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ABSTRACT Outdoor images are vulnerable to environment and may suffer various distortions. Therefore,
preprocessing for images captured in bad weather is particularly important for computer vision system. One
of the most common conditions is haze. Image dehazing, especially single image dehazing is a challenging
topic since it’s an ill-posed problem and needs to rely on extra information or prior. In this paper, we discussed
the shortcomings of existing algorithms and proposed a novel step called Local Adaptive Template. The
template is used in transmission estimation and transmission refinement. Starting from the target pixel,
the template is extracted under the guidance of the similarity function and only contains pixels related to
the center point, thus avoids the influence of adjacent objects, even those with blur edges. We then used the
template to improve the Dark Channel Prior(DCP) and the Guided Filter(GF) respectively, and effectively
avoided the block effect in DCP and the blur in GF. The obtained transmission map is much more accurate,
and free from the halo effect. The dehazing result is much clearer and still looks natural without haze residual.
Experiments on natural images and synthetic images show that our method achieves better dehazing results
than several state-of-art algorithms and can adapt to different situations.

INDEX TERMS Local adaptive template, halo effect, haze residual, dark channel prior, guided filter.

I. INTRODUCTION

Under bad weather conditions, light will be scattered by
suspended particles such as fog or haze. Light reflected by
the target objects will decay, meanwhile the atmospheric
light will get mixed with light captured by the optical
sensor [1]–[3]. Both of themwill eventually result in degrada-
tion of digital image. The degradation mainly reflects in local
contrast decreased and scene detail illegible etc. Therefore,
with the development andmaturity of computer vision, image
dehazing technology is receiving more and more attention.
Currently, image processing methods for haze weather

can be roughly divided into two categories [4], [5]. One
is based on image enhancement, the other is based on
physical models. Image enhancement methods aim at the
faults of haze images, and apply existing enhancement algo-
rithms to dehazing [6]–[10]. These algorithms can enhance
image contrast, highlight scene features and emphasize
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valuable information. However, they can not adapt to the
changes in scene depth, and may cause distortion and lose
information. Other algorithms make use of physical mod-
els [11], [12], such as the atmospheric scattering model
to recover the images. Some of them depend on special
equipment to obtain scene depth information. In recent
years, a number of algorithms based on prior knowledge
have emerged. Images reconstructed by physical model are
closer to the original scenes. Also, they can adapt to the
depth change of complex scenes, and obtain more structure
information.

The algorithm we discussed in this paper is one of the
physical model based methods. It’s based on the algorithm
proposed by He who goes through lots of outdoor clear
images, and finds out that in most of the natural images, most
pixels other than the sky area have at least one color channel
with very low intensity value [13]. Such characteristic can
be used to estimate the transmission map, and with the help
of soft mapping algorithm, the haze free image can be easily
achieved. However, the complexity of the algorithm and the
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deficiencies of the result all limit its application. Recently,
there have been lots of improvements in time complexity
caused by soft mapping. Bilateral filtering and median filter-
ing are used to improve the efficiency of the algorithm. The
Guided Filter proposed by He himself can efficiently solve
the problem [14], but it may also cause blur around the edge
region.
To obtain better dehazing results, some improvements on

the template of Guided Filter and Dark Channel Prior have
been proposed. They aim to solve the block effect in DCP
and the blur in GF. Reference [15] takes the minimum value
among RGB channels as the transmission value of the point.
It can completely avoid the block effect, but the resulting
transmission is too small and may cause serious distortion.
Among all the templates that cover the target pixel, [16]
finds the window with the smallest variance value in order
to avoid the blur in GF. However, in some complex areas,
fixed window size may not be able to avoid interference
from adjacent objects. Reference [17] extracts the template
from four directions, up, down, right and left. Length in each
direction is counted respectively, but information on other
locations is ignored. Reference [18] proposes a ‘‘two-level
local adaption’’ to guide the filtering approach.
In this paper we focused on the halo effect, and proposed

a Local Adaptive Template to improve both the transmis-
sion estimation and transmission refinement. The rest of
the paper is: In Sec.2, the atmospheric scattering model,
Dark Channel Prior and Guided Filter are briefly intro-
duced. In Sec.3, the causes of the halo effect are discussed.
Sec.4 proposes the Local Adaptive Template and introduces
RTV(Relative Total Variation) to image dehazing, besides our
final dehazing method is proposed. Experiments are shown in
Sec.5. Sec.6 gives the conclusion.
Main contributions: Instead of estimating and refining

the transmission map in a square region, we proposed a
novel template extraction approach called ‘‘Local Adaptive
Template’’:

• The template only extracts pixels closely related to the
target point and can adapt to different kinds of situations.

