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ABSTRACT

Cell-based fluorescence imaging assays have the potential

to generate massive amount of data, which requires detailed

quantitative analysis. Often, as a result of fixation, labeled

nuclei overlap and create a clump of cells. However, it is im-

portant to quantify phenotypic read out on a cell-by-cell basis.

In this paper, we propose a novel method for decomposing

clumps of nuclei using high-level geometric constraints that

are derived from low-level features of maximum curvature

computed along the contour of each clump. Points of maxi-

mum curvature are used as vertices for Delaunay triangulation

(DT), which provides a set of edge hypotheses for decom-

posing a clump of nuclei. Each hypothesis is subsequently

tested against a constraint satisfaction network for a near opti-

mum decomposition. The proposed method is compared with

other traditional techniques such as the watershed method

with/without markers. The experimental results show that

our approach can overcome the deficiencies of the traditional

methods and is very effective in separating severely touching

nuclei.

Index Terms— nuclear segmentation, Delaunay triangu-

lation, geometric grouping.

1. INTRODUCTION

Responses of tissues and cell-based assays are often hetero-

geneous, which require a large collection of samples to be

imaged. The main advantage of the cell-based assays is in a

large number of readouts, where every individual cell can be

considered as a single sensor responding to the environmental

perturbation. Therefore, it is necessary to delineate each cell

from its surrounding populations. However, there are a signif-

icant number of technical and biological variations. Technical

variations can be as a results of sample preparation, fixation,

seeding density, and staining. On the other hand, biologi-

cal variations often originate from different cell types, cells

being in a different states, spatial organization of the cells,

and the fact that cells respond differently to perturbations and
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their microenvironment. These coupled variations can lead to

an overlap of cellular compartments, thus requiring advanced

segmentation methods. In this paper, we focus on the segmen-

tation of fixed cells, stained for their nuclear compartments,

which sometimes form a clump as a result of seeding density

or morphological properties.

Our model-based method, assumes that each nucleus is

almost convex, and infers convex regions by grouping points

of maximum curvature along the contour of clump. The main

thesis is that points of maximum curvature provide islands

of saliency that help partition a clump of nuclei. This for-

mulation has the potential to be computationally expensive;

however, since only neighboring points of curvature can be

grouped to form a hypothesis, the search space can be signif-

icantly reduced. Furthermore, by using Delaunay triangula-

tion, the search space can be methodically constructed in the

absence of any heuristic by automatically inferring neighbor-

hood configuration while reducing the number of free param-

eters. The spatial organization of the Delaunay triangulation

enables the additional application of geometric constraints for

inference of convex regions.

The rest of the paper is organized as follows. A literature

review is presented in Section 2. The details of our approach

are introduced in Section 3, and the experiment and compari-

son results are discussed in Section 4. Conclusions and future

work are given in Section 5.

2. PREVIOUS METHODS

Current techniques in segmentation of clumped nuclei can

be partitioned into model-free and model-based methods.

An example of the model-free approach is the watershed

method coupled with distance transform [1]. On the other

hand, model-based methods can be parametric (e.g., Hough

transform) or nonparametric. A few examples of model-

based nonparametric methods are reviewed below. In [2],

the segmentation problem was initially constrained by infer-

ring seeds corresponding to nuclear regions through iterative

radial voting [3]. These seeds corresponded to an approx-

imate location of the center of mass for each nucleus, thus

partitioning the regions between the seeds through Voronoi

tessellation for further refinement. In [4], the segmentation

problem was expressed by detecting convex regions that are



partitioned from points of maximum curvature along the fore-

ground. Our proposed method is an extension of the method

proposed by Raman [4], where grouping of the points of

maximum curvature is derived from higher-level Delaunay

triangulation. As a result, (i) an exponential computational

complexity is reduced to an almost linear complexity; (ii) the

number of free parameters is drastically reduced; and (iii) a

more complex clump can now be decomposed, which was

almost impossible do during our previous implementation.

An important step of the segmentation process is to iden-

tify points of maximum curvature along the boundary of the

clump. Previous methods have also suggested convex hull

[5] and polygon fit as precursors for detecting points of max-

imum bend. We suggest that by computing curvature along

the contour more robust and accurate results can be archived.

3. APPROACH

Segmenting image into 
foreground and background 

Detecting points of maximum 
curvature along the contour 

Triangulating points of maximum curvature by 
Delaunay triangulation 

Start  

Applying geometric constraints 
for edge inference 

End 

Fig. 1. Flow chart of our approach.

