 1. Then A, C A"', for i = 0, 1. If A' n Z>
= 0, then A",- n Z) = 0 for /' = 0, 1, and so the conclusion follows. Suppose
now that K' n D # 0 and note that we have /i-(Z) D A"') C K for / = 0, 1.
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Let p be a retraction onto K'. Then, by Lemma 2.2, it suffices to show that

(2.8) deg(/ - Hop, p~l(D),0) = deg(7 - HlP,p^(D),0).
To this end we define, for? g [0,1] and x E p'\D), F,(x) = H,(p(x))- Then

F is u.s.c. and F([0,1] X p~l(D)) C H([0, l]xSn K') and is thus relatively
compact. Furthermore, if x E p~l(D) and x E F,(x) for some t E [0,1], then by
Lemma 2.1 we see that x E D and x £ H,(x), so x E D and therefore x does
not lie in 3p_1(Z)). It follows from the homotopy theorem for multivalued
compact vector fields that (2.8) is satisfied.   Q.E.D.

Theorem 23. Let T and D be as in Definition 2.2. Assume that D = Dx U D2,
where Dx and D2 are open, disjoint, and such that x & T(x) if x E 37), U dD2.
Then

(2.9) deg(7 - T,D,0) = deg(7 - T,Du0) + deg(7 - T,D2,0).

Proof. Let K - K(T,D), Kx = K(T,DX) and K2 = K(T,D2). If Kx n A
= K2 n D2 = 0, then T cannot have any fixed points so that the conclusion
follows from Theorem 2.1.

We now consider the case when, say, Kx fl D¡ ¥= 0 and K2 C\ D2 = 0. Then
the fixed point set of T in D is contained in Z),, and since A", C K, we have
K n D ^ 0. Let p be a retraction of A' onto K and let t be a retraction of X
onto A,. Now K plays the role of A in Lemma 2.2 and therefore we have the
relation

deg(7- Tp,p->(D,),0) = deg(7 - 7t,t-'(A),0) = deg(7 - T,Dx,0).
We now note that the fixed point set of Tp on p~l(D) is contained in p~'(AX
and thus, by [22], since

deg(7- Tp.p-1 (A),0) = deg(7- rp,p-'(7)),0),
we see that (2.9) is valid since deg(7 - T,D2,0) = 0.

We now consider the case when Kx D Dx ¥= 0 and K2 d D2 ¥= 0. Let p be a
retraction of X onto AT and let p, be a retraction onto K¡, for / = 1, 2. It follows
from Definition 2.2 and the additivity over domains theorem of [22] that

deg(7- T,D,0) = deg(7- Tp,p->(D),0)

= deg(7- Tp,p-'(Dx),0) + deg(7- rP,p-,(7)2),0)

= deg(7- 7p,,pf1 (A),0) + deg(7- Tp2,p2'(D2),0),
the last equality holding since K plays the role of A in Lemma 2.2 for
T: Dx -* K(X) and for T: D2 -* K(X).

We have shown that (2.9) is valid in all cases.   Q.E.D.
We now wish to prove a theorem concerning the topological degree of an odd

ultimately compact mapping defined on a symmetric neighborhood of the origin.
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To this end we first prove a result for odd multivalued compact vector fields, and
for this we will need the following approximation lemma.

Lemma 2.3. Let D C R" be compact and let T: D -> K(R") be u.s.c. Assume D
is symmetric and T is odd. Then, given e > 0, there exists a single-valued continuous
odd mapping f.D—*R" such that, whenever x G D, there exists a y G D and
z G T(y) such that \\x — y\\ < e and \\f(x) — z\\ < e.

Proof. Let e > 0. For each x G Z) we may choose 8X > 0 such that if
||x -y\\ < 28x, then T(y) C Nc(T(x)). Let rx = min{5x,5_x,e} for each x G D.
Then {B(x,rx) \ x G D) forms an open cover of D. Since D is compact we may
select (x,,... ,xm) C D such that {B(x¡,rx) \ i = 1,... ,m) covers D; we assume
that    {xu...,xm} = {-xl,...,-xj.

Let [f¡ | / = 1, ••• , m] be a partition of unity subordinate to [B(x¡, rx.)\i = 1,
••• , m}, and for each i G {1, ••• , m} let .y,- G T(x¡). For xGZ? define h(x) =
2™ , /¿(x) v,., and then let f(x) = l/2{/z(x) - h(- x)}.  For convenience let r¡ = rx¡.

Let xED. Choose kE{l, •••, m} such that ||x-xfc||<rfc and /'l<rfc whenever
\\x - x¡\\<r¡. Then if ||x - x,|| < r¡ for some i€={l, •••,»!}, we have ||x,-xfc||<
2rfc, so T(x¡) C Ne(T(xk)), and thus we may choose ZfG^Xj) with Ify -yt\\ < e.
Let z = 2m=lfi(x)zi; then z6%) and  ||fc(x)-z||<e.

Now -xk = x¡ for some /G {1, •••,»!}, and x, plays the same role with respect
to -x as xft does with respect to x; namely, \\-x-x¡\\<r¡, and if ||—jc —jcf-|| <r¡,
then r¡<r¡. Thus we may select wET(x¡) suchthat \\h(-x)-w\\<e. It follows
that Vi{z- w} G T(xk), ||x -xk\\ < e, and \]f(x) - H{z - w}|| < e.    Q. E. D.

The previous lemma has been established by Cellina(4) and by CP. Pixley (in
a paper to appear) without the oddness condition on the mapping. We followed
a variant of the argument of Pixley.

Before we establish a theorem concerning the degree of an odd ultimately
compact mapping, we first obtain, by using Lemma 2.4 and some results of Ma
[22], a corresponding new result for compact vector fields defined on symmetric,
but not necessarily convex, neighborhoods of the origin.

Proposition 2.2. Let 0 C X be a symmetric neighborhood of 0 G X. Assume that
S: 0—*K(X) is an odd multivalued compact mapping such that x G S(x) for
x G 30. Then

degc(Z- .S,0,O)   is odd.

Proof. We first show that {x - 5(x)} n X{-x - S(-x)) = 0 for x G 30 and
X > 0. If this were not the case, then one could find x G 30, y G 5(x),
w G S(-x), and X > 0, with x - y = \(-x - w), so

1 a      ,      x

(4) The authors were unable to find the paper containing his proof.
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But y, —w E S(x), and thus x E S(x), which is a contradiction.
Now, by Lemma 9.4 of [22], a result whose proof does not depend on the

convexity of O, we may find a compact multivalued mapping F, whose range lies
on a finite dimensional subspace Y of X, such that

F(x) = -F(-x)   ÍOTX E 3(0 n Y)

and such that

deg(7 - 5,0,0) = deg((7 - F) \Y,0 fl Y,0).

