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Abstract- The real circuit model, such
as a partial element equivalent circuit
(PEEC), can be represented as a de-
lay differential equation (DDE) of neu-
tral type. The study of asymptotic sta-
bility of this kind of systems is of much
importance due to the fragility of DDE
solvers. Based on a descriptor system
approach, new delay-dependent stability
results are derived by introducing some
free-weighting matrices. As an applica-
tion of the results, the delay-dependent
stability problem of a PEEC model is in-
vestigated. The comparison of the results
with the existing ones is finally given by
using the PEEC model and another nu-
merical example.

I. I

In the study of practical electrical circuit sys-
tems, a small test circuit which consists of a par-
tial element equivalent circuit (PEEC) shown in
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Figure 1 — The PEEC model

Fig 1 was considered in [1]. The time domain
formulation of the PEEC can be represented as
a differential equation with communication de-
lay. The general form of model of this circuit is
given by [1]

C0ẏ(t) +G0y(t) + C1ẏ(t− τ)

+G1y(t− τ)

= Bu(t, t− τ), t ≥ t0,
y(t) = φ(t), t ≤ t0, (1)

where C0 is a diagonal matrix. φ(t) ∈ Ω0 is the
initial condition, where Ω0 denotes the set of all
continuously differential functions from [−τ , 0]
to Rn.
To be consistent with the mathematical nota-

tion, (1) can be rewritten as the following neu-
tral system [1]

ẏ(t)−Nẏ(t− τ) = Ly(t) +My(t− τ),

t ≥ t0
y(t) = φ(t), t ∈ [t0 − τ , t0] ,(2)



where y(t) ∈ Rn. L, M and N are known con-
stant matrices of appropriate dimensions. In
what follows, without loss of generality, we set
t0 = 0.
As is well known, a stable numerical solution

should be based on a stable model. Therefore,
the study of asymptotic stability of a system is
an important issue before handling its numer-
ical solution. For system (2), the contractiv-
ity and the asymptotic stability have recently
been addressed in [1, 5, 6]. In [1], only delay in-
dependent stability problem was considered for
system (2), while the importance on the study
of its delay-dependent stability was emphasized.
Based on the results on stability of neutral sys-
tems, the delay-dependent stability of system
(2) was investigated in [5, 6].
If we take the parameter uncertainties com-

monly existing in the modeling of a real system
and the variation of time delay into account, a
more general form of (2) is given by

ẏ(t)−Nẏ(t− τ(t)) = (L+∆L(t)) y(t)

+ (M +∆M(t)) ·
y(t− τ(t)),

y(t) = φ(t), t ∈ [−τ , 0] ,(3)

where ∆L(t) and ∆M(t) denote the parameter
uncertainties which satisfy

∆L(t) ∆M(t) = DF (t) Ha Hb , (4)

where D, Ha and Hb are known matrices with
appropriate dimensions. F (t) is an unknown
matrix function satisfying F (t) ≤ 1. τ(t) ≥ 0
denotes the time-varying delay satisfying τ(t) ≤
τ and τ̇(t) ≤ dτ < 1.
For system (3), we need the following assump-

tion [7]. Throughout this paper, the results will
be derived based on this assumption.

Assumption 1 All the eigenvalues of matrix
N are inside the unit circle.

In the past few decades, stability of a neutral
system has been the important research topic
of interest. Many results have been derived on
the delay -independent stability [3, 9] or delay-
dependent stability [2, 3, 4, 8, 9, 11]. More
recently, much attention has been paid to the

study of delay-dependent stability of the neu-
tral systems because the delay-dependent re-
sults are generally less conservative than the
delay-independent ones when the time delays
are small. Based on the first order transforma-
tion [3], relatively conservative delay-dependent
results were given in [10] because the first order
transformation often introduces the additional
dynamics to the transformed systems. When
the time delay is time-invariant, the delay-
dependent stability was studied in [3, 4, 11] by
introducing a neutral transformation or a para-
meterized neutral transformation. In terms of a
descriptor model transformation, Fridman and
Shaked [2] investigated the delay-dependent sta-
bility and stabilization of a more general form
of neutral systems.
In this paper, we continue the research work

on the delay-dependent stability of neutral sys-
tems. New stability criteria will be derived
for system (3) based on a descriptor system
approach. To do this, we first transform (3)
into a descriptor system by using the similar
way in [9]. Then, by introducing some free-
weighting matrices, we provide new criteria for
delay-dependent stability of system (3). The
criteria are derived in terms of a set of LMIs.
Then, using the developed method, the delay-
dependent stability will be investigated for the
PEEC model. Moreover, other comparison ex-
amples will also be given to show the less con-
servatism of the method.
Notation: Rn denotes the n-dimensional

Euclidean space, Rn×m is the set of n×m real
matrices, I is the identity matrix of appropriate
dimensions, · stands for the Euclidean vector
norm or the induced matrix 2-norm as appropri-
ate. The notation X > 0 (respectively, X ≥ 0),
for X ∈ Rn×n means that the matrix X is a real
symmetric positive definite (respectively, posi-
tive semi-definite). λmax(P ) (λmin(P )) denotes
the maximum (minimum) of eigenvalue of the
matrix P . For an arbitrarily matrix B and two

symmetric matricesA and C,
A B
∗ C

denotes

a symmetric matrix, where ∗ denotes the entries
implied by symmetry.