Our approach consists of several steps as illustrated in

Fig. 1. First, the original image is segmented into fore-

ground and background by an iterative threshold selection

method. Then points of maximum curvature are computed

along the object contour, followed by the Delaunay triangula-

tion of these points. Finally, geometric constraints are applied

through edge inference to get the final segmentation results.

The details of major steps are presented in the following

subsections.

3.1. Detection of Points of Maximum Curvature

The curvature is computed by using k = x′y′′
−y′x′′

(x′2+y′2)3/2
, where

x and y are coordinates of the boundary points. The deriva-

tives are computed by convoluting the boundary with Gaus-

sian derivatives. An example of detected points of maximum

curvature whose k values are larger than threshold λk are

shown in Fig. 2(a) and Fig. 2(b).

We denote the ith point of local maximum curvature as vi,

and the set of point of maximum curvature of one connected
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Fig. 2. Curvature profile on the boundary. The detected

points of positive maximum curvature are marked with red

plus signs. Points of the outer and inner boundaries are in the

range [1, 1986] and above 1986, respectively.
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Fig. 3. Geometric attributes of points of maximum curvature

of every hypothesis edge.

component as V = ∪M
i=1vi, where M is the total number of

point of maximum curvature of this connected component.

3.2. Delaunay Triangulation of Points of Maximum Cur-

vature

3.2.1. Size of Hypothesis Space

It should be clear that the size of hypothesis space for po-

tential edge configuration is very large. In this section, we

examine the size of this space in order to justify triangulation

and exploiting inherent locality.

As shown in Fig. 3, let eij be the edge connecting two

points vi and vj . We then characterize it by (Ti, Tj , βij , βji),
in which (i) Ti and Tj are unit vectors representing the con-

tour tangent directions at vi and vj , and (ii) βij and βji are

the angles formed by Ti, Tj and eij .

Furthermore, the set of all edges are then denoted as E =
∪eij for i, j ∈ {1, · · · , M}. Let θ ∈ E be a decomposi-

tion of the configuration space Ω. The number of possible

decomposition in this space is |Ω| = 2M . Our aim is to re-

cover a decomposition of θ∗ that best fits a set of geometric

constraints. For an inferred edge eij and its attributes, these

constraints are: (i) that it must be inside the clump; (ii) that

the angle between Ti and Tj should be maximized (e.g., they

should be antiparallel); (iii) that βij , βji should be as close as

possible to π/2; and (iv) that it must not intersect other edges.

If more than one θ pass the geometric constraint test, then

the hypothesis with the best metric for convexity is accepted,

where convexity is defined as C = −N +
∑

N
i=1φi/π. Here,



(a) Delaunay triangulation (b) No background edges

(c) Edge pruning (d) Edge inference

Fig. 4. Edge refinement through the constraint satisfaction

network.

φi is the sum of the tangent angles formed along the contour

of the ith partition, and N is the total number of decomposed

partitions of the clump.

3.2.2. Delaunay Triangulation for Hypotheses Generation

The DT approach is applied to hypothesize potential edges.

Its following properties are suitable for our purpose: (i) edges

in DT do not intersect with each other, and (ii) the Euclidean

minimum spanning tree (EMST) is a subgraph of DT. As can

be seen in Fig. 4(a), DT (V ), the DT of point set V , is able

to provide meaningful edge information with less redundancy

than Ω for further processing. Furthermore, the number of

edges is reduced from M(M + 1)/2 to less than 3(M − 2)
with a computation complexity of O(M log M).

3.3. Enforcement of Geometric Constraints

3.3.1. Edge Set Pruning Using Geometric Constraints

DT edges provide a natural way of perceptually grouping the

points of maximum curvature to cut the clump without con-

sidering geometrical properties at each point. Nonetheless, its

size can still incur high computational costs to find θ∗. There-

fore, based on the attributes of each edge, DT (V ) can be

further reduced by using the following three additional edge

pruning rules: (i) deleting edge crossing the background; (ii)

deleting edge eij if (T T
i ·Tj) > λT ; and (iii) deleting edge

eij if max(|T T
i · eij/|eij||, |T T

j · eji/|eji||) > λβ . Here, λT

and λβ are thresholds. Pruning rules (ii) and (iii) are corre-

sponding to geometric constraints (ii) and (iii) mentioned in

Section 3.2.1, respectively. The results from applying the first

pruning rule and additional results from the other two rules

are shown in Fig. 4(b) and Fig. 4(c), respectively.

