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Abstract. We present a competition model of tumor growth that includes the immune system
response and a cycle-phase-specific drug. The model considers three populations: Immune
system, population of tumor cells during interphase and population of tumor during mitosis.
Delay differential equations are used to model the system to take into account the phases
of the cell cycle. We analyze the stability of the system and prove a theorem based on the
argument principle to determine the stability of a fixed point and show that the stability may
depend on the delay. We show theoretically and through numerical simulations that periodic
solutions may arise through Hopf Bifurcations.

1. Introduction

According to theAmerican Cancer Society, every year more than one million people
in the United States are diagnosed with cancer and each year over 500000 die from
cancer. It comes as no surprise that scientists around the world have been trying to
successfully model the disease. The idea is to gain understanding of the process,
and to design better treatment strategies or improve existing strategies to eradicate
the disease or at least to improve the patient’s quality of life. Different types of
models have already been constructed, and each one contributes in its own way
to a better understanding of cancer and the dynamics that determine the patient’s
outcome.

In this paper we are interested in modeling the effects and interactions between
tumor cells and immune cells, clearly differentiating between phases for subsequent
treatment with a cycle-phase-specific drug, i.e. a drug that acts on a specific phase
of the cell cycle. In many instances most of these drugs (for example Hydroxy Ara–
C, Paclitaxel and others) interfere with mitosis, disabling the cell from continuing
in the cell cycle, thus stopping proliferation and allowing natural death of cells and
the immune system to kill these arrested cells (see [1]). To model this situation it
is most natural to subdivide the tumor population into its different stages or cycle
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phases to properly account for cycle-specificity. In this way it is simpler to control
and model how the drug acts on the different stages of the cycle.

Previously, authors such as Adam and Panetta [2], have modeled cycle specific
chemotherapy. In their paper they consider two compartments, the cycling (prolif-
erating) cells and the resting (quiescent) cells and study the effects that different
dosing intervals have on the populations considered. The inclusion of the immune
system in a mathematical model was studied by Kirschner and Panetta ([3]). In
their paper they study immunotherapy as an alternative to chemotherapy. In [4]
the authors model the cytotoxic T lymphocyte response to an immunogenic tumor,
and find that the model exhibits phenomena that are seen in patients but that had
previously remained unexplained.

The model we propose is an extension of the models above, but the approach
that we will take differs from the works cited in that we will subdivide the cycling
tumor population into phases but we will not consider the quiescent phase (com-
monly denoted as G0). We are interested however in the interaction of the tumor
cells and drug with the immune system: we use the size of the immune population
as a first representation of the patient’s health, and we include its ability to fight
cancer in the model. One major difference between this work and that of others is
the use of Delay Differential Equations (DDE). They appear naturally when one
considers the cell cycle. Also, the importance of DDE, is well explained by Baker
et al. [5]. In their work, Baker and colleagues fitted the models to existing data using
least squares estimates for the parameters and compared different models, to find
that the delayed versions provided a much better fit by calculating the euclidean
norm of the errors.

The paper is organized as follows: In section 2 we present the governing equa-
tions of our system, section 3 provides estimates for some of the parameter values
involved in the model, section 4 assesses the stability of the fixed points that arise in
the model, and shows the occurrence of a Hopf Bifurcation, and section 5 contains
a brief discussion of the results.

2. The model

The cell cycle is the process between two cell divisions (or mitosis) ([6], [7]), and it
can be divided into 4 phases: the G1 phase is a resting phase (or gap period) called
pre-synthetic phase. G1 could last as long as 48 hours and is the longest phase of
the cycle. The next phase is the S phase or synthetic period, where the replication of
DNA occurs. This phase may last between 8 and 20 hours. The cells complete the
DNA replication and enter another gap period G2 called the post-synthetic phase.
G2 is a preparation phase for mitosis. The last phase is mitosis M in which the cells
segregate the duplicated sets of chromosomes between daughter cells. Mitosis is
the shortest phase of all, lasting up to one hour. The duration of the cell cycle is very
much dependent on the type of cell and their growth conditions. The most typical
normal cell will have a cell cycle duration of approximately 24 hours, with various
exceptions (e.g. liver cells can take up to a year to complete their cycle). However
a study made by Tubiana and Malaise ([8]) on 30 solid human tumors reveal that
the median duration of these phases can be even higher with a cell cycle duration
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lasting a median time of 2 days and distributed as 1 day for G1, 18 hours for S, 6
hours for G2, leaving just approximately 1 hour for mitosis, M . These values are
median values and one must be cautioned to the fact that different cell lines have
different cell cycle times (normal and cancerous cells). They give evidence that the
cell cycle time is approximately twice as large in man than in animals.

There are many checkpoints throughout the cell cycle that prevent the cell from
completing the cycle if it detects an abnormality. A cancerous cell does not neces-
sarily divide more rapidly than their normal counterparts, but they lose the ability
to regulate the cell cycle, thus proliferation of these cells is not controlled. Once
mitosis is completed each daughter cell can enter the cycle again or shift into a
quiescent phase, commonly denoted as G0, during which cells do not divide for
long periods. Phase-specific drugs alter the natural course of action for the active or
cycling cells. Many chemotherapeutic agents acting on the S phase aim to suppress
mitosis, and therefore have no visible effect until the M phase.

In this work we exclude the quiescent phase. This assumption is a simplification
of the model whose effect will be worth exploring in more detail in future work
since it is known that the cells in this phase are resistant to most cytotoxic agents
and that approximately only 20% of the cells are cycling ([9]). We assume that the
drug is cytotoxic to both the immune system (which interacts with tumor cells at
any stage of their cycle) and the tumor cells. This assumption comes from the fact
that cycle specific drugs are more cytotoxic to rapidly proliferating cells including
those in the bone marrow, among others. We will assume that the drug arrests tumor
cells in mitosis, and that the concentration of drug decays exponentially with time.
Since mitosis is short in comparison with the rest of the cycle we will assume that
mitosis is an instantaneous process.