For x E O fl Y and / £ [0,1], let

H,(x) = (1/(1 + t))F(x) - (t/(\ + t))F(-x).

Now, if x E 3(0 D y), and x E 77,(x), then

x E (1/(1 + t))F(x) + (t/(\ + t))(-F(-x)) C F(x),

which is a contradiction. Thus, since 77([0,1] X ÖD Y) has compact closure,

deg((7 - F)Y, O fl 7,0) = deg(7 - ¡{F(x) - F(-x)}\Y, O n Y,0).

For convenience let T(x) = i{F(x) - F{-x)} for x E O n Y. Thus 7* is an odd
multivalued mapping with range which has compact closure and x E T(x) for
x E 3(0 n Y).

Since the fixed point set of T on O n y is bounded, we may consider an open,
bounded, symmetric neighborhood of 0, call it V, such that the fixed point set is
contained in V. By the additivity over domain of the topological degree of [22],
we see that

deg(7 - T,0 fl Y,0) = deg(7 - T,0 n V,0).
To prove that this degree is odd, it will suffice to show that there exists a single-

valued odd mapping/defined on V fl O such that

x E tf(x) + (1 - t)T(x)   for all x E 3(0 fl V), 0 < í < 1.
By Lemma 2.3, for each integer n, we may find a single-valued odd mapping

f„: O (1 K -» y, which is a l//i-approximation of T. We claim that for some n
we have

x E (1 - /)/„(*) + í7Xjc)   for all x S 3(0 fl K), 0 < t < 1.
Indeed, if this were not the case, then one could find {x„} C 3(0 fl V),

{t„) C [0,1], and wn E T(x„) for each n, with xn = (1 - t„)f„(x„) + t„w„ for each
n. By compactness, we may assume that <f„> -» i0, <w„> -+ w0, and (fn(xn)}
-* y0. Then <x„) -» x0 and, by the u.s.c. and compactness of 7", w0 g T^o). We
now show that y0 E T(x0). Indeed, let e > 0. Choose 8 > 0 such that if
IU - xo\\ < 5» then T(x) C Are/2(7'(x0)). Let m be an integer such that \/m
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< min{ô/2,e/2} and ||x„ - x0|| < 8/2 if n > m. Let n > m. Then one may
choose yn G 0 n V such that ||x„ - yH\\ < \/n < 672, and z„ G r(.y„) with
Ik -j£(*„)ll < V" < e/2. Then ||Ä - x0||< 5, and thus z„ G T(yn)
C Are/2(7(x0)). Thus ü(x„) G Ne(T(x0)) for all n > m, and, since T(x0) is
compact, y0 G 7(x0). Consequently x0 = (1 — t0)y0 + 'owo e T(x0) and, since
x0 G 3(0 D V), we have a contradiction.   Q.E.D.

Theorem 2.4. Let Dbea symmetric neighborhood of the origin and T: D -> K(X )
be an odd ultimately compact mapping such that x G T(x) for all x G 3Z). Then
deg(Z — T, D, 0) is an odd integer.

Proof. Since 0 G T(0) we see that K D Z) # 0. Let ^ be a retraction of Ar
onto A". We note that A" is a symmetric set, and define p(x) = \{p(x) — p(—x)}
for x G A". Then p is an odd retraction of X onto A. It is easy to see that p_1 (D)
is symmetric. The mapping Tp is an odd mapping on p~l(D). Thus, by
Proposition 2.2, deg(Z - rp,p_1(Z)),0) is an odd integer.   Q.E.D.

3. Fixed point theorems for various classes of multivalued ultimately compact
mappings. In this section we will utilize the degree theory presented in the
previous section to obtain new, as well as some known, fixed point theorems for
various classes of multivalued mappings.

It is clear that every compact mapping is ultimately compact. Consequently,
the degree theory developed in [4], [13], [22] for multivalued compact vector fields
is subsumed by our degree theory for multivalued ultimately compact vector
fields. We specifically remark that all of the fixed point theorems proven in this
section yield, as special cases, fixed point theorems for multivalued compact
mappings.

As a further example of a family of ultimately compact mappings we consider
the class of generalized condensing mappings, which has been introduced in [21]
in a slightly different fashion for the case of single-valued mappings.

Definition 3.1. Let T: D C X -> K(X) be u.s.c. Then T is called generalized
condensing provided that whenever ß C D is such that T(ti) C ß and
£2\c6" T(0l) is relatively compact, then fi is relatively compact.

The following lemma shows that one may deduce the degree theory and fixed
point results for this class of mappings from our previous results. For single-
valued maps similar results were obtained in [32], [21].

Lemma 3.1. Let D be a convex, closed subset of X, and let T: D -» K(D) be
generalized condensing. Then T is ultimately compact.

Proof. We know that A = K(T,D) C D and, since cô T(K D D) = A, we
see that T(K) C K and A\ cö T(K) = 0. Thus A is relatively compact, and
therefore compact since it is closed. Also, T(K) C K, so that T(K) is relatively
compact.   Q.E.D.

Theorem 3.1. Let D C X be convex and open and let T: D -* A"(ZT )   be
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10 W. V. PETRYSHYN AND P. M. FITZPATRICK

ultimately compact with K = K(T,D) ^ 0. Then T has a fixed point in D, and if
no fixed point of T lies in 37), then D il A =£ 0 and deg(7 - T, D, 0) = 1.

Proof. Assume that T has no fixed points on 37). Then D fl K ¥= 0. Indeed,
assume K C 37). Let Kbe a convex neighborhood of the origin such that K C V
and let p be a retraction of X onto K. Consider the mapping Tp, restricted to FT
It is clear that T(p(V)) C K C V, so that Tp has no fixed points on 3K The
mapping Tp \¡? is compact and satisfies the Leray-Schauder boundary conditions.
It follows from [22] that Tp has a fixed point in V. Thus there exists an x E V
with x E T(p(x)). Then x E K, so that x E T(x). This contradicts the fact that
T has no fixed points on 37). Thus A fl D ¥= 0, so we may choose x0 E K fl 7).

Let p be a retraction of X onto A and for each x E p~'(D) and t E [0,1] let
Ft(x) = ?r(p(x)) + (1 - 0*o-

If x E 3p-'(7)) and 0 < / < 1 with x E tT(p(x)) + (1 - f)*o> then, since
T(p(x)) C AT and K is convex, x E K and thus p(x) = x. It follows that x E 37)
and x = tz + (1 - t)xQ with x0 E 7) and z E D; this is a contradiction.

It is clear that F([0,1] X p~](D)) is relatively compact, so that

deg(7- T,D,0) = degc(7- x0,p-'(7)),0) = 1.   Q.E.D.

Corollary 3.1. Let D C X be convex and open. Assume T: D—* K(D) is
ultimately compact, and such that there exists a nonempty subset A of D with
co T(A) D A. Then the conclusions of Theorem 3.1 hold.

