
A Delay-Efficient Algorithm for Data
Aggregation in Multihop Wireless

Sensor Networks
Xiaohua Xu, Student Member, IEEE, Xiang-Yang Li, Senior Member, IEEE,

Xufei Mao, Student Member, IEEE, Shaojie Tang, Student Member, IEEE, and

Shiguang Wang, Student Member, IEEE

Abstract—Data aggregation is a key functionality in wireless sensor networks (WSNs). This paper focuses on data aggregation

scheduling problem to minimize the delay (or latency). We propose an efficient distributed algorithm that produces a collision-free

schedule for data aggregation in WSNs. We theoretically prove that the delay of the aggregation schedule generated by our algorithm

is at most 16Rþ�� 14 time slots. Here, R is the network radius and � is the maximum node degree in the communication graph of

the original network. Our algorithm significantly improves the previously known best data aggregation algorithm with an upper bound of

delay of 24Dþ 6�þ 16 time slots, where D is the network diameter (note that D can be as large as 2R). We conduct extensive

simulations to study the practical performances of our proposed data aggregation algorithm. Our simulation results corroborate our

theoretical results and show that our algorithms perform better in practice. We prove that the overall lower bound of delay for data

aggregation under any interference model is maxflogn;Rg, where n is the network size. We provide an example to show that the lower

bound is (approximately) tight under the protocol interference model when rI ¼ r, where rI is the interference range and r is the

transmission range. We also derive the lower bound of delay under the protocol interference model when r < rI < 3r and rI � 3r.

Index Terms—Wireless networks, aggregation, scheduling, delay, sensor.

Ç

1 INTRODUCTION

WIRELESS sensor networks (WSNs) have drawn a
considerable amount of research interest for their

omnipresent applications such as environmental monitor-
ing, spatial exploration, and battlefield surveillance. To
design and deploy successful WSNs, many issues need to
be resolved such as deployment strategies, energy con-
servation, routing in dynamic environments, localization,
and so on. All the issues essentially correlate to collecting
data from a set of targeted wireless sensors to some sink
node(s) and then performing some further analysis at sink
node(s), which can be termed as many-to-one communica-
tion. In-network data aggregation [16] is one of the most
common many-to-one communication patterns used in
these sensor networks; thus, it becomes a key field in
WSNs and has been well studied in recent years.

We consider the problem of designing a schedule for
data aggregation from within networks to sink node(s) with
minimum time slot delay. Some of previous research works
on in-network aggregation did not consider the collision
problem and left it to the MAC layer. Resolving collisions in
MAC layer could incur a large amount of energy consump-
tion and a large delay during aggregation. Thus, in this
paper, we mainly concentrate on the TDMA scheduling

problem above the MAC layer. To define the problem
formally, consider a WSN G formed by n wireless nodes
V ¼ fv1; . . . ; vng deployed in a two-dimensional region. vs 2
V is the sink node that will collect the final aggregation
result. Each node vi has a transmission range r and
interference range rI ¼ �ðrÞ. A node vi can send data
correctly to another node vj if and only if 1) vj is within vi’s
transmission range and (2) vj is not within interference
range rI of any other transmitting node. Every node vi has
an ability to monitor the environment, and collect some
data (such as temperature), i.e., vi has a set of raw data Ai.
Let A ¼ [ni¼1Ai and N ¼ jAj be the cardinality of the set A.
Then hA1; A2; . . . ; Ai; . . . ; Ani is called a distribution of A at
sites of V . Data aggregation is to find the value fðAÞ at the
sink node vs for a certain function f , such as min, max,
average, variance, and so on with minimum time delay.

The data aggregation scheduling problems have been
extensively studied recently. Huang et al. [11] proposed a
centralized scheduling algorithm with the delay bound of
23Rþ�þ 18 time slots, where R is the network radius and
� is the maximum node degree. However, the interference
model used in [11] is a simple primary interference model: no
node can send and receive simultaneously. Under the
Protocol Interference Model, Yu et al. [3] proposed a
distributed scheduling method generating collision-free
schedules with delay at most 24Dþ 6�þ 16 time slots,
where D is the network diameter.