Let TI (t) denote the population of tumor cells during interphase at time t , where
interphase is the pre-mitotic phase, namely G1 + S +G2. Let TM(t) be the tumor
population during mitosis at time t , I (t) be the immune system population at time
t , u(t) the amount of drug present at time t , and τ be the resident time of cells in
interphase. The governing equations for the system are:

T ′I = 2a4TM − (c1I + d2)TI − a1TI (t − τ)

T ′M = a1TI (t − τ)− d3TM − a4TM − c3TMI − k1(1− e−k2u)TM

I ′ = k + ρI (TI + TM)n

α + (TI + TM)n
− c2ITI − c4TMI − d1I − k3(1− e−k4u)I

u′ = −γ u (1)

with initial data given by:

TI (t) = φ1(t) for t ∈ [−τ, 0]
TM(t) = φ2(t) for t ∈ [−τ, 0]

I (t) = φ3(t) for t ∈ [−τ, 0]
u(0) = u0

In reality we only need TI determined on the interval [−τ, 0], but we may specify
the complete history of the system in the interval mentioned above. The terms d2TI ,
d3TM and d1I in the model equations represent proportions of natural cell death or
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apoptosis, a1 and a4 represent the different rates at which cells cycle or reproduce,
the ci terms represent losses from encounters of tumor cells with immune cells and

the term
ρI (TI + TM)n

α + (TI + TM)n
represents the nonlinear growth of the immune popula-

tion due to stimulus by the tumor cells. We have chosen a Michaelis-Menten form
for this term following other models in the literature, (see, for example, [10], [3]
and [4]). We feel that this form is reasonable since proliferation of tumor-specific
effector cells is stimulated by the presence of tumor cells, but reaches a saturation
level at tumor populations. Hence, the recruitment function should be zero when
there are no tumor cells, and should increase monotonically towards a horizon-
tal asymptote: this rational form reflects these characteristics in a simple, smooth
function. The parameters ρ, α, and n depend on the type of tumor being considered
and the health of the immune system, specifically its ability to produce certain
cytokines. In the absence of tumor cells (TI = TM = 0), the immune cells grow at
a constant source rate k. The tumor cells reside in interphase for a certain period of
time τ , before continuing in the cycle to M . Assuming that cells reside in interphase
τ units of time, then the cells that enter mitosis at time t are those cells that entered
interphase τ units of time before. This explains the terms TI (t − τ) in system (1).

It is worthwhile noting that the usual growth term encountered in other growth
models such as, for example, logistic, gompertz, and exponential functions (see
references [10], [4], [11], [12], [13], and [14]) is absent here, since the growth of
the tumor cell population is obtained through mitosis and is given by the constants
a1, a4, and τ which regulate the pace of cell division.

The terms TMI and TI I are standard competition terms that in our model will
represent losses due to encounters among the different cell types. For high con-
centrations of drug we know that the drug arrests tumor cells in mitosis where
they die naturally when they fail to continue in the cycle. One way to view this is
by assuming that once the drug encounters the tumor cell, the tumor cell is taken
out of the cycle and can no longer proliferate. This can be modeled by the term
−k1(1 − e−k2u)TM , but there are other curves that describe a similar feature (see
[11]). High drug concentration also impairs the immune system by either destroy-
ing cells or diminishing their ability to attack the tumor cells; we model this by a
term similar to the tumor drug-kill term, but with different coefficients.

The drug decay is assumed to be exponential, and the coefficient γ incorporates
both the elimination and absorbtion effects. We further assume that application of
the drug ceases at time t = 0 (so that u(0) = u0 > 0); in [15] the effect of mul-
tiple applications of the drug is considered as well as a more accurate description
elimination and absorbtion of the drug (modeled a sum of exponentials). Given that
treatment options are beyond the scope of this paper and for the sake of simplicity
we will consider these two effects together.

3. Parameter values

The issue of selecting appropriate parameter values is an important one, since they
determine the dynamics of the system (number of fixed points and stability of each).
As one varies one or two parameters we can see dramatically different behaviors
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in the solutions of the equations. Baker et al. ([5]) found suitable parameter values
by minimizing an error function (least squares fit to data). Birkhead et al. ([9])
obtained their parameter estimates for a breast cancer model by using values cor-
responding to some known values for leukemic cells. By analyzing the biological
meaning of the different parameter values one might make an educated guess as to
an appropriate range for them.

The description of the growth of a tumor is defined in terms of three principal
parameters: the cell cycle time of proliferating cells, the proportion of cells prolif-
erating and the extent of cell loss ([16]). It is possible through the percentage of
labelled mitosis curves (FLM) to determine the growth fraction as well as cycle
times Tc. The potential doubling time, T , is the time tumor cells would take to dou-
ble in the absence of cell loss and is defined as T = λ

TS

L.I.
, where λ is an artificial

parameter that takes into account the rate in which proliferating cells are produced.
λ is often taken to be 0.75 [16]. If we have at least two observations of the volume
of the tumor ((t0, v0), (t1, v1)) then we can obtain the actual doubling time Td .

There are many different types of cells that comprise the immune system and
each one with different functions. Some very important cell types are the lym-
phocytes. A subset of the lymphocytes are the T cells which are divided into two
subcategories, the helper T cells, and the cytotoxic T cells (CTL) which actively
fight or disable tumor cells. We will focus our attention on CTL (cytotoxic T Lym-
phocytes) as the primary representation of the immune system given its importance
in the battle against cancer, however we are well aware that the immune system
is much more complex. We will focus on one to one bindings of CTL to tumor
cells, based on studies which show that this configuration is more frequent than
others ([17]), and disregard all other possible forms of interactions between these
cell lines (two to one bindings, etc.).

The values for losses of CTL due to encounters with tumor cells, as well as
the source rate for CTL and the natural death rate, d1 were obtained from [4]. The
parameter n, which determines the shape of the response term, was determined
by examining qualitative aspects of data in several theoretical and in vitro studies,
for example, [18], [19], [20], and [21]. While n = 1 has been used in the litera-
ture, ([4], [3]), we felt that the infinite derivative of the resulting function at zero
was not biologically realistic. The studies mentioned show that, in fact, there is a
threshold of antigen necessary to stimulate a noticeable immune response, and that
the steepness of the response best matches the value of the exponent n = 3. The
parameters ρ and α were determined by requiring a tumor-free fixed-point and a
saturation level consistent with those given in the literature. Table 1 summarizes
the parameter values.