Proof. In view of Theorem 3.1, it suffices to show that A = K(T,~D) ¥= 0.
Recalling the construction of K, we will show that A C Ka, for each ordinal a.
Now A0 = co T(D) D co T(A) D A. Assume that tj is an ordinal such that
A C Kß when /J < tj. If tj is of the first kind, then A, = cö T(KV_X) D cö T(A)
D A, by the induction hypotheses. If tj is of the second kind, then since A C Kß
for ß < a, A C Dß^Kß = Kv   Q.E.D.

Corollary 3.2. Let D be an open convex subset of X. Assume that T: D —» K(D)
is ultimately compact and that there exists a relatively compact subset A of D with
T(A) C A. Then the conclusions of Theorem 3.1 hold.

Proof. Let C0 =T(I)nÄand if C„ has been defined let C„+1 - T(C„) fl I.
Then C„+1 C C„ for each n, each Cn is compact, so fXL|C„ = Cœ ¥= 0. The
compactness of A~ ensures that Cx C T(CX). Thus cö T(CX) D Cw, and the
result follows from the previous corollary.   Q.E.D.

Corollary 33. Let D be an open convex subset of X, and let T: D —» K(D) be a
generalized condensing mapping. Then the conclusion of Theorem 3.1 holds.

Proof. Let x0 E D. Defined = \J%L0Tn(xQ), where T°(x0) = x0 and Tn+l(x0)
= T(T"(x0)). Then T(A) C A and A\co T(A)C {x0}. Thus, by the definition of
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generalized condensing, A is relatively compact. Our result now follows from
Corollary 3.2.   Q.E.D.

In order to show that our degree is applicable to the study of multivalued
contractions, A;-set-contractions, A;-ball-contractions, and condensing mappings,
which have recently been extensively studied, we first introduce the following
notions.

Definition 3.2. Let C be a lattice with a minimal element which we denote by
zero, 0. A mapping $: 2X —» C is called a measure of noncompactness if for any
D C X and B C X it satisfies the following properties:

(3.1) 0(co D) = ®(D).
(3.2) <fr(D) = 0 if and only if D is precompact.
(3.3) $(Z) U B) = max{<D(Z>),<P(Ä)}.
It follows immediately that if D C B, then $(Z)) < $(B).
In analogy with the single-valued case [32], we now define in terms of $ the

generalized notion of a condensing mapping.
Definition 33. Let O be a measure of noncompactness in X and let T: D

-» A"(A") be u.s.c. Then T is said to be ^-condensing if $(r(fi)) £ <P(ß) for all
fi C D such that ß is not relatively compact. In case C is also linearly ordered,
the above condition reduces to the requirement that <p(7n(ñ)) < <P(ß) for each
Si Ci) which is not relatively compact.

We now show that the degree theory developed in §2 is applicable to this
general class of <P-condensing mappings.

Lemma 3.2. Let D C X be closed and let T: D -> A(A") be ^-condensing. If
either (a) D is convex and T(D) C D or (b) T: D -> CA(A"), then T is ultimately
compact.

Proof. Let A = K(T,D). If K = 0, there is nothing to prove. Assume that
K ¥= 0. We first consider the case (a): T(D) C D. Then co T(K) = K. There-
fore, since $(A) = $(œ(T(K))) = <P(7XA)), A is relatively compact. Thus K,
being closed, is compact and, since T(K) C K, T(K) is relatively compact.

Now assume T(x) is compact for each x G D. Since co T(D D A") = A", we
have

4>(T(Z) n A")) = <P(cö(T(Z) n A))) = <P(A) > $(Z) n K)
and hence Z) n A is relatively compact. Thus D n A is compact and, since T is
u.s.c. and compact-valued, r(Z) n A) is compact.   Q.E.D.

Let us note that every ^-condensing mapping is generalized condensing and
that if T: D -» A(A" ) is ^-condensing then every precompact subset of D is
relatively compact.

For later use we need the following

Lemma 3.3. Let D C X be open and suppose H: [0,l]x5-> A(A") is «.i.e. and
such that for each ñ C D, with fl not compact, we have <P(ZZ([0,1] X £2)) £ $(ß).
Then, if K = K(H, [0,1] X D ) and D n A ¥= 0, Z/([0,1] X Z) n A) is compact if
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12 W. V. PETRYSHYN AND P. M. FITZPATRICK

either (a) D is convex and 77 ([0,1] X D ) C D, or (b) 77(r,x) E CK(X) for each
x ED and t E [0,1].

Proof. We know that co 77([0,1] X D fl A") = K and therefore

$(77([0,1] X D fl A")) = $(co 77([0,1] X D fl A")) = $(A") > $(# fl A)

so that 7) fl K is relatively compact. Thus 7) fl A is compact. If (a) holds,
then K = TJ fl K and so 77 ([0,1] X D fl 7C) is compact. If (b) holds, then
77 is a u.s.c, has compact values, and [0,1] X D fl A" is compact; hence,
77([0,1] X D fl A") is compact.   Q.E.D.

As we have just shown, if T: D -* K(X ) is «^-condensing and either T(x) is
compact for each x E D or T(D) C D, then 7* is ultimately compact. A trivial
example shows that it is not always true that a d)-condensing mapping is
ultimately compact; let x0 E X, let 7) = {x0}, and let 7Xx0) = X. Then T is 4>-
condensing with respect to any measure of noncompactness, K(T,D) = X, and
T(D fl K(T,D)) = X.

Theorem 3.2. Let D C X be a neighborhood of the origin, and let T: TJ
-* CK(X ) be a ^-condensing mapping such that

(3.4) {Ax} fl Ttx) = 0   if x E 37) and X > 1.
Then deg(7 - T,D,0) = 1 and thus T has a fixed point in D.

Proof. For x E D and t E [0,1] let F,(x) = tT(x). Let £2 C D. Suppose that
Q is not relatively compact and $(F([0,1] X Ö)) > <f>(H). Then, since F([0,1]
x £2) c cö(r(ß) U {0}), $(F([0,1] X ß)) < *(cö(r(Q) U {0})) = *(r(Q)).
Hence 4>(7,(r2)) > d>(ß) and Í2 is not relatively compact, which is a contradic-
tion. It follows from Lemma 3.3 that T^O, 1] X TJ fl A") is compact for K
= A"(F,[0, l]x7J). Our hypothesis (3.4) clearly implies that x E 7;(x) for
x g 37) and t E [0,1]. Thus, by Theorem 2.2, we have

deg(7 - T,D,0) = deg(7,7),0) = 1.   Q.E.D.

Corollary 3.4. Let D be a convex neighborhood of the origin, and assume
T:D-* CK(X) is ^-condensing and such that T(dD) C D. Then T has a fixed
point.