• RTV is introduced to image dahazing for the first time
to minimize the effect of texture.

• The proposed method can still work under noise
conditions.

• We use the template in DCP and GF, and manage to
obtain clear images free from the halo effect.

II. RELATED WORKS

In this section, we introduced the underlying model of image
dehazing and paid attention to some of the existing algorithms
we used in this paper.

A. HAZE MODELING

Under haze condition, the atmospheric scattering model can
be described as [19]:

I (x) = J (x)t(x) + A(1 − t(x)) (1)

t(x) = e−βd(x) is the transmission, x is the location of
the current pixel, β is the atmospheric scattering coefficient,
d(x) is the depth of the scene. I (x) represents the input
image, while J (x) represents the haze free image, and A is the
global atmospheric light. The atmospheric scattering model
consists of two components. The first one J (x)t(x) is the
direct attenuation. It represents the un-refracted part of the
light from the scene, and it exponentially decays as the scene
depth increases. The second part A(1 − t(x)) is the airlight
item, which represents the part of atmospheric light involved
in image.
Algorithms based on atmospheric scattering model aim to

recover clear image J (x) from haze image I (x). Since the
mathematical expression of the atmospheric scattering model
is an underdetermined equation, only the haze image I (x) is
known. In order to recover haze-free image J (x), we first need
to estimate global atmospheric light A and transmission t(x).

B. DARK CHANNEL PRIOR

The Dark Channel Prior is based on the following observation
on outdoor haze-free images: In most of the non-sky patches,
at least one color channel has some pixels whose intensities
are very low and close to zero. Equivalently, the minimum
intensity in such a patch is close to zero. As shown in Eq.(2):

Jdark (x, y) = min
y∈�(x)

(

min
c∈{r,g,b}

(

J c(y)
)

)

→ 0 (2)

where J c is a color channel of J and �(x) is a local patch
centered at x (usually 7 × 7 or 15 × 15).

C. GUIDED FILTER

Guided Filter is an effective method to refine the transmission
map.
Supposing the guidance image is I , the image to be filtered

is p and the resulting image is q. The local linear model of the
Guided Filter is as follows:

qi = ak Ii + bk , i ∈ ωk (3)

where ωk is a neighborhood centered at pixel i with radius k ,
and ak ,bk are fixed values within the neighborhood, which is
the basic condition for the formula to be established in a local
window.
The weighted-average filters solve a linear system in this

form:

▽q = a▽I (4)

The process of solving the filtering result is equivalent to
minimizing the Eq.(5):

E(ak , bk ) =
∑

i∈ωk

(

(ak Ii + bk − pi)2 + εa2k

)

(5)

The first term is the second-order fidelity which guarantees
the establishment of the local linear model with the minimum
difference between q and p. The second term is the regular
term, which is used for rounding off the large ak , so ε must
be bigger than 0.
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When calculating linear coefficients in a window, one pixel
may be found in multiple windows at the same time, that is,
each pixel can be described by multiple linear functions.
So, when calculating the output value at a certain point,
the original Guided Filter averages all the linear function
values that contain that point, as shown in Eq.(6):

qi =
1

|ω|

∑

k:i∈ωk

(ak Ii + bk ) = āiIi + b̄i (6)

III. HALO EFFECT ANALYSIS

In this section, we analyzed the possible causes of halo effect,
to be more specific, the block effect in DCP and the blur
in GF.

A. HALO EFFECT IN DCP

Dark Channel Prior algorithm has its own limitation. The
algorithm suffers serious block effect. Some post-processing
can help with the problem, but the block effect still affects the
final result.

FIGURE 1. Block effect analysis: Dehazing results and transmission maps
under different window sizes.

Fig.1 shows the dehazing results and transmission maps
with different window sizes. As the window grows, more pix-
els are given the wrong transmission values, and the process
results suffer more halo effect. WeÂ use it as a proof to show
that the block effect is one of the major causes of halo effect.
As the window grows, the block effect gets worse, so is the
halo effect, as can be seen from Fig.1. It’s quite obvious in
the region we marked.