Before we begin with the analysis it is important to non-dimensionalize and

scale our variables. Consider the following change of variables T = t

day
, x =

TI

TI (0)
, y = TM

TM(0)
, z = I

I (0)
and w = u

PPC
, where PPC is the peak plasma

concentration, and TI (0) = TM(0) initial reference values (taken to be 106 cells).
With this change of variables our system can be written in our new dimensionless
variables (x, y, z, w) as:
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Table 1. Parameter Values and Range.

Parameter Estimated value Source and Comments

τ 22 hr. ( 0.9167 days) [22] Mitosis is considered

instantaneous so τ=Tc

a1 0.8470 day−1 [22] Regress on equations

with no drugs, and no immune

a4 0.9159 day−1 [22] Same as above

d2 0.1145 day−1 [22], [16] Consider the discre-

pancy between Td and T

d3 0.6641 day−1 [22], [16] Same as above

c1 = c3 2.16× 10−7 cell−1 day−1 [17] Similar estimates in [4]

c2 = c4 3.422× 10−10 cell−1 day−1 day−1 Use parameters in [4] as refer-

ence due to lack of data

k 1.3× 104cell day−1 Use parameter in [4]

d1 0.04 day−1 [4] Consider
dI

dt
= k − d1I

n 3 See [18], [19], [20] and [21]

ρ 0.2 day−1 Suggested value from

biological meaning.

α (0.3× 106cell)3 Same as above

dx′

dT
= 2a4y − c1 × 3.5× 105zx − d2x − a1x(T − τ)

dy′

dT
= a1x(T − τ)− d3y − a4y − c3 × 3.5× 105zy − k1(1− e−k2PPCw)y

dz′

dT
= k/(3.5× 105)+ ρz(x + y)3

α/1018 + (x + y)3 − c2 × 106zx − c4 × 106yz− d1z

−k3(1− e−k4PPCw)z

w′

dT
= −γw

(2)

by renaming the variables T , x, y, z, and w to t, TI , TM, I, and u, and the
parameter values as c1 = c1 × 3.5 × 105, c3 = c3 × 3.5 × 105, c4 = c4 × 106,
c2 = c2 × 106, k2 = PPCk2, k4 = PPCk4, k = k/(3.5× 105), and α = α/1018,
then all the parameter values and variables do not have dimensions. We will work
with non-dimensionalized parameters from this point on. However, we would like
to point out that the parameters will vary between tumor types and from person to
person. Therefore there is no unique set of parameters values for any given mod-
el. The new parameter values are summarized below and they will provide a base
point for the exploration of the entire parameter space. In what follows we have
allowed ourselves to vary these values for purpose of analysis leading to a deeper
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understanding of the behavior of the model, and for a clearer illustration of different
behaviors.

a1 = 0.84 a4 = 0.91 c1 = c3 = 7.56× 10−2 d1 = 0.04 d2 = 0.11

d3 = 0.66 c2 = c4 = 3.422× 10−4 k = 0.037

In later works ([15] the parameter estimation for the drug terms are included
(since we do not make specific use of them here).

4. Stability results

The long-term behavior of the system is crucial to the outcome of therapy. De-
pending on the initial conditions, a trajectory can either converge to an attractor, or
diverge to infinity. In our system the attractor may be an equilibrium point, a limit
cycle, or a higher dimensional subset of phase space. Knowing the conditions for
which we can obtain all these possibilities enables us to better understand the long
term behavior of our system. We first study the stability of the fixed points of the
system described in the previous section.

4.1. Drug-free system

We first determine the type of dynamics that can arise in the system without the
presence of the drug. The rationale behind this is to use the information about the
drug-free system when designing chemotherapeutic protocols: when we stop treat-
ment, we would like the patient to be ‘cured’, or to be inside the basin of attraction
of the tumor free fixed point. We therefore begin by eliminating all drug terms in
the model, computing the fixed points of this new drug-free system, and analyzing
their stability. It is also of interest to study how the delay τ affects the behavior of
our system and how each element contributed to the overall stability. So we begin
by analyzing the simplest case: a drug-free model in a non-delay case in absence
of the immune response.

4.1.1. Drug-free model in a non-delay case in absence of immune response
In this case the equations are a simple set of ordinary differential equations:

T ′I = 2a4TM − (d2 + a1)TI , TI (0) = φ0
T ′M = a1TI − dTM, TM(0) = φ1

This is a linear system with the only fixed point being (TI , TM) = (0, 0) and
d = d3 + a4. The trace of the corresponding matrix representation of the sys-
tem is tr = −(d + d2 + a1) < 0. and the determinant �, is given by: � =
d(d2 + a1)− 2a1a4. The eigenvalues associated with the matrix are given by

λ± = tr ±√tr2 − 4�

2
.

Notice that if � < 0, then tr2−4� > 0, and the fixed point results in a saddle (one
positive eigenvalue and one negative eigenvalue), which will result in an unstable



A delay differential equation model for tumor growth 277

fixed point. If � > 0, then we are in the presence of a stable fixed point (a stable
spiral if tr2 − 4� < 0, and a stable node if tr2 − 4� > 0).

So the necessary condition for tumor growth is � < 0, i.e.

d(d2 + a1) < 2a1a4

and the tumor-free state will be stable otherwise. In other words, if the growth rates
dominate the death rates, the tumor will grow.

4.1.2. Drug-free model when τ > 0, in the absence of immune response
When we add the effect of the delay in the simple system of section 4.1.1 we get
the system

T ′I = 2a4TM − d2TI − a1TI (t − τ), TI (t) = φ0(t) t ∈ [−τ, 0]
T ′M = a1TI (t − τ)− dTM, TM(t) = φ1(t) t ∈ [−τ, 0]

Note that the system in section 4.1.1 corresponds to the special case when τ = 0.
We are interested in studying how the conditions for tumor growth are varied for
a positive value of the delay τ . As before the only fixed point of this system is the
point (0, 0).