Proof. If x E T(x) for some x E 37), the result is proven. Assume that
{Ax} fl T(x) ^ 0 for x E 3D and A > 1. Then Ax g D and consequently
x g D, a contradiction. Thus T satisfies (3.4) and so it has a fixed point.   Q.E.D.

Remark 3.1. It follows from Theorem 3.1 and Lemma 3.2 that if in Corollary
3.4 we assume that T(D) C D, then one need not require that T(x) be compact
for each x in 7).

Remark 3.2. In case A1 is a Banach space and T is single-valued, Theorem 3.2
was proven in Petryshyn [28] and some of its special cases in [9], [25], [33], while
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for a multivalued compact mapping with D = B(0,r) it was proven in Granas
[14]. For a multivalued compact mapping acting in a general A, the theorem was
proven in [22].

In the case that the lattice C in Definition 3.3 has the property that for each
c G C and X G R with X > 0 there is defined an element Xc E C with 1 • c = c,
the measure of noncompactness <P: 2X —* C will be called positively homogeneous
if for each ß C X and X G R with X ¥= 0 we have $(Xß) = |X|$(ß).

Theorem 33. Let D C X be a symmetric neighborhood of the origin. Let
T: D -* CK(X ) be ^-condensing with respect to a positively homogeneous measure
of noncompactness $ and such that

(3.5) {x - T(x)} n A{-x - T(-x)} = 0  for x G 3Z> and 0 < A < 1.

Then deg(Z — T,D,0) is an odd integer, so that T has a fixed point.

Proof. For x G D and / G [0,1], we define

F,(x) = (1/(1 + t))T(x) - (t/(\ + t))T(-x).

Suppose ß C D is such that <E>(ß) < $(F([0,1] X ß)). Now F([0,1] X ß)
C cö-{7Xß) U (-7(-ß))}, so that $(F([0,1] X ß)) < max{0(r(ß)),
$(r(-ß))). But <D(ß) = $(ß U (-ß))andmax{4>(r(ß)),4)(r(-ß))} < $(r(ß
U (-ß))). Hence we have 3>(ß U (-ß)) < $(T(ti U (-ß))), and so ß U (-ß)
is relatively compact, which implies that ß is relatively compact. Thus, by Lemma
3.3, F([0,1] X A" n D) is compact, where K = K(F,[0,1] X D). We now show
that x G E(x) for x G 3D, 0 < / < 1. Indeed, if x G 3Z) and x G (1/(1
+ t))T(x) - (t/(\ + t))T(-x) for some t E [0,1], then one would have

mx + ttix e rrtT{x) - rh n~x)
and so we could choose z G T(x) and w G T(-x) with x - z = t(-x — w),
which is a contradiction of our hypothesis. From the homotopy invariance
theorem and the fact that \{T(x) - T(-x)) is odd, it follows from Theorem 2.4
that deg(Z - T, D, 0) is an odd integer.   Q.E.D.

Remark 33. In case T is single-valued the above result appears in [32], [33],
while for a compact multivalued map it was proven in [14] for X a Banach space
and D = B(0, r) and in [22] for a convex D and general X.

We shall now define the class of so-called ^-^-contractive mappings which, as
we shall see later, contains fc-set-contractions, /c-ball-contractions, and other
mappings as its subclasses, and which have been recently widely studied (see [25],
[30], [33]).

Definition 3.4. Let $: 2X -* C be a measure of noncompactness, where we
additionally assume that C is such that for each c E C and X E R with X > 0
there is defined an element Xc G C. A u.s.c. mapping T: D -* CK(X ) is called a
£-d>contraction if <P(7(ß)) < A:0(ß) for each ß C D and some Â: > 0.
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14 W. V. PETRYSHYN AND P. M. FITZPATRICK

Lemma 3.4. Let 4>: 2X -» R+ = {t E R, t > 0} U {oo} be a measure of non-
compactness and suppose that T: D —> CK(X) is a /(-^-contraction, 0 < k < 1,
with d>(r(7))) g R. Then T is ^-condensing if either X is quasi-complete or D is
complete.

Proof. Assume that fil C 7) is not relatively compact and that $(T(Q))
> d>(J2). Then, since either D is complete or X is quasi-complete, d>(£2) ̂ 0, and
since MJ(D)) E R we have 4>(S2) E R. But *$(ñ) > *(r(fl)) > $(Q) and
0 < A: < 1. This is a contradiction and hence T is ^-condensing.

Remark 3.4. In view of Lemma 3.4, Theorems 3.2 and 3.3 are valid for /c-d>-
contractions, 0 < k < 1, when X is either quasi-complete or D is complete and
when d>: 2X -* A+ is a measure of noncompactness. Note that d> is not assumed
to be positively homogeneous.

Theorem 3.4. Let 4>: 2X —» A+ èea positively homogeneous measure of noncom-
pactness. Let D C X be a neighborhood of the origin and assume that either D is
complete or that X is quasi-complete. Let T: D -* CK(X) be a \-$-contraction
such that T(D) is bounded in X and <&(T(D)) E R. Furthermore, assume that
whenever {x„} C 7) andyn E T(x„)for each n are such that x„ — yn —* 0 as n -* oo,
then there is an x in D with x E T(x). Then, if T satisfies (3.4), T has a fixed point.

Proof. Let {A„} C (0,1) with <A„> -> 1. For each n let T„ = Xn T. Then, since
<P is positively homogeneous, T„ is a AM-$-contraction with <ï>(T„(D))E R and
thus <í>-condensing, by Lemma 3.4, with T„(x) compact for each x E 7). We see
that T„ satisfies (3.4). Hence, by Theorem 3.2, there exists x„ E T„(x„) for each n.
Thus we may select y„ E 7Xx„) such that <x„ - X„yn} — 0 and, since {yn} is
bounded and <A„> -* 1, <x„ — >>„> = <A„ - l)y„ -» 0 as n -* oo. Hence, by our
condition, there is an x E 2) such that x g T(x), i.e., T has a fixed point.
Q.E.D.

Remark 3.5. In case T is single-valued, X a Banach space, and <E> is the set- or ball-
measure of noncompactness (see the definition below), Theorem 3.4 reduces to
the fixed point theorem of Petryshyn [29].

The notion of measure of noncompactness defined by properties (3.1), (3.2),
and (3.3) first appeared in Sadovskiï [32], who extracted this concept from the set-
measure of noncompactness introduced by Kuratowski [17] and the ball-measure
of noncompactness introduced in [12]. The two latter concepts were defined in
metric spaces and the set C was the directed set R+ = {/• E R | r > 0} U {oo},
with the usual ordering. We will consider these concepts for separated locally
convex spaces.