B. HALO EFFECT IN GF

Another possible reason that may cause halo effect is the
Guided Filter. The center window scheme in Guided Filter
can cause blur at the edges, as shown in Fig.2. Fig.2(b) gives
the result of the Guided Filter using input image itself as the
guidance image. Fig.2(c)(d) shows the change of the image.

FIGURE 2. Guided filter smoothing.

The smoothing operation allows the white and black parts to
penetrate each other. In transmission refinement this even-
tually leads to the halo effect in the dehazing result. Such
characteristic once again proves the importance of the initial
estimation accuracy: when the Guided Filter corrects the
error, it’s more likely to disperse the error to the surroundings,
resulting in halo effect.

The halo effect is actually a kind of haze residual. As can be
seen from the above analysis, the halo effect is caused by both
the DCP and the GF. And in both algorithms, the estimation
errors are caused by the partial window covering the pixels
of adjacent objects. Therefore, if a more accurate window
selection method can be proposed, the errors and the halo
effect can be effectively avoided, and we may achieve better
dehazing results with much less haze residual.

IV. PROPOSED METHOD

In this section, our algorithm was introduced. Firstly,
we introduced the two key steps of the algorithm, and then
the full algorithm.

A. LOCAL ADAPTIVE TEMPLATE

To avoid the halo effect, we proposed the Local Adaptive
Template to extract a more accurate neighborhood for each
pixel.

FIGURE 3. Illustration of the local adaptive template.

Fig.3 is the flowchart of the proposed Local Adaptive
Template. As shown in Fig.3, for the target pixel p we first
took p and each pixel on the square boundary as the endpoints,
and extracted the pixels in each direction. In order to make
sure the template only contains pixels that are related to p,
we then determined the length in each direction adaptively.
The final template can be obtained by jointing all the selected
pixels together. As can be seen in Fig.3, the output of the
Local Adaptive Template only contains gray pixels, which are
clearly related to p.
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FIGURE 4. Extracted pixels in each direction.

The detail of pixel extraction is shown in Fig.4. Fig.4(a)
shows the workflow of Bresenham algorithm [20]. Fig.4(b)
shows how the algorithm works in template extraction.
Brensenham algorithm extracts the most appropriate path
between the initial and final pixels. Therefore, we took the
target pixel as the initial pixel and the point on the square
boundary as the end pixel to extract the path in turn. Through
analysis, it is easy to know that the method can ensure the
extraction result covers all the pixels.
After extracting the pixels, the similarity between the pix-

els in the template and the central pixel needs to be deter-
mined adaptively so as to determine the scope of the template
in each direction, that is, the length. As for region with high
similarity, it’s more likely to be texture, and the length is
expected to be large. Otherwise, for the region with small
similarity, it’s more likely to be boundary, and the length is
expected to be small. Finally, the results in all directions are
integrated to obtain a similar neighborhood region adaptively
changing with the gradient information.
For a random pixel p(p ∈ I ), the pixel in each direction

needs to be extracted and the similarity in each line is sup-
posed to be calculated, so as to improve the transmission
estimation result. Let the position of pixel p be (x, y), and the
pixel value be I (x, y). Taking the positive direction of x as an
example, the similarity function is [21]:

m

Ip = (1 − α)
(m−1)
Ip + αI (x + m, y) (7)

Here,
m

Ip represents the similarity of the mth point in the x+

direction of point p, and we define
m

Ip = I (x, y). α is the
adjustment parameter, which is used to adjust the calculated
similarity degree. Since the length of the line segment in each
direction in the area is fixed at k , the range of m is [0, k−1

2 ],
and I (x + m, y) is the pixel value of point (x + m, y). When
the difference between the values of a pixel and its previous
pixel is less than the threshold τ , we consider that all the
pixels between the pixel and the center point p are similar.
The expression is as follows:










δ

(

I (x + m, y),
(m−1)
Ip , τ

)

= 1, |I (x + m, y) −
(m−1)
Ip | ≤ τ

δ

(

I (x + m, y),
(m−1)
Ip , τ

)

= 0, else

(8)

δ

(

I (x + m, y),
(m−1)
Ip , τ

)

is a marker bit, and τ is the sim-
ilarity threshold. With the increase of m, the similarity of

pixels in the region decreases. Until the case of δ

(

I (x +

m, y),
(m−1)
Ip , τ

)

= 0, the farthest similar pixel is found. Thus,
the length h can be calculated as shown in Eq.(9):

h = max

(

m|δ

(

I (x + m, y),
(m−1)
Ip , τ

)

= 1

)

(9)

The final template is shown in Fig.5, compared to the tradi-
tional square region, it avoids being disturbed by the bound-
ary and the neighboring objects. The gray part and the white
part in the picture belong to two objects which are adjacent
to each other. The square template in Fig.5(a) covers a large
number of pixels on the gray object, while the Local Adaptive
Template in Fig.5(b) only contains the pixels on the white
object.