The determination of stability in the case of a DDE is analogous to the ODE
case: we linearize the system around the fixed point and consider exponential so-
lutions which are characterized by the eigenvalues or exponents of these solutions.
These eigenvalues are the roots of the characteristic equation of the system, which
in general has infinitely many solutions (for more details on DDE refer to Bellman
and Cooke [23] or Hale and Lunel [24]). The fixed point in question is stable if, as
in the case of ordinary differential equations, all the eigenvalues have negative real
parts.

The characteristic equation for this system around the fixed point (0, 0) is given
by

F(λ) = P(λ)+ e−τλQ(λ) = (λ+ d)(λ+ d2)+ e−τλ(a1λ+ (a1d − 2a1a4)).

There are many ways in which we can determine if there is a root λ of the
characteristic equation with positive real part. Geometric arguments can be used to
establish the stability of a given fixed point, such as those used by Mahaffy in [25],
where the argument principle is used to count the number of zeros of F(λ) on the
right hand side of the complex plane. In this case we will resort to some results by
Cooke and van den Driessche in Theorem 1 of [26].

They define the function

F1(y) = |P(iy)|2 − |Q(iy)|2 (3)

and analyze the function F1, giving conditions under which equation F(λ) is stable
as a function of τ . They also give conditions under which stability changes may oc-
cur as the delay is increased and show that in these cases the fixed point is unstable
for large enough τ . In summary, if F1 has no positive real roots then the stability
of F(λ, τ) is the same as the τ = 0 case. Otherwise, if F1 has positive real roots



278 M. Villasana, A. Radunskaya

(and they are simple) then stability switches may occur as τ increases, and there is
a positive number T ∗ such that for all τ > T ∗, F(λ, τ) is unstable. The interested
reader is referred to [26] for more details.

Following the steps in this theorem it is straightforward to check the stability
of the fixed point and find the conditions for tumor growth. In this case F1(y) is
found to be:

F1(y) = y4 + (d2
2 + d2 − a2

1)y2 − a2
1(d − 2a4)

2 + d2
2d2

by letting x = y2, the equation is transformed into a quadratic with roots given by:

x =

(
−(d2

2 + d2 − a2
1)±

√
(d2

2 + d2 − a2
1)2 − 4d2

2d2 + 4a2
1(d − 2a4)2

)

2

From the above expression we can obtain conditions for tumor growth, tumor
decay and stability switching. We can summarize these results as follows:

1. if

� < 0

then (0, 0) is unstable (this is the condition for tumor growth), where � is
defined as before.

2. if 


d > 2a4
d(a1 − d2) > 2a1a4
� > 0

or 


the quantity inside the radical is positive
d2

2 + d2 − a2
1 < 0

� > 0

then there are crossings of eigenvalues from the left hand side of the plane to
the right hand side and therefore there is a switch (or change) in the stability,
from stable to unstable.

The complement of these regions is where the system converges towards the (0, 0)

fixed point, i.e., the fixed point is stable. All these conditions are better expressed
in pictures. Say we fix the parameters a4 and d2, and we plot the curves that define
the regions of growth, decay and stability switching. Setting a4 to 0.5 and d2 to 0.3,
the resulting curves are seen in Figure 1. There are five clearly identified regions
labelled R-I, R-II, R-III, R-IV, and R-V. In the case when τ = 0, the region of
tumor growth is given by R-I and the complement is the region in the parame-
ter space a1 − d, where we get tumor decay. When we increase τ , the region of
tumor decay is subdivided to include regions of possible stability switching. In
the case τ > 0, R-I remains the region of tumor growth. The decay region in the
case for τ = 0, is now smaller when τ > 0. When τ = 0, the decay region is
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Fig. 1. Setting our parameter to a4 = 0.5 and d2 = 0.3 we obtain a stability map in a1 and
d. Depending on the parameter values we may have up to 5 different regions. In the case
when τ = 0, the region of tumor growth is given by R-I and in the complement we get tumor
decay. When we increase τ , the pure growth region is essentially unaltered, but when τ > 0
the decay region is given by R-II ∪ R-IV, while in R-III ∪ R-V there is stability switching
as τ increases. Region R-V is shown in the graph with an arrow pointing to its center.

given by R-II ∪ R-III ∪ R-IV ∪ R-V, but when τ > 0 the decay region is given by
R-II ∪ R-IV, while in R-III ∪ R-V there is stability switching as τ increases but
eventually for sufficiently large τ > T it will remain unstable. This fact can be
illustrated in figure 2. In the upper portion of the graph we have set our parameter
values in region R-III for τ = 1 and in this case we see that the tumor decays.
This situation will prevail up to τ = 14.25, after which the tumor grows. This
switching of the stability of the fixed point from stable to unstable and vice versa
may continue, but eventually (according to the theorem) the tumor will grow for
large enough τ . In his publication ([27]), Bo gives precise information on the τ

values for which the fixed point is stable or not.
In cancer chemotherapy stability switching is a very important issue in the de-

sign of a drug protocol. We must keep in mind that in many cases the drugs prevent
cells from continuing through their cell cycle, thus trapping them at some point
during interphase, where the cells die from natural causes. This effect can be in-
terpreted as an increase in the delay τ . But as we have seen here this trapping may
have an adverse effect, since it may cause the tumor free fixed point to become
unstable when it was stable initially. On the other hand, the same properties can be
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Fig. 2. (a) shows tumor decay when we set τ = 1 (days) and the parameter values in region
R-IV of figure 1. Theorem 1 of [26] indicates that for τ = 9.5 a pair of eigenvalues cross
the imaginary axis, thus rendering the fixed point unstable. (b) is the result of the numeri-
cal integration for τ = 11 (days). The oscillations in (b) are predicted by a pair of purely
imaginary eigenvalues.

used to the clinicians advantage, if we are certain that our parameters are in region
R-V of figure 1 and the fixed point is unstable. In this case, it may be possible to
use the same trapping mechanism to stabilize of the tumor-free equilibrium.

An important characteristic that we can extract from figure 1 is the de-stabiliz-
ing effect that the delay has on our system. Note that the region of tumor decay
is much smaller when τ > 0, compared to the case τ = 0. This means that the
duration of the cell cycle is a determining factor in the outcome of the disease and
theoretically be affected by the administration of a particular drug. Therefore, it is
possible that the size of these regions might influence the choice of drug, and the
eventual cure.