The main contributions of this paper are as follows: We
propose efficient algorithms that will construct a data
aggregation tree and a TDMA schedule for all links in the
tree such that the delay of aggregating all data to the sink
node is approximately minimized. For simplicity of

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. X, XXX 2011 1

. The authors are with the Department of Computer Science, Illinois
Institute of Technology, 10 West 31st ST, Chicago, IL 60616.
E-mail: {xxu23, swang44, xmao3, stang7}@iit.edu, xli@cs.iit.edu.

Manuscript received 26 Feb. 2009; revised 5 June 2009; accepted 4 Sept. 2009;
published online 5 Apr. 2010.
Recommended for acceptance by S. Olariu.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2009-02-0089.
Digital Object Identifier no. 10.1109/TPDS.2010.80.

1045-9219/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society

analysis, we use the protocol interference model and
assume that rI ¼ r. As an illustration, we first present an
efficient centralized algorithm that will build a TDMA
schedule of nodes based on the aggregation tree, which is
build distributively. Our schedule uses a bottom-up
approach: schedule nodes level by level starting from the
lowest level. We theoretically prove that the delay of the
aggregation schedule generated by our algorithm is at most
16Rþ�� 14 time slots. Note that for general rI , our
algorithm will produce a collision-free schedule for aggre-
gation whose delay is at most �ððrIr Þ

2Rþ�Þ time slots. We
then present an efficient distributed algorithm that builds
an aggregation tree and gives a schedule for each node. For
simplicity, our distributed method assumes that the clocks
of all nodes are synchronized. Unlike our centralized
algorithm, our distributed algorithm will not explicitly
produce a schedule for nodes in the aggregation tree. The
schedule for nodes is implicitly generated in the process of
data aggregation. Our distributed scheduling algorithm
thus works well in dynamic networks, as long as the
constructed backbone of the network by our algorithm
remains unchanged. Obviously, when rI ¼ r, for a network
G with radius R and the maximum node degree �, the
delay by any data aggregation algorithm is at least R. This
implies that our algorithm is within a small constant factor
of the optimum. We then conduct extensive simulations to
study the practical performance of our proposed data
aggregation method. The simulation results corroborate our
theoretical results and show that our method performs
better in practice. We find that data aggregation by our
distributed method has delay close to R. Besides, we prove
that the overall lower bound of delay for data aggregation
under any interference model is maxflogn;Rg. We provide
an example to show that the lower bound is (approxi-
mately) tight under the protocol interference model when
rI ¼ r. We also analyze the lower bound of delay under the
protocol interference model when r < rI < 3r and rI � 3r.

The rest of the paper is organized as follows: Section 2
formulates the problem. We present our centralized and
distributed scheduling algorithms in Section 3 and analyze
their performance and prove the overall lower bound in
Section 4. Section 5 discusses the results in other interfer-
ences models. Section 6 presents the simulation results.
Section 7 outlines the related work. Finally, Section 8
concludes the paper.

2 SYSTEM MODELS

2.1 Network Model

We consider a WSN consisting of n nodes V , where vs 2 V
is the sink node. Each node can send (receive) data to (from)
all directions. For simplicity, we assume that all nodes have
the same transmission range r such that two nodes u and v
form a communication link whenever their euclidean
distance ku� vk � r. In the rest of the paper, we will
assume that r ¼ 1, i.e., normalized to one unit. Then the
underlying communication graph is essentially a unit disk
graph (UDG).

Let A;B � V and A \B ¼ ;. We say that data are
aggregated from A to B in one time slot if all the nodes in

A transmit data simultaneously in one time slot and all data
are received by some nodes in B without interference. We
will define interference at the end of this section. Then a
data aggregation schedule with delay l can be defined as a
sequence of sender sets S1; S2; . . . ; Sl satisfying the follow-
ing conditions:

1. Si \ Sj ¼ ;, 8i 6¼ j;
2. [li¼1Si ¼ V n fvsg;
3. Data are aggregated from Sk to V n [ki¼1Si at time

slot k, for all k ¼ 1; 2; . . . ; l, and all the data are
aggregated to the sink node vs in l time slots.

Note that here [li¼1Si ¼ V n fvsg is to ensure that every
datum will be aggregated; Si \ Sj ¼ ;, 8i 6¼ j is to ensure that
every datum is used at most once. To simplify our analysis,
we will relax the requirement that Si \ Sj ¼ ;, 8i 6¼ j. When
the sets Si, 1 � i � l are not disjoint, in the actual data
aggregation, a node v, which appears multiple times in Si,
1 � i � l, will participate in the data aggregation only once
(say, the smallest i when it appears in Si), and then it will
only serve as a relay node in the following appearances.