FIGURE 5. The extracted templates.

B. PARAMETER DETERMINATION

Natural images have a lot of textures. These textures may
affect the results of template extraction. Therefore, whether
the parameters of similarity function can be reasonably set
has a great influence on the results. If the template gets
too large, the result of the algorithm will be similar to that
of the square neighborhood. On the contrary, the estimated
transmission value may be too small, which will distort the
final dehazing image. Therefore, fixed parameters do not fit
the whole image.

In this section, we introduced the Structure Extraction from
Texture via Relative Total Variation and used it to determine
the parameters in the similarity function [22]. The algorithm
can remove the texture information of the image and preserve
the complete structure. Applying the algorithm extraction
results to the template determination can avoid the influence
of image texture while accurately estimating the transmission
values.

The structure extraction from texture via Relative Total
Variation believes that an image is a linear combination
of structure information and texture information, as shown
in Eq.(10):

I = S + T (10)

I represents the input image. S represents its structure part,
that is, the large-scale part, and it has the characteristic of
piecewise smooth. T represents the texture part of the image,
mainly the small-scale details of the image and the noise.
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The structure extraction of the image is to extract the structure
part S from the original image I . Based on this idea, we can
get the basic model of image structure extraction:

min
1

2
||S − I ||2 + λprior (11)

The first part is the data fidelity item, keeping S as close
to I as possible to preserve the structure information of the
image. The second part is the prior item, where λ is the
parameter to balance the first and second item. Xu’s method
extracts the structure based on RTV which is the ratio of the
Windowed Total Variation andWindowed Inherent Variation.
For a pixel p, RTV can be defined as:

RTV (p) =

(

Dx(p)/
(

Lx(p) + ε
)

+ Dy(p)/
(

Ly(p) + ε
)

)

(12)

ε is a constant bigger than 0, used to ensure that the denom-
inator is not zero. D is the Windowed Total Variation and L
is the Windowed Inherent Variation. D and L are defined as
follows:
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∂xS
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∣

∣

∑

q∈R(q)

gp,q
(

∂yS
)∣

∣

(13)

q represents all the pixels in the window, gp,q represents the
weight function formed as:

gp,q ∝ exp

(

−
(xp − xq)2 + (yp − yq)2

2σ 2

)

(14)

σ is the Gaussian standard deviation.
As can be seen from Eq.(13), for a target pixel, Windowed

Total Variation is the weighted sum of the absolute value of
the gradient in the neighborhood, and Windowed Inherent
Variation is the absolute value of sum of the gradient in the
neighborhood.
Therefore, the value of Windowed Total Variation depends

on the gradient value of the neighborhood pixels, while the
value of Windowed Inherent Variation depends on both the
gradient value and the gradient direction of the neighborhood
pixels. Intuitively, the structure of the image has a similar
gradient direction in a local area. On the contrary, the tex-
ture details are more complex and the gradient directions
are different. RTV combining Windowed Total Variation and
Windowed Inherent Variation together can achieve the best
separation results.
As can been seen from t(x) = e−βd(x), transmission

is only related to the depth and the extinction coefficient,
so it shouldn’t be influenced by the texture. Hopefully by
introducing RTV, α in Eq.(7) can be kept small near the main
structure to maintain the edge, and accordingly a larger α can
be obtained in the texture area to avoid the influence of the
texture. In order to achieve this, a threshold is set for RTV.

When the RTV of the target pixel is larger than the threshold,
it is regarded as a texture area, and α of the position is set to a
large value. On the contrary, the area is regarded as the main
structure area, and α of the position is set to a small value.