4.1.3. Drug-free model in a non-delay case with immune suppression
We now add the effect of immune suppression when τ = 0. In this case the system
considered is:

T ′I = 2a4TM − (c1I + d2)TI − a1TI

T ′M = a1TI − d3TM − a4TM − c3TMI

I ′ = k + ρI (TI + TM)n

α + (TI + TM)n
− c2ITI − c4TMI − d1I
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(0, 0, k/d1) is a fixed point of this system with zero tumor level and a positive
immune level. In general, there will be other fixed points, but this fixed point is
of particular interest since it represents a tumor-free state. The linearization about
(0, 0, k/d1) is


 TI

TM

I



′

(t) =

−d2 − a1 − c1k/d1 2a4 0

a1 −d − c3k/d1 0
−c2k/d1 −c4k/d1 −d1





 TI

TM

I




Let d̂1 = k/d1, and d = d3 + a4, and for notational convenience we will drop
the hat on d̂1. Clearly λ = −d1 is an eigenvalue, the remaining eigenvalues are
given as the solutions to the characteristic equation

λ2 + λ(a1 + d2 + (c1 + c3)d1 + d)+ (a1 + d2 + c1d1)(d + c3d1)− 2a1a4

Let ¯tr = −(a1 + d2 + (c−1 + c3)d1 + d), and �̄ = (a1 + d2 + c1d1)(d +
c3d1) − 2a1a4 = � + (c1 + c3)d1. Notice that the trace ¯tr is always negative (as
in the system without immune response). Also note that if � > 0, then �̄ > 0.
This means that in the regions of the parameter space where (0, 0) was stable, then
(0, 0, d1) is also stable. If � < 0, then �̄ can be either positive or negative so we
have �̄ < 0⇔ � < −d1(c1 + c3), giving the condition for tumor growth.

As before we can make a plot in the a1 − d parameter space (Figure 3), com-
paring the regions of tumor growth and tumor decay in the case τ = 0 with and
without immune suppression. From Figure 3 we see that the region of tumor growth
is reduced in size when compared to the case with no immune. The parameter values
were set to clearly differentiate the two curves for pedagogical purposes.

4.1.4. Drug-free model when τ > 0, with immune suppression
Again (0, 0, k/d1) is a fixed point and its analysis is similar to the case in section
4.1.2 though computations are complicated by more terms. This system has the
same fixed points as the system described in section 4.1.3, but again we focus on
the tumor free fixed point.

In the case of a positive delay, the characteristic equation for the linearized
equation around a fixed point (T̂I , ˆTM, Î ) is given by:

F(λ) = P(λ)+ e−τλQ(λ)

= λ3 + p2λ
2 + p1λ+ p0 + e(−τλ)

[
q2λ

2 + q1λ+ q0

]
(4)

with coefficients

p2 = p + q + r, p1 = pq − ce
ˆTMw + r(p + q)+ z,

p0 = rpq − c3 ˆTM(wr − 2za4)+ pz

q2 = a1, q1 = a1(p + q − 2a4), q0 = a1(pq − c3 ˆTMw − 2a4q + c1T̂Iw)

p = d3 + a4 + c1Î , q = c2T̂I + c4 ˆTM + d1 − ρ(T̂I + ˆTM)3

α + (T̂I + ˆTM)3
, r = d2 + c1Î
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Fig. 3. Setting our parameter to a4 = 0.6, d2 = 0.3 we obtain a stability map in a1 and d
plane. In the case when τ = 0, the region of tumor growth with no immune suppression is
limited by the upper curve; below this curve, there is tumor growth and above this curve there
is tumor decay. The corresponding curve when immune suppression is added is shown to lie
consistently below the first. In generating this figure parameter values were set to k = 0.1,
d1 = 0.6, c1 = c3 = 0.05.

w = c4Î − 3αÎ (T̂I + ˆTM)2

[α + (T̂I + ˆTM)3]2
, and z = c2Î − 3αÎ (T̂I + ˆTM)2

[α + (T̂I + ˆTM)3]2
.

Geometric arguments using the argument principle can be used to establish the
stability of a given fixed point by counting the number of zeros of F(λ) on the
right hand side of the complex plane ([25]). The argument is based on the relative
orientation of F when compared to P as we traverse a given contour. Unfortunate-
ly, the theorem developed in [25] cannot be used directly in our case because the
hypotheses are not satisfied, but the argument can be modified and we can thereby
deduce conditions on parameter space which ensure stability. These are given in
the following theorem.

Theorem 1. Let P(λ) = (λ+β1)(λ+β2)(λ+β3) and Q(λ) = (λ+α1)(λ+α2),
such that

d :=
3∏

i=1

β2
i −

2∏
i=1

α2
i > 0,

3∏
i=1

βi > 0,

2∏
i=1

αi < 0,

∑
1/βj >

∑
1/αk, and

∑
αj > 0.
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Assume that (4) is stable for τ = 0.
Let b :=∑

β2
i − 1, c :=∑

i �=j β2
i β2

j −
∑

α2
i and R := (−b +√b2 − 3c)/3.

Then if:

1. c < 0 and if R(−b2 + 6c + b
√

b2 − 3c)+ 9d < 0, then there exists a τ ∗ > 0,
such that for τ > τ ∗ are at least two roots of (4) on the right hand side of the
complex plane.

2. c > 0 and b > 0, then there are no roots on the right hand side of the complex
plane.

3. c > 0, b < 0, b2 − 3c > 0 and R(−b2 + 6c + b
√

b2 − 3c) + 9d < 0, then
there exists a τ ∗ > 0, such that for τ > τ ∗ there are at least two roots of (4) on
the right hand side of the complex plane.

The proof of Theorem 1 can be found in the appendix. The idea of Theorem
1 is very general and can be applied to any equation of the form (4). In case 3,
stability switching can occur, and we would like to find those values of the delay,
τ , at which this happens. We resort again to Theorem 1 of [26]. Following the steps
in this theorem it is straightforward to check the stability of each fixed point, given
a specific set of parameters.