II. D

Define

x1(t) = y(t), x2(t) = ẏ(t)− Ly(t). (5)

Then, (3) can be transformed as an equivalent
system

ẋ1(t) = Lx1(t) + x2(t) (6)
0 = ∆L(t)x1(t)− x2(t)

+ (M +NL+∆M(t))x1(t− τ(t))

+Nx2(t− τ(t)), (7)
x1(t) = φ(t),

x2(t) = φ̇(t)− Lφ(t), t ∈ [−τ , 0] . (8)

Let E =
I 0
0 0

, A =
L I
0 −I , A1 =

0 0
M +NL N

, ∆A(t) =
0 0

∆L(t) 0
and

∆A1(t) =
0 0

∆M(t) 0
. (6)-(8) can be rewrit-

ten as the following time-delay descriptor sys-
tem of general form

Eẋ(t) = (A+∆A(t))x(t)

+ (A1 +∆A1(t))x(t− τ(t)),

x1(t) = φ(t),

x2(t) = φ̇(t)− Lφ(t), t ∈ −τ 0 , (9)

where x(t) = xT1 (t) xT2 (t)
T
. From (4),

∆A(t) and ∆A1(t) can be represented as

∆A(t) = D̃F (t)H̃a, ∆A1(t) = D̃F (t)H̃b, (10)

where D̃ =
0
D

, H̃a = Ha 0 and H̃b =

Hb 0 .

III. S A

To study the stability of (9), we first introduce
two definitions.

Definition 1 The neutral system (3) is said
to be exponentially stable, if there exist con-
stants α > 0 and β > 0 such that y(t) ≤
α sup−τ≤s≤0 φ(s) , φ̇(s) e−βt, for all ad-
missible uncertainties ∆L(t) and ∆M(t).

Definition 2 The descriptor system (9) is said
to be E− exponentially stable, if there exist con-
stants α > 0 and β > 0 such that Ex(t) ≤
α sup−τ≤s≤0 φ(s) , φ̇(s) e−βt, for all ad-
missible uncertainties ∆A(t) and ∆A1(t).

Remark 1 It is obvious that the exponential
stability of (3) is equivalent to the E− exponen-
tial stability of (9).

Now we state and establish the following re-
sult for the E− exponential stability of (9).

Theorem 1 Consider the descriptor system
(9). For given scalars τ ≥ 0 and dτ < 1, if there
exist matrices P̃1 > 0, P̃2, P̃3, Q̃ > 0, R̃ > 0,
T̃i and S̃i of appropriate dimensions (i = 1, 2, 3)
such that

Γ̃11 + H̃
T
a H̃a Γ̃12 + H̃

T
a H̃b

∗ Γ̃22 + H̃
T
b H̃b∗ ∗

∗ ∗
∗ ∗

Γ̃13 τ T̃1 S̃1D̃
Γ̃23 τ T̃2 S̃2D̃

Γ̃33 τ T̃3 S̃3D̃
∗ −τR̃ 0
∗ ∗ −I

 < 0, (11)

where

Γ̃11 = Q̃+ T̃1E +E
T T̃ T1 − S̃1A−AT S̃T1 ,

Γ̃12 = −T̃1E +ET T̃T2 − S̃1A1 −AT S̃T2 ,
Γ̃13 = P̃ + S̃1 +E

T T̃ T3 −AT S̃T3 ,
Γ̃22 = −(1− dτ )Q̃− T̃2E −ET T̃ T2

−S̃2A1 −AT1 S̃T2 ,
Γ̃23 = S̃2 −ET T̃ T3 −AT1 S̃T3 ,
Γ̃33 = τR̃+ S̃3 + S̃

T
3 ,

P̃ =
P̃1 P̃2
0 P̃3

,

then, the system (9) is E− exponentially stable
for any τ(t) satisfying τ(t) ≤ τ and τ̇(t) ≤ dτ <
1.



Proof. Proof is omitted
Next, we will provide a result for the case

when the uncertainties in parameter matrices
are polytopic. Suppose that the parameter ma-
trices L and M in (2) can be expressed as

L M =
K

i=1

λi Li Mi , (12)

where K
i=1 λi = 1, 0 ≤ λi ≤ 1.

Define

Ai =
Li I
0 −I and Ai1 =

0 0
Mi +NLi N

.