C. DEHAZING METHOD

Until now, we can propose the algorithm in this paper. Our
algorithm is based on Dark Channel Prior and Guided Filter,
and is designed to avoid the halo effect.
According to the analysis in Sec.3, the halo effect in dehaz-

ing results mainly has two main causes. One is due to the
block effect caused by the square neighborhood in DCP, and
the other is due to the blur at the boundary in GF. Thus,
we used the proposed Local Adaptive Template to improve
the two algorithms to make them more suitable for image
dehazing tasks. First, the Local Adaptive Template is used
to replace the square neighborhood in DCP. When calculat-
ing the dark channel value, the pixels are selected from the
template. So, with �t representing the extracted template,
the algorithm becomes:

Jdark (x, y) = min
y∈�t (x)

(

min
c∈{r,g,b}

(

J c(y)
)

)

→ 0 (15)

�t represents the extracted template.
In Guided Filter, all the results in the window covering

the target pixel need to be averaged to get the output, this is
what we call the central window scheme. However, it may
leads to the blur at the boundary. Therefore, we adopted
the Local Adaptive Template instead of the existing central
window scheme.With�t representing the extracted template,
the average in GF becomes:

qi =
1

|�t |

∑

k:i∈�tk

(ak Ii + bk ) = āiIi + b̄i (16)

FIGURE 6. Smoothing and refining results.

Fig.6 shows the process results of our Guided Filter in
image smoothing and transmission refinement. Compared to
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FIGURE 7. α distribution with different RTV parameters.

the original Guided Filter, the one improved by Local Adap-
tive Template can obtain more structure information.
After obtaining the transmission, we still need to calculate

the atmospheric light value. Atmospheric light estimation is
an important part in image dehazing. The estimation result
directly affects the final output. In haze images, the existence
of haze always causes the brightness to increase. Therefore,
it is considered that the area with higher brightness is more
likely to be a haze area. Based on this idea, He et al. [13]
first selects the brightest 0.1% points in the dark channel
map, then selects the brightest point from these pixels as the
atmospheric light value. However, this method is vulnerable
to bright subjects in some conditions.
In this paper, we used a hierarchical searching method

based on the quad-tree subdivision which is proposed by
Kim et al. [16]. The method first divides the image into four
candidate regions, computes the difference between the mean
value and the standard deviation in each region, selects the
best from the four regions according to the result and repeats
the above operation until the size of the obtained region is
smaller than the preset threshold.
Then the resulting area is used as a candidate area.

We selected the brightest pixel, that is, the point at which
||
(

Ir (p), Ig(p), Ib(p)
)

− (255, 255, 255)|| takes the minimum
value as the atmospheric light. Through the region selection
operation, the algorithm narrows the search area to a more
bright and smoother area, effectively avoiding the influence

of other objects and making the final atmospheric light value
more accurate.

The method consists of 8 steps totally and it can be sum-
marized as follows:

1) Extract pixels in each direction using Bresenham
algorithm.

2) Apply RTV to adjust the similarity degree α.
3) Apply the similarity function in Eq.(3)-(5) to determine

the length h for each direction.
4) Form the Local Adaptive Template �t .
5) Estimate the transmission map with Eq.(15).
6) Refine the transmission map with Eq.(16).
7) Estimate the atmospheric light.
8) Obtain clear images according to the atmospheric

scattering model.

V. EXPERIMENTAL RESULT

In this section, we showed the effectiveness of the proposed
method. First, we analyzed the dehazing performance under
noise condition, and compared our dehazing results withDark
Channel Prior.

Then, we compared our dehazing results with several state-
of-art algorithms, using real-world images with dense and
light haze and synthetic images. The subjective and objective
analysis is given.

A. ALGORITHM ANTI-NOISE ABILITY ANALYSIS

It’s worth noticing that the original Dark Channel Prior based
dehazing algorithmmay be easily affected by noise especially
by dark noise points, because any region including the noise
point may choose it to be the dark channel value. In prac-
tice, noise is inevitable. This shortcoming greatly limits the
application of the algorithm.

To give the anti-noise ability of the proposed algorithm,
we first analyzed the distribution of the most related param-
eter α. Fig.7 shows the distribution of α calculated by RTV.
The results clearly show the differences between RTV and
edge detection. We want α in the main structure to be rela-
tively small, and α in the texture area to be relatively large.

FIGURE 8. Anti-noise ability analysis in local area.
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FIGURE 9. Contrast of dehazing results affected by noise.