For example, let a1 = 1, a4 = 0.4, c1 = 0.02, c2 = 0.008, c3 = 0.02,
c4 = 0.008, d1 = 0.028, d2 = 0.28, d3 = 0.28, α = 0.2, ρ = 0.2, k = 0.036. For
these parameter values there is one fixed point, namely the tumor-free fixed point
at (0, 0, 0.9). A simple calculation reveals that for τ = 0 the fixed point is stable
and Theorem 1 in [26] determines that, when τ = 4.24293, a pair of conjugate
eigenvalues cross the imaginary axis from left to right thus making the fixed point
unstable. As τ is increased to τ = 28.6675 this pair of conjugate eigenvalues cross
from right to left and so the fixed point becomes stable again. This stability switch-
ing can continue as τ is increased, but eventually, for large enough τ the fixed point
is unstable.

These results can be corroborated using the techniques described in Theorem 1
of this paper. If we chose τ = 1, we should see that there are no encirclements of
the origin by the image of a contour 	 under F . However if we chose τ = 6, we
should see two encirclements of the origin, and in fact this is the situation shown
in Figures 4 and 5.

Figure 6 provides a way to view the changes in the stability of the system. In
Figure 6 we have set our parameters identical to those used in the previous exam-
ple. On the x-axis we plot the constant immune source rate k, and on the y-axis is
the delay τ . Setting a4 = 0.452, we have only one fixed point for the range of k

considered (from 0 to 0.2), therefore it refers to the tumor-free fixed point. Region
II depicts those (k, τ ) values for which the unique fixed point is unstable. Region
I corresponds to (k, τ ) values for which the fixed point is stable. Notice that this
agrees with previous results and also that here we can see the stability switching
for a fixed parameter set as we vary the delay τ . If we fix a value of k = 0.036,
then the fixed point starts out stable (region I), but as τ increases to approximately
29 we encounter region II indicating that the fixed point switches from being stable
to unstable, and if τ is further increased, the fixed point becomes stable again (not
shown in figure). This pattern repeats itself many times until eventually the fixed
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Fig. 4. F ◦ γ for τ = 1. The parameter vales have been set to yield a stable fixed point, and
this is seen as F ◦ γ gives a net of 0 encirclements as we traverse the contour γ .

point remains unstable for all τ . It is important to mention that this particular phe-
nomenon did not depend on the values for the parameters that we have not been
able to estimate, namely ρ and α.

As mentioned before, in the context of cancer models stability switching as
the delay is varied is very important since many cycle-phase-specific drugs retain
the cells or trap them in a given phase, thus increasing the time a cell spends in a
particular compartment. This analysis shows that care must be taken when trapping
the cells in a compartment since the ultimate effect may be adverse: the tumor-free
fixed point may switch from a stable equilibrium to an unstable one. This would
mean that when treatment is stopped, the system would not move towards the tu-
mor-free state. On the other hand, it is possible to increase or decrease the resident
time during the interphase to ‘unlock’ a fixed point from its instability and to push
it towards the stable range.

4.2. Hopf bifurcation

With the aid of Theorem 1 in the work by Cooke and van den Driessche [26], it
is also straightforward to check for possible Hopf bifurcations as we increase the
delay, τ . The importance of Hopf bifurcations in this context is that at the bifur-
cation point a limit cycle is formed around the fixed point, thus resulting in stable
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Fig. 5. F ◦γ for τ = 6. As we increase the delay τ , the fixed point changed its stability from
being stable (as in the case τ = 1) to unstable. Theorem 1 predicts this change of stability
as there is a net of 2 encirclements as we traverse the contour.

periodic solutions. The existence of periodic solutions is relevant in cancer models,
because it implies that the tumor levels may oscillate around a fixed point even in
the absence of any treatment. Such a phenomenon has been observed clinically and
is known as “Jeff’s Phenomenon” ([28]). In this section we will show an example
of parameters that exhibit this behavior.

For example, with the parameter values set at: a1 = 1, a4 = 0.5, c1 = 0.02,
c3 = 0.008, c2 = 0.02, c4 = 0.008, d1 = 0.04, d2 = 0.11, d3 = 0.28, α = 0.5,
ρ = 0.2, and k = 0.036, we can use Theorem 1 in [26] to check the stability
of the fixed points of the model described in section 4.1.4. In this case there are
three fixed points: x1 = (0, 0, 0.9), x2 = (9.7829, 11.5293, 3.4261), and x3 =
(0.21272, 0.25069, 3.4261). By computing the roots of F(λ) as given by equation
(4), it can be seen that x1 and x2 are unstable fixed points for all values of the
delay. However, x3 has some stability switching, and they satisfy the conditions of
the Hopf Bifurcation Theorem [24]: the stability of the fixed point switches from
stable to unstable at some τ̂ and the transversality condition ( ∂	λ(τ̂ )

∂τ
�= 0) is satis-

fied. This equilibrium (x3) corresponds to a steady state of the system at which a
tumor is present. Oscillations around this equilibrium would therefore correspond
to a tumor which grows and shrinks with no application of treatment. Figures 8
and 7 have been generated using the Matlab subroutines developed by Shampine
and Thompson for solving delay differential equations, dde23 (see [29]). We see
that there are clear oscillations in the tumor. Many other sets of parameter values
have been found which give rise to periodic solutions through Hopf bifurcations
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Fig. 6. Stability Map setting a4 = 0.4. The tumor-free fixed point is stable in Region I, and
is unstable in Region II. This change in stability is due to an increase in the delay τ . τ has a
destabilizing effect and we may see many stability switchings (passage from a region type
I to a region type II) before the fixed point becomes unstable as we increase τ .

in a feasible parameter range. It is important to mention that in all the numerical
experiments the existence of the Hopf bifurcation did not depend on the specific
values for ρ or α.