The distributed aggregation scheduling problem is to
find a schedule S1; S2; . . . ; Sl in a distributed way such that l
is minimized. This problem is proved to be NP-hard in [4].
This paper proposes an approximate distributed algorithm
with delay 16Rþ�� 14 time slots, where R is the network
radius and � is the maximum node degree.

Interference model. We assume that a node cannot send
and receive data simultaneously. In the protocol inter-
ference model [9], we assume that each node has a
transmission range r and an interference range rI � r. A
receiver v of a link uv is interfered by another sender p of a
link pq if kp� vk � rI . As [4], [11], we first assume that
rI ¼ r, which is scaled to 1. We will later study the more
general case rI � r.

2.2 Related Terminology

For simplicity, we present our distributed methods in a
synchronous message passing model in which time is
divided into slots. In each time slot, a node is able to send a
message to one of its neighbors. Note that at the cost of higher
communication, our methods can be implemented in
asynchronous communication settings using the notions of
synchronizer.

In a graph G ¼ ðV ;EÞ, a subset S of V is a dominating set
(DS) if for each node u in V , it is either in S or is adjacent to
some node v in S. Nodes from S are called dominators,
whereas nodes not in S are called dominatees. A subset C of
V is a connected dominating set (CDS) if C is a dominating
set and C induces a connected subgraph. The dominatees in
C are also called connectors. Consequently, the nodes in C
can communicate with each other without using nodes in
V n C. A CDS is also called a backbone here.

3 DISTRIBUTED AGGREGATION SCHEDULING

Our Improved data Aggregation Scheduling (IAS) algo-
rithm consists of two phases: 1) aggregation tree construc-
tion and 2) aggregation scheduling. As an illustration of our
methods, we first present a centralized version of our data
aggregation scheduling. We adopt an existing method for

2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. X, XXX 2011

the first phase and the second phase is the core of our

algorithm. We will present these two phases in the

following two sections. At the end of the section, we

present a distributed implementation based on our cen-

tralized aggregation scheduling algorithm.

3.1 The Overall Approach

In this section, we describe our overall approach for data

aggregation. As a prestep, we will construct a CDS as a

backbone for the network. Then, our aggregation schedul-

ing algorithm can be divided into two phases as follows:
Phase I. Every dominator aggregates the data from all its

dominatees (as shown in Fig. 1a).
Phase II. Dominators aggregate their data to the sink

node vs level by level (as shown in Fig. 1b).
For each level in the second phase, the process can be

further divided into two subphases:

. All the dominators aggregate their data to its
corresponding connectors.

. All the connectors transmit their data to the
dominators in the upper level.

3.2 Dominating Set Construction

As our algorithm is aggregation-tree-based, in the first
phase, we construct an aggregation tree in a distributed way
using an existing method [19]. We employ a CDS in this
phase since it can behave as the virtual backbone of a sensor
network. A distributed method of constructing a CDS has
been proposed by Wan et al. [19]. In their algorithm, a special
dominating set is constructed first and then a CDS is
constructed to connect dominators and the other nodes.
This CDS tree can be used as the aggregation tree in our
scheduling algorithm with a small modification as follows:

1. We choose the topology center of the UDG as the root
of our BFS tree. Note that previous methods have
used the sink node as the root. Our choice of the
topology center enables us to reduce the delay to a
function of the network radius R, instead of the
network diameter D proved by previous methods.
Here, a node v0 is called the topology center in a graph
G if v0 ¼ arg minvfmaxudGðu; vÞg, where dGðu; vÞ is
the hop distance between nodes u and v in graph G.
R ¼ maxudGðu; v0Þ is called the radius of the network
G. Note that in most networks, the topology center is
different from the sink node.

2. After the topology center gathered the aggregated
data from all nodes, it will then send the aggregation
result to the sink node via the shortest path from the
topology center v0 to the sink node vs. This will incur
an additional delay dGðv0; vsÞ of at most R.

Algorithms 1 and 2 briefly review the methods for selecting

adominating set andaCDS in [19]. In Algorithm 1, the rank of a

node u is ðlevel; IDðuÞÞ, where level is the hop distance of u to

the root. The ranks of nodes are compared using lexicographic

order. After execution of Algorithm 2, all black nodes form a

dominating set. For each gray node, either it is a leaf or its

children in the aggregation tree are black nodes. In the second

case, a gray node plays the role of connecting two black nodes.