Assume {pa \ a E A) is a family of seminorms which defines the topology on
A'. Given a E A and Bel, we define Xa(^) = inf{e > 0 I there exists
{x,,x2,...,x„} C X with fi C U!-i{y\pa(xt-y) < e}}, and y„(8) = inf{rf
> 0 | ñ can be contained in the union of a finite number of sets, each of which
has /?a-diameter less that e}.
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We now let C = {</>: A -» R+) and, if <p, ̂ e C, we define <f> < ^ if </>(«)
< t//(a) for all a E A; if X E R, X > 0, and <J> G C we define X<t> by (\<p)(a)
= A<i>(a) for a G /I. The zero element of C is defined by 0(a) = 0 for all a G A,
and (max{<t>,xf})(a) = max{o>(a),t//(a)} for all a E A. Now define x: 2X -> C by
X(ß)(«) = X«(ß) and y: 2* -> C by y(ß)(a) = ya(ß) for each a E A and
ß C A".

In a locally convex topological vector space the x-measure of noncompactness
was first introduced by Sadovskiî [32], while we introduce the y-measure of
noncompactness here, since the latter is more convenient for studying Lipschitz-
type maps defined on proper subsets of X. Both of these measures are natural
extensions of notions studied in Banach and metric spaces in [17], [12], [26], [6],
and the proof that they satisfy (3.1), (3.2) and (3.3) follows in the same manner
as in the Banach space case. We note that a set D C X is bounded in the
topological vector space sense if and only if ya(D) or xaC^) are finite for each
a G A, while D is precompact if and only if ya(Z>) = xÂD) = 0 for each
a E A. Furthermore, x(Aß) = |A|x(ß) and x(ßi + ß2) < x(ßi) + XÄ) for all
X E R and ßi and ß2 in X. Similar properties also hold for the measure y.

We note that a mapping T: D -» A(A" ) is x-eondensing provided that whenever
ß C D, with ß not relatively compact, there is an a G A such that (x(7(ß)))(<*)
< (x(ß))(a). Similarly for y-condensing.

Lemma 3.5. Let T: D ~* CK(X) be a k-$-contraction, 0 < k < 1, where either
$ = X or $ = y. Then, if T(D) is bounded in the topological vector space sense, T
is ^-condensing provided that either X is quasi-complete or D is complete.

Proof. Let ß C D with ß not relatively compact. Assume that i>(T'(ß))
> $(ß). Since ß is not relatively compact, and hence not precompact since D is
complete or X is quasi-complete, we may choose a G A with ($(ß))(a) > 0.
Now ($(ß))(a) < $(T(Q))(a) < oo, since T(D) is bounded. Furthermore, we
have 0 < (<P(ß))(a) < 0(7(ß))(a) < /c(<P(ß))(a) < oo, and this is clearly a
contradiction. Q.E.D.

We remark that when X is metrizable with metric d, then we may, as in [17],
[12], define a set-measure of noncompactness yd and a ball-measure of noncom-
pactness Xd which assume values in R+ and which are known to possess most
properties of y and x except for the homogeneity property. We add in passing
that when X is metrizable, then we see from Lemma 3.4 that if T: D -* CA(A")
is either Xd-°r y¿-&-contraction and T(D) is bounded in the metric, then T is
condensing when 0 < k < 1.

In view of Lemmas 3.4 and 3.5, Theorems 3.2 and 3.3 are valid for k-$-
contractions, 0 < k < 1, when either X is quasi-complete or D is complete,
T(D) is bounded in the appropriate sense, and O is either y, x, Yd, or Xd-
Furthermore, Theorem 3.4 is also valid for the case when d> is either y or x-

We add in passing that besides the set- and ball-measures of noncompactness
defined on 2X, where A" is a metric space, one can also define for certain spaces
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other measures of noncompactness whose ranges lie in R+. We state two
examples (for others see [32]).

If X = C([a,b]) we define <E>: 2X -> R+ as follows: $(£2) = +oo if £2 C X is
unbounded, while if £2 is bounded we let

$(£2) - lim(sup{max{|/(5) -/(/)| | t,s E [a,b],\s - t\ < B}}\

If X = Lp([a,b]) we define a>: 2X -» Ä+ as follows: 4>(£2) = +oo if £2 is
unbounded, while if £2 is bounded we let

The former measures of noncompactness have been studied by Sadovskiï,
Nussbaum, and others.

In what follows we say that F: X -» K(X ) is homogeneous if F(tx) = tF(x) for
x E A1 and í E 7?.

We now extend to condensing mappings the result of Lasota and Opial [20]
obtained by them for multivalued compact mappings.

Theorem 3.5. Let X be a Banach space and let G, F: X -» K(X ) be condensing
with respect to 4>, where 4> = x¿ or d> = yd with d = \\ \\, on each bounded subset
ofX. Assume also that F is homogeneous and that x E F(x) only if x = 0. Suppose
that there exists an a > 0 such that G(x) C F(x) + B(0, a) for each x E X. Then
G has a fixed point.

Proof. We may choose ß > 0 such that ||x - y\\ > ß if ||x|| = 1 and y
E F(x). Indeed, if this were not the case, then one could select {x„} C 35(0,1)
for each n with \\x„ — y„\\ < \/n for some/, g F(x„).

Now,   {x„} C {y„} + {x„-yn}   and   thus   $({x„}) < a>(U}) + <D({x„ - y„})
< ®({y„}) < $({x„}), unless {x„} is relatively compact. Thus some subsequence
<x„4> -* x0 g dB and x0 g F(x0), which is a contradiction. We choose s E R
with sß > a. Then, if ||x|| = 5 and>> g F(x), we have

II* -.HI = s\\x/s -y/s\\ > sß> a,

since y/s E F(x/s).
Define the homotopy 77: [0,1] X B(0,s) -» K(X) by

H,(x) = F(x) + t(G(x) - F(x)) = (1 - t)F(x) + tG(x)

for 0 < t < 1, x g 7J(0,í). Now, if £2 C 7J(0,s), we see that 4>(77([0,1] X £2))
< d>(co(F(£2) U G(£2))) < i>(£2), unless £2 is compact. Thus, by Lemma 3.3,
77([0,1] X D fl A) is compact, where K = A(77,[0,1] X D). Since {t(y - z) \ 0
<t<\,yE G(x),z E F(x)} C 5(0, a), while {x - z\x E SB(0,s),z E F(x)]
fl 7J(0,a) = 0, we see that x E 77,(x) for x g dB(0,s) and t E [0,1]. Thus
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deg(Z - F,B(0,s),0) = deg(Z - G,B(0,s),0) and, since F is odd, the left-hand
degree is nonzero, so G has a fixed point.   Q.E.D.

We now briefly consider fixed point results for ultimately compact mappings
defined on sets which need not have nonnull interiors.

Theorem 3.6. Let D C X be closed and convex with T: D -* K(X ) ultimately
compact and such that T(D) C D. Then, if K(T,D) ¥= 0, T has a fixed point.