5. Discussion

The model presented is very simple and some might argue that it does not contain
many important interactions, cell types, etc. We must keep in mind that a com-
plicated model may simply be more complicated, and may not necessarily give
more information about the overall dynamics. However, there are a few features we
consider significant that have not been included in this simple model. For example
the inclusion of another delay in the cell cycle might be pertinent as we separate
the phases of the cycle to be more precise about the mode of action of the drugs
on the different phases, or that these the delays may be a function of the drug.
Often tumor cells can become resistant to cytotoxic agents, thus entering a quies-
cent phase in which they are not affected by cycle-specific drugs. Including drug
resistance in the model would call for the addition of the quiescent phase, and it
would help us understand how the resistant population contributes to or delays the
eradication of the disease. The immune system is a very complicated entity, and
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Fig. 7. Periodic Solutions, Tumor. Periodic Solutions of the tumor. The solid line corre-
sponds to The first time series (upper graph) corresponds to TS and the lower graph corre-
sponds to TM . The oscillatory behavior of the signal is due to a Hopf Bifurcation as we vary
the delay τ .

in this work we feel that we have merely touched the surface of the interactions
and processes involved in the system’s immune response. There is still much to be
learned about the immune system and how it affects the course of the disease. A
more careful study and detailed modeling of this interaction is advisable. This can
be done by including more immune cell types in our model, for example different
T cells, Natural Killer cells (NK), various cytokines, etc., and investigating more
precisely the interactions among the cells that comprise the immune system and
between immune and tumor cells.

This model is very general and it is not intended to fit every type of cancer,
since each cancer type presents different difficulties and challenges. For example,
a patient with leukemia, a cancer of the immune system, has virtually no natural
defense against the disease, so the consideration of the immune system as a mech-
anism of defense against leukemia is not realistic ([30]). In this case, the more
important characteristics determining the outcome of the disease are the time of
diagnosis (the earlier the cancer is detected, the better the chances for survival),
and the effects of the antineoplastic agents used. In other cancers, such as mela-
noma, spatial characteristics are an important feature to consider, allowing for the
characterization of the way tumor cells spread out and compete for surrounding
resources.



288 M. Villasana, A. Radunskaya

4620 4625 4630 4635 4640 4645 4650
3.35

3.4

3.45

3.5
Immune

Fig. 8. Periodic Solutions, Immune System. The oscillatory behavior of the signal is due to
a Hopf Bifurcation as we vary the delay τ .

There are many components in this model that may be regarded as stochastic,
rather than deterministic. For example, the dwelling time or resident time in each
phase is not a fixed amount but varies slightly around an average value. These varia-
tions may significantly alter the dynamics of the system, as seen in the examples of
stability switching. In this work we considered average amounts, or expected value
of these quantities: average resident time, average population size and, average
interaction rates for example.

Another consideration is to allow the delay to be a function of the drug concen-
tration, τ = τ(u). This would give a more accurate description of the effect of the
drug on the system.

For this model we proved Theorem 1 based on the argument principle which
gives conditions under which all the roots of the characteristic equation have neg-
ative real parts. We saw through the work of Cook and van den Driessche [26]
that in some cases increasing the delay can stabilize or destabilize the system. This
is particularly important, since the effect of the drug Paclitaxel and others can be
described as ‘delaying’ or trapping the cells in the M phase of the cell cycle. Hence
the conclusion of this theorem gives useful information for a model in which the
delay is a function of the drug. For example, one can say that the more drug present
in the system, the more cells will be trapped in the cycle. We also observed periodic
solutions for some parameter values through a Hopf bifurcation. Periodic tumors
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arise from time to time in patients. This mystifies clinicians, so being able to ob-
serve periodic solutions in our system may explain periodic tumors whose growth
is uncorrelated with the administration of chemotherapy, more commonly referred
to as Jeff’s Phenomenon.

The main objective when applying the drug is to drive the system into the basin
of attraction of the tumor-free equilibria (assuming that the equilibria is stable).
In a further report ([15]) the basin of attraction for the tumor free fixed point is
computed and shows how this information can be used in designing optimal drug
scheduling.
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on the topic, as well as the anonymous referees for their helpful suggestions to enhance
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6. Appendix

In this section we give the proof of Theorem 1.
Let P(λ) = (λ+β1)(λ+β2)(λ+β3) and Q(λ) = (λ+α1)(λ+α2), such that

d :=
3∏

i=1

β2
i −

2∏
i=1

α2
i > 0,

3∏
i=1

βi > 0,

2∏
i=1

αi < 0,

∑
1/βj >

∑
1/αk, and

∑
αj > 0.

Assume that (4) is stable for τ = 0.
Let b :=∑

β2
i − 1, c :=∑

i �=j β2
i β2

j −
∑

α2
i and R := (−b +√b2 − 3c)/3.

Then if:

1. c < 0 and if R(−b2 + 6c + b
√

b2 − 3c)+ 9d < 0, then there exists a τ ∗ > 0,
such that for τ > τ ∗ are at least two roots of (4) on the right hand side of the
complex plane.

2. c > 0 and b > 0, then there are no roots on the right hand side of the complex
plane.

3. c > 0, b < 0, b2 − 3c > 0 and R(−b2 + 6c + b
√

b2 − 3c) + 9d < 0, then
there exists a τ ∗ > 0, such that for τ > τ ∗ there are at least two roots of (4) on
the right hand side of the complex plane.

Proof. To prove this theorem we will use techniques similar to those given in [25].
Consider the contour 	 which consists of the union of the line segments:

	 = [0, i2π/τ ] ∪ [i2π/τ, µ∗ + i2π/τ ] ∪ [µ∗ + i2π/τ, µ∗ − i2π/τ ]

∪[µ∗ − i2π/τ, −i2π/τ ] ∪ [−i2π/τ, 0].

for sufficiently large µ∗.
We compare the orientation of F and P with respect to the origin as we traverse

the contour 	 and count the times F encircles the origin clockwise. If F does not
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encircle the origin, the argument principle implies that F has no roots inside 	,
and we conclude that, in fact, it has no roots with positive real part (See [23], [31],
[25]). Here are the details: Let λ = µ+ iν, and write F as:

F(λ) = P(λ)+Q(λ)e−λτ

= |P(λ)|eiθp(λ) + |Q(λ)|eiθq (λ)e−λτ

where

θp(λ) =
∑

arctan

(
ν

βj + µ

)

θq(λ) =
∑

arctan

(
ν

αj + µ

)

|P(λ)| =
3∏

j=1

[
ν2 + (βj + µ)2

]1/2

|Q(λ)| =
2∏

j=1

[
ν2 + (αj + µ)2

]1/2

As we traverse the contour 	, we consider the image of 	 under F , F(	),
and the number of encirclements of F(	) around the origin. We first look at the
alignments of P(λ) and F(λ).