This ensures that the similarity function effectively distin-
guishes the structure and texture, further, avoids DCP to cover
the adjoining items. As can be seen from Fig.7, the threshold
effectively distinguishes the texture and the main structure
edges. And as the threshold increases, more edges are con-
sidered as the main structure. By adjusting α, the algorithm
can adapt to different dehazing requirements.
Thenwe analyzed the algorithm anti-noise ability. Fig.8 (b)

gives an example of how our method obtains correct trans-
mission values around a noise point, and Fig.8(a) shows how
DCP fails on these pixels. We used a 3 × 3 region as an
example. As can be seen from Fig.8(a), once a noise point
occurs, all windows around it will take the value of the noise
point as the dark channel value, which means it will form a
3×3 black square on the DCP map. In Fig.8(b), the extracted

template does not contain the noise point, so pixels around
the noise point will still get the correct DCP values.

In Fig.8(c), the above problems are analyzed from the
perspective of the whole picture. A black pixel is added to an
image. The transmission estimation results show the differ-
ence. The original Dark Channel Prior produces a large black
block around the noise point, while the improved algorithm
is not influenced, and estimates the transmission accurately.

Dehazing experiments on the haze image are shown
in Fig.9. We added salt and pepper noise into a common used
haze image, and used DCP and our method to enhance the
image. As can be seen, since the noise adds a lot of dark
points into the haze image, DCP tends to take them as the dark
channel values, and the obtained transmission map has many
bright blocks. After refined by GF, the error spreads into the
whole image and leads to serious haze residual. In contrast,
our method manages to obtain accurate dark channel values
by eliminating the noise points in template extraction phase,
and provides a clear dehazing result.

B. COMPARISON OF DIFFERENT ALGORITHMS

Fig.10(a) shows the results of some classical algorithms. The
results of [6] greatly improve the visual quality of the images,
but there are haze residuals throughout the images with
noticeably distorted colors. The algorithm based on Retinex
deals with the haze images from the perspective of enhance-
ment [23]. However, it suffers serious over-enhancement
especially in the nearby view, which affects the results of

FIGURE 10. Dehazing results of different algorithms.
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the algorithm. Teral and Hautiere [24] algorithm can signif-
icantly improve the image quality, but the visual effect is
poor and noise is introduced. The results of He et al. [13],
[14] algorithm are more natural, but they are affected by the
halo effect. Deep learning based algorithms, DehazeNet [25]
and MSCNN [26], achieve great visual effect, but still suffer
serious haze residual. The proposed algorithm in this article
performs better at the details, which is evident from the third
and fourth image perspectives. At the same time, in the first
image, the proposed algorithm effectively avoids the halo
effect that He algorithm produces around the building.
In Fig.10(b), we compared our algorithm with other

two state-of-art methods. Dehazing based on multi-scale
fusion [27] proposes a novel strategy to fuse the results of
two image enhancement methods. Reference [28] proposes
a novel haze-line theory for image dehazing. As can be seen
from the results, our method obtains clear images with higher
saturation compared to [27]. The dehazing results of [28]
have vivid color and rich details, but the results suffer color
shift, while our results still have the similar color with the
input images.

FIGURE 11. Halo effect analysis.

In Fig.11, our algorithm is further compared with DCP,
especially areas with rapidly changing depth in the image.
He et al. [13], [14] algorithm estimates the transmission
inaccurately at the boundary since the dark channel results
are affected by block effect, and the centered window scheme
in the Guided Filter also results in blurred boundary. Finally,
there is a large error in the estimated transmission at the
position where the depth changes rapidly, resulting in halo
effect. The improved algorithm in this paper starts from two
aspects, which make the calculated transmission more accu-
rate at the boundary, so as to effectively improve the halo
effect. At the same time, more edge information is reserved
during the computation of the dark channel, which further

FIGURE 12. Result comparison of DCP, SDCP and our algorithm.

enriches the details of the final processing result. As shown
in Fig.11, DCP results obviously have haze residual at the
close-range locations and at the boundary with the distant
mountains, while the proposed method doesn’t.

In Fig.12 the proposed method is compared with the
Single-pixel DCP [15]. Natural images and synthetic images
are both used. The natural images are from the dataset of [29].
These images have close objects with large depth differences,
so they can be easily affected by halo effect. The synthetic
images are based on the NYU depth dataset [30]. We ran-
domly selected 30 images and generated synthetic images of
heavy haze. Both of the Single-pixel DCP and the proposed
algorithm can achieve haze free images without halo effect.
However, the single-pixel DCP suffers significantly over-
enhanced, and the results are dark, resulting in the loss of
a lot of information. The algorithm of this paper is able to
achieve clear images by combining the advantages of both the
single-pixel DCP and He algorithm. The processing results
completely remove the influence of haze, and the scenes are
much brighter and retain more information.

