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Abstract: Wireless Mesh Networks (WMNs) can build a communications infrastructure using only
routers (called mesh routers), making it possible to form networks over a wide area at low cost. The
mesh routers cover clients (called mesh clients), allowing mesh clients to communicate with different
nodes. Since the communication performance of WMNs is affected by the position of mesh routers,
the communication performance can be improved by optimizing the mesh router placement. In this
paper, we present a Coverage Construction Method (CCM) that optimizes mesh router placement.
In addition, we propose an integrated optimization approach that combine Simulated Annealing
(SA) and Delaunay Edges (DE) in CCM to improve the performance of mesh router placement
optimization. The proposed approach can build and provide a communication infrastructure by
WMNs in disaster environments. We consider a real scenario for the placement of mesh clients
in an evacuation area of Kurashiki City, Japan. From the simulation results, we found that the
proposed approach can optimize the placement of mesh routers in order to cover all mesh clients in
the evacuation area. Additionally, the DECCM-based SA approach covers more mesh clients than the
CCM-based SA approach on average and can improve network connectivity of WMNs.

Keywords: Wireless Mesh Networks; intelligent algorithms; simulated annealing; Delaunay Edges;
mesh router placement; optimization; disaster environment

1. Introduction

Wireless Mesh Networks (WMNs) can build a communications infrastructure using
only routers (called mesh routers), making it possible to form networks over a wide area
at low cost [1–3]. They also can act quickly and extensively to restore the networks even
when the communication environment is cut off by a disaster in a wide area. WMNs
can be used not only in such environments, but also for Internet of Things (IoT) applica-
tions [4]. For instance, they can be used for communication between robots in an indoor
factory environment. Therefore, WMNs are expected to be utilized as a communication
infrastructure for edge systems in the IoT era. However, the placement of mesh routers
significantly affects the network operations, including installation cost, communication
range, and maintenance.

The placement of mesh routers is a multi-objective optimization problem [5] and
is an NP-hard [6] problem because it requires the optimization of both the connectivity
between mesh routers and the coverage of mesh clients by mesh routers. Therefore,
much research is being carried out to optimize the placement of mesh routers in order to
improve the performance of wireless communication through WMNs. There are many meta-
heuristics [7,8], such as Genetic Algorithms (GA) [9], Hill Climbing (HC) [10], Simulated
Annealing (SA) [11], Tabu Search (TS) [12], and Particle Swarm Optimization (PSO) [13],
that can be used for the optimization of mesh router placement.

In this paper, we present a Coverage Construction Method (CCM) for the optimization
of mesh router placement. The CCM performs the computation until all mesh routers are
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connected considering the maximum communication range of mesh routers. In addition, we
propose a mesh router placement optimization approach that combines SA and Delaunay
Edges (DE) [14] in CCM (called DECCM-based SA). The DECCM-based SA approach
considers a more realistic placement of mesh clients. In DECCM-based SA, the DE is
used to cover the spread of mesh clients in considered areas. We compare the proposed
DECCM-based SA approach with the CCM-based SA approach without Delaunay edge. In
the simulation, we consider two metrics for the evaluation of the proposed approaches the
Size of Giant Component (SGC) [15] and the Number of Covered Mesh Clients (NCMC).
The SGC metric is an indicator for evaluating the connectivity between mesh routers,
and the NCMC metric is for the coverage of mesh clients by mesh routers. We present a
visualization of the results after the optimization of mesh routers. In addition, we consider
the Geographic Information System (GIS) and hazard maps to develop an optimization
scenario for mesh router placement in a disaster environment.

The contributions of this research work are as follows:

• Implementation of CCM for mesh router placement optimization.
• Implementation of a mesh router placement optimization system by combining DE

and SA.
• Comparison of the proposed mesh router placement approaches and evaluation of

their impact on connectivity and coverage.
• Performance evaluation of the proposed mesh router placement optimization system

in a real environment using GIS.
• Construction of simulation scenarios considering evacuation centers based on GIS

data assuming a disaster environment.

The paper is organized as follows. The related work is presented in Section 2. In
Section 3, we describe the mesh router placement problem. In Section 4, we discuss the
proposed approach. In Section 5, we present the simulation results. Finally, conclusions
and future work are given in Section 6.