Note that arg [F(λ)− P(λ)] = θq(λ)− ντ and alignment occurs when

θp(λ)− arg [F(λ)− P(λ)] = kπ

For ν = i2π

τ
, arg

[
F( i2π

τ
)− P( i2π

τ
)
] = θq( i2π

τ
)− 2π . Therefore,

θp(
i2π

τ
)− arg

[
F(

i2π

τ
)− P(

i2π

τ
)

]
> π,

so there exists a ν0 such that as λ traverses γ1 the alignment condition is satisfied:

θp(iν0)− arg [F(iν0)− P(iν0)] = π

other alignments, νk may exist, in which case we have

θp(iνk)− arg [F(iνk)− P(iνk)] = (k + 1)π

One can prove that if |P(iν0)| > |Q(iν0)|, then F does not encircle the ori-
gin and if |P(iν0)| < |Q(iν0)|, then F encircles the origin and so by the argument
principle we can show that there are at least 2 roots inside 	. The proof of this result
is the same as the proof of Proposition 3.1 in [31], hence it will not be reproduced
here.

We have shown that alignment of F and P must occur as we traverse the contour
	. The proof of the theorem proceeds as follows:
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1. Find the region where |P(iν)| < |Q(iν)|
2. Pick a contour so that the above condition is possible (in many cases the contour

	 is sufficient).
3. Show that the alignment condition holds in the region where |P(iν)| < |Q(iν)|.

Step 1. Given P and Q, we compute |Q(iν)| and |P(iν)| and after some cal-
culations we get that

|Q(iν)| − |P(iν)| = 0⇔ ν6 + bν4 + cν2 + d = 0

Making the change of variables y = ν2, we obtain

y3 + by2 + cy + d = 0 (5)

We want the curves for |P(iν)| and |Q(iν)| to intersect at a real ν, i.e. a positive
root (y) of (5). Since d > 0, the only way that we can obtain a positive root for (5) is
that the derivative has a positive root, and that this root evaluated on the third order
polynomial above is negative, i.e. (5) has a negative local minimum at a positive y

value. The derivative of (5) is given by

3y2 + 2by + c = 0

with roots at

R1,2 = −b ±√b2 − 3c

3

There are three cases to consider:

1. If c < 0, then R1 > 0 and R2 < 0; evaluating (5) at R1 we get that R1(−b2 +
6c + b

√
b2 − 3c) + 9d must be negative in order that |Q(iν)| > |P(iν)| for

some real ν.
2. If b < 0, c > 0 and b2 > 3c we will have 2 positive roots for the derivative and

with R1(−b2 + 6c + b
√

b2 − 3c)+ 9d < 0, we are assured that there will be
positive root for the cubic.

3. In the case b > 0 and c > 0, there are no positive roots, which implies no
encirclements.

Step 2. Let k ≥ 2 be an integer such that ν∗ < kπ/τ , with ν∗ = √R1, where
R1 is the biggest root of the cubic. Consider the contour

	1 = [0, ikπ/τ ] ∪ [ikπ/τ, µ∗ + ikπ/τ ] ∪ [µ∗ + ikπ/τ, µ∗ − ikπ/τ ]

∪[µ∗ − ikπ/τ, −ikπ/τ ] ∪ [−ikπ/τ, 0].

for sufficiently large µ∗ This choice of k ensures that the condition |P(iν)| <

|Q(iν)| holds for 0 ≤ ν < ν∗and that there is alignment at some 0 ≤ ν0 ≤ ν∗, as
described below.

Step 3. To obtain alignment of P(iν), F(iν, τ ) and the origin as we traverse the
segment [0, ikπ/τ ], consider P(−iν) and F(−iν, τ ) with ν from 0 to −ikπ/τ .
For alignment, the following must hold.

arg [F(−iν, τ )− P(−iν)]− arg [P(−iν)] = kπ
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⇐⇒ g(ν) = ντ + arg(Q(−iν))− arg(P (−iν)) = kπ (6)

If arg(Q(−iν)) < arg(P (−iν)) for any ν < ν∗, then (6) cannot hold since then:

0 = −kπ + ντ + arg(Q(−iν))− arg(P (−iν))

< −kπ + ντ ⇒ kπ < ντ

⇒ ν >
kπ

τ
> ν∗ →←

We can expand the expression for the arguments as

arg(Q(−iν)) =
∑

arctan

(−ν

αj

)

arg(P (−iν)) =
∑

arctan

(−ν

βj

)

The expansion around 0 for arctan x is

arctan x ≈ x − x3

3
+ x5

5
− · · · for |x| < 1.

Given ε > 0, there exists τ1 >> 1 such that if τ > τ1, ν < kπ/τ < ε. We can
therefore approximate arctan x ≈ x. Since

∏
βi > 0, we have arg(P (−iν)) ≈∑

arctan
(
−ν
βj

)
=∑ (

−ν
βj

)
= −ν

∑
1/βj . Similarly,

∏
αi < 0 gives,

arg(Q(−iν)) = π +
∑

arctan

(−ν

αj

)
≈ π +

∑ (−ν

αj

)
= π − ν

∑
1/αj .

From
∑

1/βj >
∑

1/αk , arg(Q(−iν)) > arg(P (−iν) for all ν > 0, and therefore
by continuity of g(ν)(6) holds for some ν0 ∈ γ1.

So far we have that for τ large enough P and Q may align on [0, ikπ/τ ] and
we also have found conditions for which |Q(−iν)| > |P(−iν)|.

As we mentioned before, it is shown in [31] that if

|Q(−iν0)| > |P(−iν0)| ,

where ν0 is the first alignment of F , P and the origin, then F(λ, τ) encircles the ori-
gin as λ goes around 	, and that the argument principle may be used to demonstrate
that at least 2 roots of F lie inside 	.

Let τ ∗, be the solution of (6) where ν = ν∗, then for τ > τ ∗, we are certain
that |Q(−iν0)| > |P(−iν0)| will hold, and the theorem is proved. ��
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