The root is a node in the dominating set (a black node) and all

its neighbors inG are its children in BFS.

Algorithm 1. Distributed Dominators Selection [19]
1: Determine the topology center of the UDG as v0;

2: Construct a BFS (breadth-first-search) tree rooted at

v0 with height R, the radius of the original network;

3: Every node colors itself white;

4: Root node v0 changes its color to black and broadcasts

a message; BLACK to its one-hop neighbors in G;

5: for each white node u received a message BLACK do

6: u colors itself gray and broadcasts a message GRAY to
its one-hop neighbors in G;

7: if a white node w receives GRAY from all its lower

ranked neighbors then

8: w colors itself as black and sends message BLACK to

all its one-hop neighbors in G;

9: All black nodes form a dominating set.

Algorithm 2. Distributed Construction of Aggregation

Tree T

1: Select a set of dominators as in Algorithm 1;

2: Root node v0 sends a message GRAY-JOIN to its

one-hop neighbors in G;

3: if an unmarked gray node not in T received a message

GRAY-JOIN then

4: Join T with the sender as its parent;
5: Send a message BLACK-JOIN to its one-hop

neighbors;

6: Mark itself;

7: if an unmarked black node not in T received message

BLACK-JOIN then

8: Join T with the sender as its parent;

9: Send a message GRAY-JOIN to its one-hop neighbors;

10: Mark itself;
11: Return T .

3.3 Centralized Algorithm

The second phase is aggregation scheduling, which is the

core of the whole algorithm. It is based on the aggregation

tree constructed in the first phase. As an illustration, we

first present an efficient centralized algorithm. We will then

present our distributed scheduling implementation in

Section 3.4.
Algorithm 3 shows how the data from the dominatees

are aggregated to the dominators. At every time slot, the set

XU ET AL.: A DELAY-EFFICIENT ALGORITHM FOR DATA AGGREGATION IN MULTIHOP WIRELESS SENSOR NETWORKS 3

Fig. 1. The overall approach: the black nodes are dominators and white

nodes are dominatees. (a) Phase I. (b) Phase II.

of dominators will gather data from as many dominatees
(whose data have not been gathered to a dominator yet) as
possible. Note that since the maximum degree of nodes in
the communication graph is �, our method guarantees that
after at most � time slots, all the dominatees’ data can be
gathered to their corresponding dominators successfully
without interferences, which will be proved in Lemma 4.
The basic idea is as follows: each dominator will randomly
pick a dominatee whose data are not reported to any
dominator yet. Clearly, these selected dominatees may not
be able to send their data to corresponding dominators in
one time slot due to potential interferences. We then
reconnect these dominatees to the dominators (and may
not schedule some of the selected dominatees in the current
time slot), using Algorithm 4, such that these new links can
communicate concurrently.

Algorithm 3. Aggregate Data to Dominators

1: for i ¼ 1; 2; . . . ;� do

2: Each dominator randomly chooses a neighboring

dominatee, whose data are not gathered yet, as

transmitter. The set of such chosen links form a link

set L.
3: Apply Algorithm 4 to L, assume the output link set

is S;

4: All the output links in S now transmit

simultaneously;

5: i ¼ iþ 1;

Algorithm 4. Reconnect Dominatees to Dominators
Input: a set of links L;

Output: a set of conflict-free links S;

1: S ¼ L;

2: while (exist a pair of conflicting links in S) do

3: Let uizi and ujzj be one of the pairs of conflicting links.

4: Find the sets Di and Dj based on their definitions;

5: if (juizjj � 1 and jujzij > 1) then

6: If Dj ¼ ;, remove the link ujzj.
7: If Dj 6¼ ;, replace ujzj by a link ujzj0 , for a random

zj0 2 Dj.

8: else if (jujzij � 1 and juizjj > 1) then

9: If Di ¼ ;, remove link uizi.

10: If Di 6¼ ;, replace uizi with uizi0 , for a random

zi0 2 Di.

11: else if (jujzij � 1 and juizjj � 1) then

12: If Di ¼ ;, remove the link uizi; else if Dj ¼ ;, remove
the link ujzj.