(13)
Then, the descriptor system version of system
(2) is given by

Eẋ(t) = Ãx(t) + Ã1x(t− τ(t)), (14)

where Ã = K
i=1 λiA

i and Ã1 =
K
i=1 λiA

i
1.

The following result can be easily obtained
by using the similar proof of Theorem 1.

Theorem 2 Consider the descriptor system
(14). For given scalars τ ≥ 0 and dτ < 1, if
there exist matrices P j1 > 0, P j2 , P

j
3 , Q

j > 0,

Rj > 0, T ji and Si of appropriate dimensions
(i = 1, 2, 3; j = 1, 2, ..., N) such that

Γj11 Γj12 Γj13 τT j1
∗ Γj22 Γj23 τT j2
∗ ∗ Γj33 τT j3
∗ ∗ ∗ −τRj

 < 0, (15)

where Γjik (i, k = 1, 2, 3) are the same as Γ̃ik in
Theorem 1 by replacing A, A1, P̃ , P̃1 > 0, P̃2,
P̃3, Q̃ > 0, R̃ > 0, T̃i and S̃i with Aj , A

j
1, P

j ,

P j1 > 0, P j2 , P
j
3 , Q

j > 0, Rj > 0, T ji and Si,

respectively, where P j =
P j1 P j2
0 P j3

, then, the

system (14) is E− exponentially stable for any
τ(t) satisfying τ(t) ≤ τ and τ̇(t) ≤ dτ < 1.

IV. A

To illustrate the effectiveness of the method in
this paper, we give two numerical examples for
comparison.

Example 1 Consider the PEEC model. In this
example, we take

L = 100×
 β 1 2
3 −9 0
1 2 −6

 ,
M = 100×

 1 0 −3
−0.5 −0.5 −1
−0.5 −1.5 0

 ,
N =

1

72

 −1 5 2
4 0 3
−2 4 1

 ,
∆L(t) ≤ δ, ∆M(t) ≤ δ, (16)

where β < 0 and δ ≥ 0.
For δ = 0, when β = −7, the stability problem

of (16) was studied in [1, 6]. The result in [1] is
delay-independent and the result in [6] is delay-
dependent. Using our method, it can be shown
that the system (16) is exponentially stable in-
dependent of size of delay τ for any β < −2.106.
However, even for the case of β = −4, the crite-
ria in [1, 6] fail to determine the stability of the
system (16). In terms of a new result of neutral
systems, Han [5] studied the delay-dependent
stability problem of the PEEC model. The com-
parison of Theorem 1 with the method in [5] is
listed in Table 1.

Table 1: Bound τmax calculated for various β

β −2.105 −2.103 −2.1
Han’s paper [5] 1.0874 0.3709 0.2433
Theorem 1 1.1413 0.3892 0.2553

Obviously, for this example, our results are
less conservative than the ones obtained in [5].
For δ = 2, the computational results of τmax

for various β are given in Table 2.

Table 2: Bound τmax for various β and δ = 2

β −2.105 −2.103 −2.1
Theorem 1 0.4064 0.2783 0.2079

.

Example 2 Consider the uncertain neutral
system (3) with parameters

L =
−2 0
0 −1 , M =

−1 0
−1 −1 ,



N =
c 0
0 c

, ∆L(t) =
δ1 0
0 δ2

,

∆M(t) =
γ1 0
0 γ2

, (17)

where 0 ≤ |c| < 1 and δi and γi (i = 1, 2) denote
the parameters uncertainties satisfying

|δ1| ≤ 1.6, |δ2| ≤ 0.05, |γ1| ≤ 0.1, |γ2| ≤ 0.3.

For c = 0, system (17) reduces to the system
studied in [2]. For this example, the comparison
of Theorem 2 with the method in [2, 5] is listed
in Table 3.

Table 3: Bound τmax calculated for various dτ

dτ 0 0.5 0.9
Fridman’s paper [2] 1 < 0.9 < 0.8
Han’s paper [5] 1.03 0.5 0.08
Theorem 2 1.61 1.28 0.88

For c = 0.1, the comparison of Theorem 2 with
the method in [5] is listed in Table 4.

Table 4: Bound τmax calculated for various dτ

dτ 0 0.5 0.9
Han’s paper [5] 0.8 0.41 0.07
Theorem 2 1.54 1.20 0.72

From the above comparison, it has been found
that, for this example, our results are less con-
servative than the ones in [2, 5].

V. C

In this paper, the delay-dependent stability of
an PEEC model has been investigated. The
computational result was obtained based on a
new delay-dependent stability criterion of neu-
tral systems. Different from the existing meth-
ods, to derive the stability criterion, a descriptor
system approach was employed and some free-
weighting matrices were introduced, which can
be chosen properly to lead to a less conservative
result. The comparison examples have shown
that our method can lead to less conservative
results than those obtained by other methods.
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