2. Related Work

In this section, we present the related work for the mesh router placement problem.
There are many research works for optimizing mesh router placement. The communication
performance of WMNs is affected by connectivity, coverage, cost, load-balancing, through-
put, delay, capacity, and interference [16]. In [17], the authors considered Quality of Service
(QoS) requirements by optimizing the placement of mesh routers, prioritizing topologies
with less interference. In [18], the authors considered a load balancing arrangement of
gateways in the WMNs.

Since the mesh router placement problem is NP-hard, meta-heuristics are often applied
to mesh router optimization approaches. In [19], the authors presented the Non-Dominated
Sorting Genetic Algorithm (NSGA-II) [20]. They stated that the main cost in the WMN is
the placement and management of the Internet Access Points (ITAPs) used to connect to
the Internet. Therefore, the objective is to minimize the number of required ITAPs while
maximizing the traffic that can be served to each unit. In [21,22], the authors considered SA
to solve the static/dynamic mesh router node placement problem. In [21], they assumed a
static environment and used service priorities as an evaluation metric for optimizing mesh
router placement. In [22], they assumed a mobile environment and that the performance
indicators for mesh router placement optimization are connectivity and coverage, as well as
average travel distance by routers. In [23], the authors compared the performance of SA and
GA for mesh router placement optimization while in [24] they compared the performance of
different types of GAs (NSGA-II and the Multi-Objective Genetic Algorithm (MOGA) [25]).
In [23], the objective of mesh router placement optimization was to minimize the network
cost of the WMN while satisfying the QoS. In [24], the authors considered as evaluation
metrics for optimization coverage, reliability, and cost. They showed that the NSGA-II has
better performance than MOGA for hypervolumes.
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There are also some approaches for mesh router placement optimization that combine
several meta-heuristics, clustering algorithms, or other methods. In [26], the authors
proposed Multi-objective Simulated Annealing based Centre of Mass (MCM) as a mesh
router placement optimization method and Multi Objective Simulated Annealing based
Centre of Mass (MSAC), which combines SA and MCM. They showed that MSAC achieves
a better tradeoff between WMN coverage and cost because it does not consider min–max
regret values for many large instances and in most cases provides a good Pareto front.
In [27], a combined GA and clustering method (GA-CL) was proposed as a mesh router
placement method that considers the dynamic location of all mesh routers and indoor
obstacles. This method can minimize interference among mesh routers. The GA-CL was
shown to improve the performance by about 40% compared to the random selection method.
In the Non Line-of-Sight (NLoS) environment, the GA-CL improves the performance by
about 50% compared with the Line-of-Sight (LoS) environment.

In many approaches for mesh router placement optimization, the real-world mesh
router placement target is abstracted by a grid or other means. In some cases the mesh router
placement is performed assuming the real environment. In [28], the authors considered
mesh router placement optimization for a real environment. They proposed a mesh router
placement optimization method for Wanglang National Nature Reserve in Sichuan province,
China. In [29], the authors considered the placement optimization of Unmanned Aerial
Vehicles (UAVs) equipped with ad hoc communication capabilities for providing WMN
services. The UAV placement optimization system was evaluated using a model based on
GIS data from the Swedish Government Agency. In the GIS data, three cities with different
areas and building structure densities were selected.

3. Mesh Router Placement Problem

In this section, we describe the mesh router placement problem. For most formula-
tions, node placement problems are shown to be computationally hard to solve to optimal-
ity [30–34], and therefore heuristic and meta-heuristic approaches are useful approaches to
solve the problem for practical purposes.

Let the actual mesh router placement area be a two-dimensional continuous area with
width (W ∈ R+) and height (H ∈ R+). In this area, we place a number of mesh routers
and mesh clients with fixed positions. Given a network graph GMR = (VMR, EMR) of mesh
routers and the network graph GMC = (VMC, EMC) of mesh clients, there are n = #VMR
mesh routers with their own communication range. The positions of mesh routers are
not pre-determined and they should be computed. There are m = #VMC mesh clients
located in arbitrary points of the considered area. Each mesh router (VMR = {VMRi}) in
the graph (GMR) is a triple VMR∀i =< x, y, r > representing the two-dimensional location
point VMR∀i(x) ∈ W and VMR∀i(y) ∈ H. The mesh routers have a range of radius within
which wireless communication is possible (VMR∀i(r) is the radius of the communication
range). Each mesh client (VMC = {VMCk}) in the graph (GMC) is a double VMC∀k =< x, y >
representing the two-dimensional location point VMC∀k(x) ∈ W and VMC∀k(y) ∈ H. The
edge between each mesh router EMR = {EMRi} is calculated by Equation (1) and the edge
between the mesh client and mesh router EMC = {EMCk} is calculated by Equation (2).

