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Abstract—This paper is concerned with the problem of robust
filtering for linear systems with both discrete and distributed

delays, which are subject to norm-bounded time-varying param-
eter uncertainties. Both the state and measurement equations are
assumed to have discrete and distributed delays. A delay-depen-
dent condition for the existence of filters is proposed, which
is less conservative than existing ones in the literature. Via solu-
tions to certain linear matrix inequalities, general full-order filters
are designed that ensure asymptotic stability and a prescribed
performance level, irrespective of the parameter uncertainties. An
illustrative example is provided to demonstrate the effectiveness
and the reduced conservatism of the proposed method.

Index Terms— filtering, distributed delay, linear matrix in-
equality, robust filtering, time-delay systems, uncertain systems.

I. INTRODUCTION

OVER the past few years, a great deal of interest has been
devoted to the study of filtering problem, which is

concerned with the design of estimators such that the -in-
duced norm (for continuous systems) or -induced norm (for
discrete systems) from the noise signal to the estimation error
is less than a prescribed level [1], [11], [15]. In the setting,
the noises are assumed to be arbitrary deterministic signals with
bounded energy (or average power). Compared with traditional
Kalman filtering, the filtering approach does not require
knowledge of the statistical properties of the external noises. In
addition, filtering is insensitive to uncertainty in the exoge-
nous signal statistics as well as to uncertainty in dynamic models
[19]. These features make the filtering technique useful in
many applications [3], [18].

Time delays are frequently encountered in many practical
engineering systems, such as communication, electronics, hy-
draulic, and chemical systems. It is now well known that time
delay is one of the main causes of instability and poor per-
formance of a control system [5], [13], [14]. Therefore, there
has been an increasing interest in the control and estimation for
time-delay systems, and a great number of results on these topics
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have been reported in the literature; see, e.g., [10], [12], [13],
and the references therein. Recently, the filtering problem
for time-delay systems was studied in [17], where a Riccati
equation approach was developed to solve the problem. When
time delays appear in both the state and measurements, a suffi-
cient condition for the existence of filters was proposed in
[6], in which a design method based on Riccati equations was
presented. In the case when time delays and parameter uncer-
tainties appear simultaneously, the robust filtering problem
was solved in [21] and [25] via a Riccati equation approach and a
linear matrix inequality (LMI) approach, respectively. The cor-
responding results for the discrete case can be found in [16],
[20], and [23]. It is noted that all the above filtering results
are derived for systems with discrete delays. When the number
of summands in a system equation is increased and the differ-
ences between neighboring argument values are decreased, sys-
tems with distributed delays will arise. One application of dis-
tributed delay systems can be found in the modeling of feeding
systems and combustion chambers in a liquid monopropellant
rocket motor with pressure feeding [4], [7]. Very recently, the ro-
bust filtering problem for such systems has been dealt with
in [24], where sufficient conditions for the existence of fil-
ters have been obtained in terms of LMIs. However, it should be
pointed out that the aforementioned results for both the discrete
delay case and distributed delay case are delay-independent, that
is, they do not include any information on the size of delays. It is
known that delay-dependent conditions are generally less con-
servative than delay-independent ones, especially when the size
of the delay is small. Although delay-dependent results on the
robust filtering problem for systems with discrete delays
were presented in [8] and [9], respectively, no delay-dependent

filtering results on distributed delay systems are available
in the literature, which motivates the present study.

This paper deals with the problem of robust filtering for
linear uncertain systems with both discrete and distributed de-
lays. The time delays are assumed to appear in both the state and
measurement equations, and the parameter uncertainties are as-
sumed to be time-varying but norm-bounded which appear in
all the matrices in both the state and measurement equations.
A delay-dependent condition for the existence of filters
is proposed and an LMI approach is developed, which is less
conservative than existing ones in the literature. A general full
order filter is sought to guarantee that the resulting error system
is asymptotically stable and satisfies a prescribed perfor-
mance level for all admissible uncertainties. Desired filters
can be obtained by the solution to certain LMIs, which can be
solved numerically and efficiently by resorting to standard nu-
merical algorithms [2]. Finally, an illustrative example is pro-
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vided to demonstrate the less conservatism and effectiveness of
the proposed method.