(a) (b)

(c) (d)

Fig. 5. Results of synthetic data. (a) is the synthetic image.

(b), (c), and (d) are results of watershed, marker-guided wa-

tershed, and our method, respectively.

3.3.2. Edge Set Selection by Inference

After edge pruning has been applied, the resulting edge set

becomes sparse and ready for the application of simple infer-

ence rules to get θ∗. Denoting the input and output edge sets

as Ein and Eout, with point set Vin and Vout, respectively,

and deg(vi) as the degree of point vi in the edge set, the algo-

rithm for edge inference is summarized as follows:

1. Let Ein be the edge set after edge pruning, and Eout←
∅.

2. While Ein 6= ∅

(a) In Vin, if deg(vi) = 1, then Ein ← Ein \ eij and

Eout ← Eout ∪ eij .

(b) In Eout, if eij ∈ Eout, then Ein ← Ein\ei∗\ej∗,

where ∗ stands for vertices.
(c) If eij ∈ Ein, ejk ∈ Ein, and eki ∈ Ein, with

deg(vi) = 2, deg(vj) = 2, and deg(vk) = 2,

then Ein ← Ein \ eij \ ejk \ eki, and Eout ←
Eout ∪ eij ∪ ejk ∪ eki.

3. For vi ∈ V with no ei∗ ∈ Eout. Use its tangent normal

direction to generate an edge into Eout.

4. For eij ∈ Eout, ejk ∈ Eout, and eki ∈ Eout, with

deg(vi) = 2, deg(vj) = 2, and deg(vk) = 2, choose

the two edges which produce the minimum convexity

after decomposition, and delete the remaining one from

Eout.

In the case where |V | = 1, Ein is set to be ∅. For the case

where |V | = 2, we set Ein = {e12} if e12 passes the edge

pruning test, and Ein = ∅ if not. As shown in Fig. 4(d), the

connected component is correctly decomposed into convex

regions by the final edge set θ∗ = Eout.

4. EXPERIMENTAL RESULTS

We have (i) examined the behavior of the method with syn-

thetic data; (ii) validated the technique with real data; and
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Fig. 6. Results of real data. The original image, watershed

results, marker-guided watershed results, and our method re-

sults are in the first, second, third, and forth rows, respec-

tively.

(iii) compared the performance of the method with a leading

method in the literature. The parameter settings are λβ = 0.9,

λT = −0.15, and λk = 0.1, which are set empirically. With

respect to comparison with the previous literature, we have

opted to test the watershed method with distance transform

[1], since it is widely used by the microscopy community.

In the synthetic test, objects were generated randomly,

and noise was added, as shown in Fig. 5(a). This ex-

periment shows that the marker-guided watershed reduces

oversegmentation as compared with the original watershed

method. Nonetheless, the result lacks smoothness along in-

ferred edges, and there is an inherent loss of accuracy. In

contrast, our proposed method partitions the clump along the

expected locations (e.g., points of maximum curvature) while

eliminating oversegmentation.

In the case of real data, a set of 10 DAPI-stained images

were acquired. Each image has roughly 100 cells. Again, the

watershed method suffered from oversegmentation while the

marker-based approach reduced the amount of oversegmenta-

tion. However, the marker-based approach did not decompose

some of the touching nuclei. In contrast, our method con-

sistently performed better than the marker-based approach.

Comparative results for three different images are shown in

Fig. 6.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a new approach for segmenting

clumps of nuclei by using the points of maximum curvature

as a basis for Delaunay triangulation. Triangulation provides

a set of hypotheses for boundary completion through a con-

straint satisfaction network. We have defined a set of geo-

metric constraints that facilitates hypothesis verification. Ad-

ditionally, the proposed method was compared with marker-

based watershed segmentation to demonstrate an improved

performance profile. Our continued research focuses on in-

corporating (i) learning and (ii) automatic selection of param-

eters for clump decomposition. Learning enables additional

filtering of false positive segmentation, and automatic param-

eter selection removes ambiguities associated with parameter

selection (e.g., threshold for curvature maxima). A potential

methodology will be to place the segmentation step in a feed-

back loop for improved performance and usability.
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