EMRi =


< i, j > i f

√
|VMRi(x)−VMRj(x)|2 + |VMRi(y)−VMRj(y)|2

≤ VMRi(r) + VMRj(r),
0 otherwise.

(1)

EMCk =


< k, j > i f

√
|VMCk(x)−VMRj(x)|2 + |VMCk(y)−VMRj(y)|2

≤ VMRj(r),
0 otherwise.

(2)
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The mesh router placement problem is a bi-objective optimization problem to maxi-
mize (1) the network connectivity of WMNs and (2) the coverage of mesh clients. The mesh
router placement problem can be seen as a variation of the p-median problem. We consider
SGC and NCMC as optimization metrics for the mesh router placement problem. Network
connectivity of mesh routers is measured by the SGC of the resulting WMN graph, while
the coverage of mesh clients is simply the NCMC that fall within the radius (communication
range) coverage of at least one mesh router. It should be noted that network connectivity
and coverage are among the most important metrics in WMNs and they directly affect the
network performance. The adjacency matrices AMR = [aMRij]n×n,(i,j) in Equation (3) and
AMC = [aMCkj]m×n,(k,j) in Equation (4) of mesh routers and mesh clients are considered to
calculate SGC and NCMC.

aMRij =

{
1 i f (∃ < i, j >∈ EMRi) ∩ (∃ < j, i >∈ EMRj),
0 otherwise.

(3)

aMCkj =

{
1 i f (∃ < k, j >∈ EMCk) ∩ (∃ < j, k >∈ EMCj),
0 otherwise.

(4)

The island of connected mesh routers represented by AMR is called the component
and there are s ≤ n components. A set of components C = {Cs} and C∀s ⊆ VMR show
the connected mesh routers. If #C∀s = #VMR then C∀s is always called SGC because all (n)
mesh routers are connected and C∀s has the largest size of component. If

⋂
k
⋃

j aMCkj = 1,
then NCMC is maximal because all (m) mesh clients are covered by at least one mesh router.
Therefore, by maximizing C∀s and ∑k ∑j aMCkj, we maximize SGC and NCMC.

4. Proposed Approach

In this section, we discuss the proposed system. We have considered a bi-objective
optimization in which we first maximize the network connectivity of the WMN (the
maximization of the SGC) and then the maximization of the NCMC without worsening the
value of the SGC.

4.1. CCM for Mesh Router Placement Optimization

In this subsection, we describe the operation of the randomly generating mesh routers
method for CCM.

In Figure 1 and Algorithm 1 we show the flowchart and pseudo code, respectively, of
the randomly generating mesh routers by CCM. In Figure 2 and Algorithm 2 we show the
flowchart and pseudo code of the CCM, respectively. The initial placement of mesh routers
is done by generating random numbers for mesh router placement, by setting the number
of mesh routers, initializing the mesh router linked list, and setting the current number
of mesh routers i to 0. Next, it generates a mesh router [i] at a random placement in the
considered area as the 0-th mesh router and the mesh router [i] is added to the linked list of
mesh routers. After that, i is increased by 1 and a mesh router [i] is generated at a random
placement as the i-th mesh router. If the SGC is not increased, then the mesh router [i] is
removed and a mesh router [i] is generated at a random placement again. If the SGC is
increased, the mesh router [i] is added to the linked list of mesh routers. This process is
repeated until i is equal to the number of mesh routers n− 1. In this way a group of mesh
routers can be generated that is connected to other mesh routers as the linked list of mesh
routers without Depth First Search (DFS) [35]. However, this method does not take into
account the coverage of mesh clients by the mesh routers. Therefore, we use the CCM for
deriving the NCMC.
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Is SGC increased?

Figure 1. Flowchart for method of randomly generating mesh routers.