Proof. Let F be a convex neighborhood of the origin such that V D K, and let
p be a retraction of X onto K. Since K(Tp, V) D K(T,D) ¥= 0, it follows from
Theorem 3.1 that Tp has a fixed point in V, so T has a fixed point in D.   Q.E.D.

Corollary 3.5. Let D C X be closed and convex with T: D —» K(X ) generalized
condensing and such that T(D) C D. Then T has a fixed point.

Proof. T is ultimately compact. By the arguments used in the proofs of
Corollaries 3.1, 3.2, and 3.3, we see that K = K(T, D) ¥= 0.   Q.E.D.

Remark 3.6. Since every ^-condensing mapping is generalized condensing,
and, in a quasi-complete space, every &-<I>-contraction, with 0 < k < 1, i>: 2X
-» R+ and with <P(7YZ))) E R is <î>-condensing, a result corresponding to the
above corollary is valid for these mappings. It is also clear that a result
corresponding to Theorem 3.4 for l-i>-contractions is valid for self-mappings
defined on a closed convex set.

Remark 3.7. After the results of the paper were obtained we received a reprint
[31] from S. Reich in which Corollary 3.5 has been obtained for x-condensing
mappings satisfying the so-called inward condition, by use of different arguments.

Remark 3.8. Under the additional condition that T(D) is bounded, Corollary
3.5 was established for x-condensing mappings in [15]. In case T is single-valued,
Theorem 3.6 and Corollary 3.5 were first established in Sadovskiî [32].

We recall that if A" is a metric space with metric d, then on CA(A") we may
define a metric, the Hausdorff metric, denoted by d*, and defined by

d*(A,B) = max< sup inf d(x,y),sup inf d(x,y) >.

We shall call a mapping T: D C X -» CA(A" ) contractive if X has a metric d and
if there exists a A: G (0,1) such that

d*(T(x), T(y)) < kd(x,y)   for all x, y G D;

the mapping will be called nonexpansive if for each x, y E D we have

d*(T(x),T(y)) < d(x,y).

Finally, the mapping Twill be called completely continuous if whenever {x„} C D,
<x„> -» x0 G D (-* denotes convergence in the weak topology), and% G T(x„)
for all n, then (y„) has a subsequence which converges strongly to>>0 G 7(x0).
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18 W. V. PETRYSHYN AND P. M. FITZPATRICK

We shall say that the Banach space X satisfies the condition of Opial (see [27])
if whenever {x„} C X and <x„> -» x0, then lim inf ||x„ - x|| > lim inf ||x„ - x0||
for all x ¥= x0. All uniformly convex Banach spaces with weakly continuous
duality mappings have this property; in particular, Hubert spaces and lp spaces
with p > 1 have this property.

We recall that a mapping S: D C X -> K(X ) is called demiclosed if whenever
{x„} C D and <x„> -» x0 with y„ E S(xn) for each n such that <%> ->j>o> then
y0 E S(x0).

Lemma 3.6. Let X be a Fréchet space. Let D C X be bounded, closed,and convex.
Assume that T: D -* CK(D) is such that there exists a k E (0,1) with

d*(T(x),T(y)) < kd(x,y)   for all x,y E D.

Then T is ultimately compact and K = K(T, D) ¥= 0.

Proof. Let C0 = T(D), and if C„ has been defined let C„+{ = T(Cn). Each C„
is nonnull, closed, and C„+1 C C„ C D for each n. Let e > 0 be such that
0 < k' = k + e < I.

We claim that if Cn can be covered by a finite number of balls of radius r,
whose centers lie in Cn, then Cn+1 can be covered by a finite number of balls of
radius k'r whose centers lie in C„+1. Indeed, assume that {x,,... ,x„,} C C„ are
such that C„ C \J?=\B(x¡,r). Since each 7*(x,) is compact, we may, for each i,
select [yj}]i'i C T(x¡) and such that T(x¡) C \JJ^i)B(y),re/2). Then y)
E C„+„ for ; E {1,... ,m\j E {1,... ,m(i)\ Now, let>> E T(C„) = C„+1. Then
one can find z g F(C„) with d(z,y) < re/2, and z g T(x) for some x g Cn.
Now we can choose i E {\,... ,m) with i/(x,x,) < r, and thus some w g T(x¡)
with ¿(hsz) < kr. Select,/' g {1,... ,m(i)} such that d(w,y'j) < re/2. Then it is
clear that d(y,yj) < k'r. Thus C„+i C \JijB(yiJ,k'r), and the claim is justified.

Let C0 be covered by a finite number of balls of radius ß. Then, if rn — (k')"ß,
we see that C„ can be covered by a finite number of balls of radius rn. Now, letting
z„ E C„ for each n, it is clear that we may choose a subsequence of <z„) which
converges to some z0. Then z0 E C„, for each «, and so Cx = n"=oQ ¥= 0- It
is clear that T(CX) C C«,. Moreover, T(CX) = Cx. Indeed, let x0 g CM. Then
for each n one may select yn E Cn and x„ g T(y„) with í/(x„,x0) < \/n. As
before, some subsequence of (>>„> converges to some element^ g Cx and, by
u.s.c. of T, x„ E T(y0). Thus 7(0«,) = Cœ; since Cx C A(F,7)), we have
K(T,D)*0.

We now show that K is compact, and thus T is ultimately compact. If A is not
compact, then a0 = inf {a > 0 | A can be covered by a finite number of balls of
radius a, centered in K) > 0. Let e > 0 be such that k'(a0 + e) + e < a0, and
choose {x,... ,xm) C K, with A C U,1i7?(x,, a0 + e). By the argument used at
the beginning of this proof, we may cover T(K) by a finite number of balls of
radius ^'(«o + £)> w'th centers in T(K) C A. Since A is convex we can cover
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co T(K) = A" by a finite number of balls, centered in K, of radius k'(a0 + e) + e.
This contradicts the definition of aQ. Thus K is compact.   Q.E.D.

In view of Lemma 3.6, Theorem 3.6 implies the validity of the following two
known fixed point theorems which we mention here as an indication of the
generality of Theorem 3.6.

Corollary 3.6. Let X and D be as in Lemma 3.6. If T: D -> CK(D) is a
multivalued contractive mapping, then T has a fixed point in D.

Corollary 3.7. Let X be a Banach space which satisfies the condition of Opial. Let
D be a convex weakly compact subset of X, with T: D —» CK(D) nonexpansive.
Then T has a fixed point.

Proof. Let z0 G D and let X„ = 1 - \/n for each n. Define T„: D -* CK(D) by
T„(x) = XnT(x) + (1 - A„)z0. Then T„ satisfies the hypothesis of Corollary 3.6
and thus there is an x„ E D with x„ G T„(x„). Now we may assume <x„> -» x0
G D, and letting xn = Xny„ + (1 - A„)z0, where yn E T(x„), we have <x„ - yn)
-* 0. But, as has been shown in [19], I — T is demiclosed and thus T has a fixed
point.   Q.E.D.