Notation. Throughout this paper, the notation (re-
spectively, ) for real symmetric matrices and means
that the matrix is positive semi-definite (respectively,
positive definite). The superscript “ ” represents the transpose.

is an identity matrix with appropriate dimension.
is the space of square-integrable vector functions over .
The notation refers to the Euclidean vector norm, whereas

stands for the usual norm. Matrices, if not ex-
plicitly stated, are assumed to have compatible dimensions.

II. PROBLEM FORMULATION

Consider the following uncertain distributed delay system:

(1)

(2)

(3)

(4)

where is the state vector; is the mea-
surement; is the signal to be estimated, and

is the noise input which belongs to . The scalars
, represent the time delays of the system;

, is a real-valued continuous initial function on
. , , , and are known real constant matrices.

The matrices , , , , , and
are of the form

where , , , , , and are known real constant
matrices, and , , , , , and

are unknown matrices representing time-varying pa-
rameter uncertainties, which are assumed to be of the form

(5)

where , , , , and are known real constant ma-
trices, and is an unknown time-varying matrix
function satisfying

(6)

The uncertain matrices , , , ,
, and are said to be admissible if both (5) and

(6) hold.
Remark 1: The distributed delay model in (1)–(4) can be

used to describe some real systems, such as feeding systems
and combustion chambers in a liquid monopropellant rocket

motor with pressure feeding; see, e.g., [4], [7], and the refer-
ences therein.

For system , we now consider the following general full-
order filter for the estimate of :

(7)

(8)

where and . , , and are matrices
to be determined. Denote

(9)

Then, the filtering error dynamics from the systems and
can be obtained as

(10)

(11)

where

(12)

(13)

(14)

(15)

(16)

(17)

(18)

The purpose of this paper is to develop delay-dependent con-
ditions for the existence of robust filters for the uncer-
tain distributed delay system . Specifically, for given scalars

and , we are concerned with finding an asymp-
totically stable filter in the form of (10) and (11) such that
for any constant time delays and satisfying ,

the filtering error system is asymptotically
stable, and

(19)

under zero-initial conditions for any nonzero
and all admissible uncertainties, where is a given scalar.

Before concluding this section, we present the following
lemma, which will be used in the proof of our main results in
Section III.

Lemma: [25] Let , , and be real matrices of appropriate
dimensions with satisfying . Then, for any scalar
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III. MAIN RESULTS

The following theorem is essential for solving the robust
filtering problem formulated in the previous section.

Theorem 1: For any delays and satisfying
and , the filtering error system in (10) and
(11) is robustly asymptotically stable and (19) is satisfied under
zero-initial conditions for any nonzero and all
admissible uncertainties if there exist matrices , ,

, , , and a scalar such that the LMI
in (20), shown at the bottom of the page, holds, where

(21)

(22)

(23)

(24)

(25)

Proof: From (20), it can be seen that there exists a scalar
such that we have (26), shown at the bottom of the page.

By Schur complement equivalence, it follows from (26) that we
have (27), shown at the bottom of the page. Note

(28)

Then, using Lemma 1, we have the first equation at the bottom
of the next page. This, together with (27), gives that, for any

(20)

(26)

(27)
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delays and satisfying and , we
have (29), shown at the bottom of the page, where

(30)

(31)

Now, we show the robust asymptotic stability of the filtering
error system . To this end, we consider (10) with ,
that is

(32)

Define the following Lyapunov function candidate for system
(32):

(33)

where

Then, by Lemma 1, the time derivative of along the trajec-
tory of the system (32) is given by

(34)

(35)

(29)
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(36)

(37)

(38)

where

Therefore, noting

and using (34)–(38), we have

(39)

where we have the two equations at the bottom of the page. Note
that (29) implies (40), shown at the bottom of the page. Applying
the Schur complement formula to (40), we obtain

(41)

This, together with (39), gives

(42)

Therefore, along a similar line as in the proof of [26, Th. 1], it
follows from (42) that the filtering error system is robustly
asymptotically stable for any delays and satisfying

, .
Next, we will establish the performance of the filtering

error system under zero initial condition. To this end, we
introduce

(43)

where . Noting zero initial condition, it can be shown that
for any nonzero and

(44)

where is defined in (33). Then, following a similar argu-
ment as in the derivation of (39), we can obtain

(45)

(40)
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where we have the first two equations at the bottom of the page.
On the other hand, by the Schur complement formula, it follows
from (29) that

By this and (45), we have

which, together with (44), implies that for any nonzero
. Thus, for any delays and satisfying

and , the inequality in (19) holds.
This completes the proof.