Algorithm 1 Randomly generating mesh routers method

1: Set number of mesh routers n.
2: Randomly place mesh router [0] in a considered area.
3: i← 1.
4: while i < n do
5: Randomly place mesh router [0] in a considered area.
6: if SGC is maximized then
7: i ← i + 1.
8: else
9: Delete mesh router [i].

10: end if
11: end while
12: Return linked mesh routers placement list.

True

False False

Start

Load the list of mesh client placements.

Is NCMC at the current placement list of
mesh routers greater than NCMC at

the best placement list of mesh routers?

Figure 2. Flowchart of CCM.
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Algorithm 2 CCM

1: Set Imax.
2: i← 0.
3: S← Algorithm 1.
4: S′ ← S.
5: while i < Imax do
6: NCMC(S)← NCMC o f S.
7: NCMC(S′)← NCMC o f S′.
8: if NCMC(S′) ≥ NCMC(S) then
9: NCMC(S)← NCMC(S′).

10: S← S′.
11: end if
12: i ← i + 1.
13: S′ ← Algorithm 1.
14: NCMC(S′)← 0.
15: end while
16: Return S.

The process of CCM is as follows. The CCM performs an initialization process by
loading the cover list of the mesh client by the mesh router, initializing the optimal linked
list of mesh routers S, the current linked list of mesh routers S′, the number of loops in
CCM Imax, and setting the current loop number i to 0. Additionally, it initializes the S with
the linked list of mesh routers decided by the randomly generating mesh router placement
method. Next, 1 is added to t and the S′ is generated with the linked list of mesh routers
decided by the randomly generating mesh routers method. If the NCMC of S′ (NCMC(S′))
is greater than the NCMC of S (NCMC(S)), then update the optimal linked list of mesh
routers with the current linked list of mesh routers. This process is repeated until i is equal
to the Imax. Hence, the CCM can decide the placement of mesh routers with the highest
NCMC by repeating the randomly generating mesh router placement and deriving NCMC.

4.2. CCM-Based SA for Mesh Router Placement Optimization

In this subsection, we describe the CCM-based SA for the mesh router placement
problem. In Figure 3 and Algorithm 3 we show the flowchart and pseudo code of the
CCM-based SA, respectively. The SA prevents the stacking of the algorithm in local
optima. This is a local search algorithm and it is very simple and robust for solving various
optimization problems. The SA is inspired by the process of cooling metal materials. It
repeatedly searches for neighboring solutions while transitioning states. The best solution
during iteration is defined as S and the current solution, which is a neighboring solution, is
defined as S′. If the S′ is worse than the S, it derives the optimal solution by transitioning
states according to the State Transition Probability (STP). The SA requires the solution
evaluation and the temperature value to decide the STP. The evaluations of the mesh router
placements (δEval), temperature (T), and STP in our proposed approach are shown in
Equations (5)–(7), respectively.

δEval ← NCMC(S)− NCMC(S′) (5)

T ← Tmin + (Tmin − Tmax)×
(

i
Imax

)
(6)

STP ← e−
α×δEval

T (7)

The CCM-based SA performs neighborhood search and optimization by randomly
changing the placement of one mesh router. The proposed approach updates the optimal
solution only when the SGC is maximized and the NCMC of S′ (NCMC(S′)) is larger than
the NCMC of S (NCMC(S)). Additionally, if SGC is at maximum and NCMC decreases, it
will be updated with a probability of STP [%]. T represents the cooling schedule at STP



Sensors 2023, 23, 1050 7 of 14

and decreases its value from Tmax to Tmin depending on the current number of loops i at
Imax, which indicates the number of loops in SA. The α is a constant in SGC and the higher
the α, the lower the STP.

In the following, we describe the operation of the CCM-based SA. First, the CCM-
based SA performs the initialization process by loading the list of mesh clients and setting
the Initial and Final temperatures, Tmax, and i to 0. Additionally, the solution of CCM is
set as the current optimal solution S and the current solution S′. Next, the indexrandom is
generated at a random value in the range of 0 to the number o f mesh routers− 1. Then, the
placement list S′ [indexrandom] is changed at random. If the SGC of the S′ is maximized,
then the SA process is performed. In the SA process, the r is generated at random in the
range of 0.0 to 100.0. If the e−

α×δEval
T is greater than or equal to 1.0, or if the e−

α×δEval
T is

greater than r, the optimal linked list of mesh routers S is updated to the list of S′ and 1
is added to i. Otherwise, SA does not update the list of S and sets S′ to S. This process is
repeated until i equals the Imax.