Lemma 3.7. Let X be a Fréchet space. Assume T: X -> CK(X ) is such that there
isak G (0,1) with

d*(T(x),T(y)) < kd(x,y)   for all x,y G X.

Then T is k-ball-contraction on bounded sets in X.

Proof. Let ß C X be bounded with x(ß) = r > 0. Let e > 0. Choose
{x!,...,xB} C X with ß c \J"=xB(x¡,r + e). For each /' G {\,...,n} choose
{yj}fi\ with T(x) C \JJ=l^B(yi,e). Then it is clear that

T(ß)C U?=ÁU*\B(y¡,k(r + e) + e)}.
Thus X(T(tt)) < k(r + e) + e. Since e was arbitrary x(T(ß)) < *x(ß)-   Q.E.D.

Remark 3.9. For a multivalued contractive mapping T, with contraction
constant k < 1 defined on a proper subset D of X, we are unable to show that T
is condensing with respect to x- In fact, such a result has not been proven for
single-valued T (it seems to us that the proof of Theorem 2.3 in [32] is in error
since there is no guarantee that the centers of the balls defining x(D) lie in D).
However, it is not difficult to see that contractions (in fact, the slightly more
general type of contractions defined in [32] by means of seminorms on A") are
condensing with respect to y if either T is single-valued or k < \.

It follows that if S: A"-> CA(A") is contractive and C: D -* CA(A") is
compact, where D is closed and bounded, then T = S + C: D -* CK(X ) is a k-
ball-contraction providing X is a Banach space and || || = d.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



20 W. V. PETRYSHYN AND P. M. FITZPATRICK

Corollary 3.8. Let X be a Banach space with D a bounded (in the metric)
neighborhood ofOEX. Let S: X -* CK(X) be a contraction and C: Z> -> CK(X)
compact. Then, if T = S + C satisfies either (3.4) or (3.5) on 37), T has a fixed
point.

Proof. From our previous results we see that T: TJ -» CAXA') is ^condensing.
The result now follows from Theorems 3.1 and 3.2.   Q.E.D.

Remark 3.10. In case A' is a Hilbert space and D = B(x0, r), then Corollary 3.8
remains valid for S only defined on D since, by composing S with the radial
retraction, which, by the results of de Figueiredo and Karlowitz [7] is nonexpan-
sive, we see that 5 can be extended to a contraction on all of X. We add in
passing that even in the latter case the above corollary appears to be new. In case
the contraction constant A: satisfies k < j, then one may show the contraction is
a 2/c-Yj-contraction, and thus condensing with respect to yd, even if it is defined
only on a proper subset of X. Using the preceding results and Theorem 3.2 we
obtain the following corollary which includes, as special cases, some known fixed
point theorems.

Corollary 3.9. Let X be a Banach space which satisfies the condition of Opial, and
suppose D C X is compact in the weak topology with 0 g int D. Assume C: D
—* CK(X) is completely continuous, and S: X —» CK(X) is nonexpansive. Let
T = S + C: D -* CK(X) and assume T satisfies (3.4) on 37). Then T has a fixed
point.

Proof. For each n let Tn = A„ S + A„ C, where A„ = 1 — \/n. Then T„ satisfies
the conditions of Corollary 3.8 and hence for each n there is some x„ E D with
x„ E 7^(x„). Choosey E S(xn) andz„ E C(x„) with x„ = X„(y„ + z„). We may
assume that <z„> -* z0, <x„) -» x0, and thus zQ E C(x0). Then <x„ — y„) -* z0
since <A„> -» 1 and, since 7 — 5 is demiclosed (see [19]), z0 E x0 — 5(x0). Thus
x0 g F(x0).   Q.E.D.

Remark 3.11. Corollary 3.6 is valid under weaker assumptions than those
presented. Markin [23], and Nadler [24] proved the result without the convexity
of 7) or the assumption that each T(x) is compact and convex. Under the
assumption that A' is a Hilbert space and T is defined on all of X, Corollary 3.7
was proven in Markin [23]. When A" is a reflexive Banach space having a strictly
convex dual and a weakly continuous duality mapping and T is defined on all of
X, Corollary 3.7 was obtained by Browder [3]. In its present form Corollary 3.7
was obtained by Lami Dozo [19]. When A' is a Banach space with a complete
projection scheme and C is single-valued, Corollary 3.9 was proven by Lami
Dozo [19]. When C = 0, Corollary 3.9 was proven by Reich [31].

4. Mapping theorems. This final section is devoted to the derivation of some
mapping theorems for condensing mappings and fc-<E>-contractions, which, in
particular, will include some known results for compact mappings.

To prove an invariance of domain theorem for perturbations of the identity by
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^-^-contractions and ^-condensing mappings we will need the following.

Lemma 4.1. Let X be metrizable with D C X open and let T: D -* CK(X ) be <i>-
condensing with respect to the measure of noncompactness $, where «J = x or Y-
Assume x G T(x) for x G 3 D. Then there exists a convex neighborhood of the
origin V such that if S: D —> CK(X ) is condensing with respect to <P and S(x)
C T(x) + Vfor allx E dD, then deg(Z - T,D,0) = deg(Z - S,D,0).

Proof. We can find a convex neighborhood F of 0 such that (x - T(x)] n V
= 0 if x G 3Z). Indeed, if this were not the case, then, letting {Wn \ n E N} be
a monotonically decreasing basis of convex neighborhoods of 0, one can select,
for each n, y„ G Wn, x„ G 3D, and z„ G T(x„) with yn = x„ - z„. Therefore

<*>({*„}) < *(U}) + *({*.})
and, since (yn) -» 0, <!>({yn}) = 0. Thus 3>({x„}) < <t(W) < WW)X and it
follows that {x„} is relatively compact. So assume <x„> -» x0. Then x0 G 3Z) and
x0 G 7(x0), which is a contradiction.

Let S: 27-» CA(A") be «^-condensing and such that 5(x) C Tïx) + F for each
x G 3Z). Define ZZ: [0,1] X D -» CA(A~) by ZZ,(x) = T(x) + /(5(x) - T(x))
= (1 - t)T(x) + tS(x). Then, arguing as in Theorem 3.5, we see that, if
K = K(H,[0,1] X D), then Z/([0,1] X D n A") is compact. If x G ZZ,(x) for
x G 3Z), then {x - T(x)} D (t(S(x) - T(x))) * 0, so that {x - T(x)} n F
t6 0, which is a contradiction. It follows that

deg(Z - S, D, 0) = deg(Z - T, D, 0).   Q.E.D.