We also calculated the index of the synthetic images
in Fig.12. The results are showed in Fig.13 and they once
again prove that our results contain more information. The
SSIM index also shows that the structures of our results are
closer to those of the input images. Although SDCP also
achieves better results than DCP, it lags behind this paper in
spatial frequency and suffers serious over-enhancement.
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FIGURE 13. Synthetic image results analysis.

Besides, we analyzed the intrinsic features of haze images.
Take the image of Tiananmen Square in Fig.10 as an example.
3D scatter of RGB channel and hue mapping are shown
in Fig.14. 3D scatter of RGB channel reveals the spatial
distribution of the colors. The more haze the image has,
the lower dynamic range the 3D scatter of the color channel is.
It can be easily told that our results have the largest dynamic
range. Hue shift is one of the most obvious features in haze
images. Color histogram of a haze image is more centralized.
Compared to other algorithms, our results and He results have
broader distributions, and the color histograms are closer to
that of the input haze image.
Then average gradient and spatial frequency of the images

in Fig.10 are evaluated. The average gradient indicates the
degree of clarity of the image, reflecting the ability to express
the contrast of the image details. The larger the value is,
the better the effect of the image dehazing is and the clearer
the texture is. The spatial frequency indicates the change
of the pixel value of the image in space, it is large in the
region where the gray value is abrupt such as the edge
and the noise, and it is small in the region where the gray
value changes gently. It can reflect the complexity of the

FIGURE 14. Image intrinsic property analysis.

details to a certain extent. The higher the spatial frequency is,
the more obvious the image details are. As can be seen from
Table 1 and Table 2, the proposed method achieves higher
average gradient than other algorithms. DehazeNet gets a
better spatial frequency in the second test image. However,
the result is significantly over-enhanced at the close scene.
Another thing worth noticing is that the deep learning based
algorithms achieve better results in sky region. This is due to
the limitation that the DCP algorithm does not hold in the sky
region.

DCP claims that low-intensity pixels in at least one color
channel often exist in most of the local regions. To fur-
ther evaluate the results of our dehazing method, we took
17 images that are common used in image dehazing task.
We calculated the number of pixels with low dark channel
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TABLE 1. Average gradient of Fig.10.

TABLE 2. Spatial frequency of Fig.10.

FIGURE 15. Image intrinsic property analysis.

FIGURE 16. Comparison between our simplified algorithm and He’s
method.

values and used the ratio as a measure of haze resid-
ual. As shown in Fig.15, our results get more pixels with
low DCP value which means our algorithm achieves bet-
ter haze-free images. Also in Fig.15, the detail intensity
[31] is used to measure how much information is retained
in the image. It can be seen that our algorithm achieves
better results, because our algorithm effectively avoids
the halo effect, the final processing results restore more
details.
In some cases, the images are not affected by noise. These

images can be processed directly by RTV, and the template
extracted in the main structure is calculated under a fixed
α. Such a method will affect the anti-noise ability of the
algorithm to a certain extent, but it simplifies the processing
steps of the algorithm and reduces the parameters, and still
maintains a good performance in halo effect and haze resid-
ual. We also took the images used in Fig.15 and used our sim-
plified dehazing method to obtain the clear images. We then
counted the average gradient, spatial frequency and detail
intensity of the results and showed the Box-plot in Fig.16.
It’s clear that our simplified algorithm can still achieve better
results than DCP.

VI. CONCLUSION

In this paper, we focus on the halo effect and the inaccurate
transmission estimation in DCP and propose a Local Adap-
tive Template. The template is then used to improve the Dark
Channel Prior algorithm and the Guided Filter algorithm
respectively. It can effectively solve the block effect in DCP
and the blur at the boundary in GF. After experiments on haze
images, it is proved that the proposed algorithm can estimate
the image transmission more accurately and avoid the halo
effect effectively. Results of the proposed method are clearer
and the haze removal is more thorough. Compared with the
algorithms based on deep learning, our algorithm can get
better clearing effect even in the case of heavy haze, and the
color distribution of resulting clear image is closer to that of
the original image. The indicators such as average gradient,
spatial frequency and detail intensity are evaluated and prove
that the our algorithm can achieve clearer and more realistic
results containing more information.
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