Load the placement list of mesh clients.

Set the ini�al and �nal temperatures,
the number of loops for SA.

Set i to 0.

Ini�alize the best placement list of
mesh routers with Alg. 2

Set the index random to
a random value in the range of

0 to the number of mesh routers - 1.

Set [x before, y before] to
the placement of a mesh router [x, y]

in the current placement list of
mesh routers [index random]

Change the placement of mesh router [x, y]
in the current placement list of
mesh routers [index random]

at random in the considered area.

Is the SGC at the current placement list of
mesh routers maximized?

Set the current placement list of
mesh routers [index random] to [x before, y before].

Figure 3. Flowchart of CCM-based SA.
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Algorithm 3 CCM-based SA

1: Set Imax, Tmin, Tmax, α.
2: i← 0.
3: S← Algorithm 2 (Mesh clients placement list).
4: S′ ← S.
5: while i < Imax do
6: Randomly choose an index of S′.
7: Randomly change coordinate of S′ [chosen index].
8: if SGC is maximized then
9: r ← Randomly generate in (0.0, 100.0).

10: δEval ← NCMC(S)− NCMC(S′).
11: T ← Tmin + (Tmin − Tmax)×

( i
Imax

)
.

12: if e−
α×δEval

T ≥ 1.0 then
13: NCMC(S)← NCMC(S′).
14: S← S′.
15: else if e−

α×δEval
T ≥ r then

16: NCMC(S)← NCMC(S′).
17: S← S′.
18: else
19: Restore coordinate of S′ [chosen index].
20: end if
21: else
22: Restore coordinate of S′ [chosen index].
23: end if
24: t ← t + 1.
25: end while
26: Return S.

4.3. DECCM-Based SA

In the previous works, the mesh routers were placed in the position to cover target
mesh clients that were randomly generated by normal distribution or uniform distribution.
Thus, when randomly generating or changing the mesh router placement, the entire
area was considered as the target of mesh router placement. However, the mesh router
placement optimization should consider the bias possibility or the generation of distant
mesh client placements in order to be used in more realistic scenarios. The CCM-based
SA generates or changes the placement of mesh routers at random. However, this may
affect the connectivity of the mesh routers and increase the computation when considering
realistic scenarios. Therefore, we propose the DECCM-based SA for more effective mesh
router placement optimization.

In the following, we describe the DECCM-based SA. First, the Voronoi decomposi-
tion [36] is performed to separate each area where mesh clients are close to each other in the
considered area. Each region separated by Voronoi decomposition is called a Voronoi cell
and the generated clusters of mesh clients are connected by edges based on the adjacency
of each Voronoi cell. These lines are called DE and this process is performed before the
CCM process. The DE is used for restricting the placement of mesh routers at random in
CCM. The optimizing of the mesh routers placement by DE-based CCM with SA is called
DECCM-based SA. This approach can decide the mesh router placements with higher
NCMC by restricting the random placement in scenarios with the bias or distant placement
of mesh clients compared with the previous approaches.

5. Simulation Results

In this section, we present a comparison study of the presented approaches. The
parameters for the simulations are shown in Table 1. We set the placement of mesh
clients based on GIS [37]. The considered area for the simulation is a disaster area at
Kurashiki Train Station in Kurashiki City, Okayama Prefecture, Japan. The considered area
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was affected by heavy rain in July, 2018. The mesh clients in the simulation are set in the
buildings considered as evacuation areas. We used the QGIS [38], which is a GIS application
to visualize geographic information. In addition, we used the shapefiles of buildings from
OpenStreetMap (OSM) [39] and the open data released by Kurashiki City [40].

Table 1. Parameters and values for simulations.