Theorem 4.1. Assume X is a Banach space. Let D C X be open and let
T: D —> K(X) be k-<&-contractive, 0 < k < 1, with respect to a measure of
noncompactness «S, where <P = x or <3> = y. Assume that for each x E D there is a
convex, symmetric about x, neighborhood of x, Vx, with Vx C D and such that if
y, a G Vx and x - {y - w} G W, then (I - T)(y) n (I - T)(u) = 0. Then
(I - T)(D) is open.

Proof. Let >>0 G (Z - T)(D) and choose x0 G D such thatj>0 G (x0 - T(x0)).
Let f : VXo - x0 -^ A(A") be defined by f (x) = T(x + x„) + J0 - x0 for x G ^
- x0. Then f: Vx¡¡ - x0 -> K(X) is condensing and 0 G (I - f)(0). Let y, w
G J^o - x0 be such that -{y — w] G 3(^o - x0). Then j + x0 and w + x0
and in addition we have

*o - {(y + xo) - (w + x„)} G 3^o.

Therefore,

(Z - T)(y + xQ) n (I - T)(w + x0) = 0,

and hence
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(I - f)(y) H (I - T)(w) = 0.

From the preceding remarks it is clear that we may assume that x0 = y0 = 0.
We will now verify that deg(7 - T, Vo,0) ¥> 0. For x E % and t E [0,1], we

define 77,(x) = F(x/(1 + t)) - T(-tx/(\ + /)). We know, by a lemma of Nuss-
baum [26] for single-valued mappings which carries over to multivalued map-
pings, that for each £2 C % we have

$(77 ([0,1] X £2)) < /c$(£2),

and hence 77([0,1] X VQ fl A") is relatively compact, where 7C = A(77,[0,1]
XV0).To show that x E 77,(x) for x E 3^ and t E [0,1], we assume the
contrary. Then, for some x g dV0 and / g [0,1], we have

{w-<râ)}"{ra-^)}^«
and since x/(l + /) + ix/(l + t) E dV0, we obtain a contradiction. Since 77, is
odd, it follows from Theorems 2.2 and 2.4 that deg(7 - 77,, 1^,0) ¥= 0. It follows
from Theorem 2.1 and Lemma 4.1 that we can find a neighborhood W of the
origin with deg(7 - 770 -y, VQ,0) j= 0 for each>- E W. Thus W C (I - T)(V0).
Q.E.D.

Following Ma [22] we call a mapping S: D C X -» X locally nonopposite if for
each x0 g 7) there is a convex, symmetric neighborhood V0 of the origin such
that x0 + % C D and for all x g x0 + W0 we have A(x0 - x) E S(x) - S(x0)
for A > 0.

Theorem 4.2. Suppose X is metrizable. Let D C X be open and assume
I — T: D -» CK(X ) is locally nonopposite with T ^-condensing, where d> = y or x-
Then (I - T)(D) is open.

Proof. Let z E (I - T)(D) and choose x0 E 7) with z E x0 - T(x0). Let V0
be a neighborhood corresponding to x0 in the definition of locally nonopposite.
For x E x0 + V0 and t E [0,1] we let 77((x) = (1 - t)x0 + t{T(x) + z). It is
clear that x E 77, (x) for x E x0 + 3^, because 7 - T is locally nonopposite.
Furthermore, from Lemma 3.3 and Theorem 2.2 we have

deg(7 - T-z,x0 + V0,0) = deg(7 - x0,x0 + V0,0) = 1.

Thus, from Lemma 4.1, z E int(7 - T)(D).   Q.E.D.

Corollary 4.1. Assume X is a Banach space and T:X^>2X satisfies either the
hypothesis of Theorem 4.1 or of Theorem 4.2 with respect to a measure of
noncompactness d>, where 4> = x or y. Suppose also that when <x„> is a sequence in
X such that <x„ - y„) -» z, where yn E T(xn)for each n, then {x„} is bounded. Then

(I-T)(X) = X.
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Proof. Since (I - T)(X) is open, it will suffice to show that (Z - T)(X) is
closed. Indeed, let <z„> be a sequence such that {z„} C (Z — T)(X) and
<z„) -» z. For each n, let z„ G x„ — T(x„). Then <(x„) is bounded. Now,

«DM < ««z.}) + «$({x„ - zj) < nnxn))),
and therefore {xn} is relatively compact. Assuming <x„> -» x, it follows that
z G x - T(x). Thus (Z - T)(A") is closed.   Q.E.D.

Remark 4.1. It is easy to see that if in the previous corollary T(X) is assumed
to be bounded, then (I — T)_i(D) is bounded when D is precompact.

Remark 4.2. In case T is compact, an examination of our proofs show that
Lemma 4.1, Theorems 4.1 and 4.2, and Corollary 4.1 are valid without the
assumption that X is metrizable or complete.

Theorem 4.3. Let X be a Banach space, and let D C X be open and bounded.
Suppose T:D -*CK(X) is ^-condensing, where «5 = y or <I> = x- Assume also
thatdeg(I- T,D,0) ¥= 0. Then, for each y E X,y ¥= 0, there isa X >0 such that
Xy G x - T(x) for some x G 3Z).

Proof. Assume the conclusion is false. Then there is a y E X, y ¥= 0, such that
{Ay | A > 0} n (I- T)(dD) = 0. Let ß > 0, and define ZZ:[0,1]XZ>
-» CA(A") by H,(x) = T(x) + tßy. Then x G H,(x) for x G 3Z> and / G [0,1],
so that deg(Z — T — ßy,D,0) ¥= 0. Thus, there is some x G D with ßy G x
- T(x). Since ß > 0 was arbitrary we see that (I - T)(D) is unbounded, which
is a contradiction.   Q.E.D.

Corollary 4.2. Assume X is a Banach space. Let D be a bounded, symmetric
neighborhood of the origin in X, and assume M is a proper subspace of X. Then there
does not exist an odd ^-condensing mapping T: D —» CK(X) such that (I — T)(D)
C Af\{0}, where $ = y or <P = x-

Proof. The result follows immediately from the previous theorem and Theorem
2.4.   Q.E.D.

Corollary 43. Assume X is a Banach space. Let D be a bounded symmetric
neighborhood of the origin in X. Assume M is a proper subspace of X with
(I — T)(D)C M\{0}, where T is ^-condensing with <ï> = y or <P = x- Then, for
some x G 3D, (x - T(x)} n {-x - T(-x)} ¥= 0.

Proof. Assume the conclusion is false. Then, letting S(x) = ^(x) — \T(—x)
for x G D, we see that 5 is <J>-condensing, 5 is odd, and (I — S)(D ) C M — {0}.
This contradicts the previous corollary.   Q.E.D.

Remark 43. Theorems 4.1, 4.2 and Corollary 4.1 have been established in [22]
for T compact, without the assumption of metrizability on X. A result related to
Theorem 4.3 has been obtained in [22], where X is assumed to be a general space,
T is compact, D is not necessarily bounded, but is convex and symmetric, and
the conclusion holds only for y G 3Z>.
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