Remark 2: The stability condition for distributed delay
system in (1) with can be easily inferred from The-
orem 1; such a stability condition will be less conservative than
that in [22] since in [22], some bounding techniques for some
cross terms are used, whereas in Theorem 1, such techniques
are not used.

Now, we are in a position to present a solution to the robust
filtering problem.

Theorem 2: Consider the uncertain distributed delay system
, and let be a prescribed constant scalar. Then, for any

delays and satisfying , , there
exists a filter in the form of (7) and (8) such that the filtering
error system is asymptotically stable, and (19) is satisfied if
there exist matrices , , , , ,

, , , , , and a scalar such that LMIs in (46),
shown at the bottom of the page, hold, and

(47)

where

(48)

(49)

(50)

(51)

(52)

(53)

(54)

(55)

(56)

and the matrix function is defined as

In this case, a desired robust filter is given in the form of
(7) and (8) with parameters as follows:

(57)

where and are any nonsingular matrices satisfying

(58)

(46)
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Proof: By (47), it is easy to see that is non-
singular. Therefore, there always exist nonsingular matrices
and such that (58) holds. Similar to [24], we define

(59)

where

Let

(60)

Then, by (47) and (58), it can be verified that .
Now, pre- and post-multiplying the LMI in (46) by
diag , we have (61), shown at the
bottom of the page, where , , , , , , and
are given in (21)–(25), respectively, and , , and are
given in (57). Finally, pre- and post-multiplying the LMI in (61)
by diag and its transpose, respectively,
and then using Theorem 1, we obtain the desired result.

Remark 3: Theorem 2 provides a sufficient condition for the
solvability of the robust filtering problem for uncertain dis-
tributed delay systems. Since the condition in (46) and (47) de-
pends on the size of the delays, it will be less conservative than
the existing delay-independent ones in [24]. It is also worth
pointing out that a desired filter can be obtained by solving
the LMIs in (46) and (47), which can be implemented by using
standard numerical algorithms [2]. The results in Theorem 2 can
be extended to multiple delay case along a similar line as in the
derivation of Theorem 2.

IV. ILLUSTRATIVE EXAMPLE

Consider the uncertain distributed delay system with pa-
rameters as follows:

Fig. 1. State response of x̂ (t) (—) and x̂ (t) (-�).

In this example, we suppose , and the performance
level . Then, it can be verified that the conditions in [24]
are not satisfied for this system, which implies that the condi-
tions in [24] fail to conclude whether or not there exist fil-
ters for this system. However, by Theorem 2 in this paper, it can
be calculated that for all , there exist robust

filters. As an example, we assume . In this case,
we use the Matlab LMI Control Toolbox to solve the LMIs in
(46) and (47) and choose

(62)

It can be seen that the matrices and chosen in (62) satisfy
(58). Therefore, according to Theorem 2, a desired filter
can be computed as

The simulation result of the state response of the designed filter
is given in Fig. 1, where the initial condition is ,
and the exogenous disturbance input is given as

Fig. 2 is the simulation result of the error response of .
From these simulation results, it can be seen that the designed

filter satisfies the specified requirements.

(61)
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Fig. 2. Error response ~z(t).

V. CONCLUSION

In this paper, the problem of robust filtering for linear
uncertain systems with both discrete and distributed delays has
been studied. A delay-dependent approach for the design of gen-
eral full-order filters has been developed. The designed filter
guarantees asymptotic stability and a prescribed perfor-
mance level of the error system for all admissible uncertainties.
The derived condition is less conservative than existing ones in
the literature, which has been demonstrated by an illustrative
example.
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