Parameters Values

W (width of considered area) 222 [unit]
H (hight of considered area) 120 [unit]
n (number of mesh routers) 192
r (radius of the mesh routers 4 [unit]

communication range)
m (number of mesh clients) 2092
Imax for CCM (number of loops for CCM) 2000 [times]
Imax for SA (number of loops for SA) 10,000 [times]
Tmax (initial temperature) 100 [unit]
Tmin (final temperature) 1 [unit]

Figure 4 shows the visualization results of the considered area, a Voronoi diagram and
DE. In Figure 4a,c, the red points indicate evacuation points. Figure 4a shows the image of
the original map. In Figure 4b, the red-filled areas show evacuation areas. Figure 4c,d show
the visualization results of Voronoi Edge (VE) and DE derived by the Voronoi decomposi-
tion. In the proposed approach, the extracted color pixels from images are converted to
evacuation areas and the DE are converted to the coordinate list as information that can be
used for the simulation.

(a) (b)

(c) (d)

Figure 4. Visualizing the problem area. (a) Original map. (b) Evacuation area. (c) Voronoi diagram.
(d) Delaunay edge.
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Figure 5a shows the extracted and converted coordinates of the evacuation area from
Figure 4a, while Figure 5b shows the extracted and converted coordinates of the DE from
Figure 4d. The coordinates of the red-filled area in Figure 5a are used as mesh clients. The
DECCM-based SA uses the coordinates of the DE in Figure 5b as the placement area. The
simulations were performed 100 times for each approach.
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Figure 5. Converted information for the proposed system. (a) Converted evacuation area. (b) Con-
verted DE.

Figure 6 shows the NCMC vs. the number of iterations in the case of optimization
by DECCM-based SA and CCM-based SA (not using DE). The NCMC of the DECCM-
based SA was more stable than the CCM-based SA throughout all iterations. Additionally,
the DECCM-based SA can cover more mesh clients than the CCM-based SA. Thus, the
DECCM-based SA can perform better optimization than the CCM-based SA.
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Figure 6. NCMC vs. number of iterations.

Figure 7 shows the performance evaluation results of 100 times for each approach
using box plots (see Figure 7a,b), while Figure 8 shows the visualization results of CCM (the
initial generation of CCM-based SA), CCM-based SA, DECCM (the initial generation of
DECCM-based SA), and DECCM-based SA. Figure 8a shows the placement of mesh routers
by CCM and is concentrated on a specific area. Figure 8b shows the placement of mesh
routers optimized by CCM-based SA and the placement area is spread widely compared
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with the CCM but does not cover all mesh clients. Figure 8c shows the placement of mesh
routers by DECCM and covers many mesh clients. Figure 8d shows the placement of mesh
routers optimized by DECCM-based SA, which covers all mesh clients. Table 2 shows
the best SGC, average SGC, best NCMC, and average NCMC of the simulation results for
each approach.

From the simulation results, we can see that the SGC is always maximized for each ap-
proach but the DECCM-based SA has better performance than other approaches, especially
in scenarios with biased and distant placement of mesh clients.
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Figure 7. Box-plot results. (a) Results of CCM. (b) Results of SA.
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Figure 8. Visualization results. (a) Result of CCM. (b) Result of CCM-based SA. (c) Result of DECCM.
(d) Result of DECCM-based SA.
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Table 2. Simulation results.

Method Best SGC Average SGC Best NCMC Average NCMC [%]

CCM 192 192 1194 50.540

CCM-based SA 192 192 2022 79.893

DECCM 192 192 1586 63.675

DECCM-based SA 192 192 2092 93.426

6. Conclusions

In this paper, we proposed and evaluated the DECCM-based SA approach. The pro-
posed approach was simulated in a GIS-based simulation scenario assuming an evacuation
area. Then, we compared the performance with other approached using computer simula-
tions. The simulation results show that the DECCM-based SA has a better performance
than other approaches. From the simulation results, we conclude as follows:

• The proposed DECCM-based SA approach can cover all evacuation areas.
• The DECCM-based SA was able to cover more mesh clients than the CCM-based SA

on average.
• The visualization results show that the DECCM-based SA has better behavior than

other approaches.
• The DECCM-based SA can improve network connectivity and coverage in WMNs by

restricting random placement of mesh clients when there is bias or distance in their
placement.

In the future, we would like to compare the performance of our proposed system with
other state-of-the-art methods and evaluate the proposed approaches via extensive simula-
tions for different scenarios. We would like to implement new hybrid systems considering
different intelligent algorithms and make a comparison study of different systems.
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