13: If Di 6¼ ; ^Dj 6¼ ;, replace uizi and ujzj by two new

links uizi0 , ujzj0 , for a random zi0 2 Di and a random

zj0 2 Dj.

Suppose that two directed links uizi and ujzj interfere
with each other (see Fig. 2a), where the dominatees ui and
uj are transmitters in these two links, respectively, and zi
and zj are dominators. For each dominatee v, let DðvÞ be the
set of neighboring dominators. Obviously, jDðvÞj � 5 for
any node v. Let DðuiÞ ¼ DðuiÞ n fzig, DðujÞ ¼ DðujÞ n fzjg.
Note that here DðuiÞ and DðujÞ may be empty, or DðuiÞ \
DðujÞ may not be empty.

For every other active transmitter v, v 6¼ ui and v 6¼ uj, we
delete all dominators from DðuiÞ (and also from DðujÞ) that

are within the transmission range of v. Note that we can
discard these dominators since their degrees are already
decreased by at least 1 because of the existence of some active
transmitter v. We also delete the dominators that are within
the transmission range of both ui and uj from DðuiÞ and
DðujÞ. Note that we can do this because these dominators’
degree will be decreased by 1 since our rescheduling can
guarantee at least one transmitter of ui and uj will remain as
an active transmitter, as we will show later.

Let Di (resp. Dj) be the set of remaining dominators in
DðuiÞ (resp. DðujÞ).

Fig. 2b illustrates one possible state after the preceding
two deletions of dominators fromDðuiÞ andDðujÞ. Note that

1. The distance between ui and any member of Dj is
greater than 1. The distance between uj and any
member of Di is greater than 1.

2. It is possible that Di or Dj or both could be empty.

Algorithm 4 shows how to reconnect dominatees to
dominators to avoid the interference.

After all the data in the dominatees have been
aggregated to dominators, our next step is to aggregate all
the intermediate results in the dominators to the root.

We can see that in each layer of the BFS tree, there are
some dominator(s) and some dominatee(s). For every
dominatee, it has at least one dominator neighbor in the
same or upper level. Thus, every dominator (except the
root) has at least one dominator in the upper level within
two hops. Using this property, we can ensure that all the
data in the dominators can reach the root finally if every
dominator transmits its data to some dominator in upper
level within two hops. From another point of view,
considering dominators in the decreasing order of their
levels, a dominator u in level L aggregates data from all
dominators in level Lþ 1 or Lþ 2 that are within two hops
of u. This will ensure that all the data will be aggregated to
the root. Algorithm 5 presents our method in detail.

Algorithm 5. Centralized-IAS

Input: BFS tree with root v0 and depth R, and a distributive
aggregation function f (Please see the definition of

aggregation function in [23]), data Ai stored at each node vi.

1: Construct the aggregation tree T 0 using Algorithm 2.

Remove the redundant connectors to ensure that each

dominator uses at most 12 connectors to connect itself

4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. X, XXX 2011

Fig. 2. (a) An interference between two links. The dashed line means

that the endpoints are within interference ranges of each other. (b) A

state after rescheduling.

to all dominators in lower level and is within two-hops.
Here a connector node x (a dominatee of a dominator u)

is said to be redundant for the dominator u, if removing

x will not disconnect any of the two-hop dominators of

u from u.

Let T be the final data aggregation tree.

2: for i ¼ R� 1; R� 2; . . . ; 0 do

3: Choose all dominators, denoted by Bi, in level i of the

BFS tree.
4: for every dominator u 2 Bi do

5: Find the set D2ðuÞ of unmarked dominators that

are within two-hops of u in BFS, and in lower level

iþ 1 or iþ 2.

6: Mark all nodes in D2ðuÞ.
7: Every node w in D2ðuÞ sends fðAw;X1; X2; . . . ; XdÞ

to the parent node (a connector node) in T . Here Aw

is the original data set node w has, and X1, X2, . . . ,
Xd are data that node w received from its d children

nodes in T .

8: Every node z that is a parent of some nodes in

D2ðuÞ sends fðX1; X2; . . . ; XpÞ to node u (which is

the parent of z in T). Here X1, X2, . . . , Xp are data

that node z received from its p children nodes in T .

9: i ¼ i� 1

10: The root v0 sends the result to the sink using the
shortest path.

In Algorithm 5, we only concentrate on communications
between dominators. The algorithm runs from lower level
to upper level in aggregation tree, every dominator will
remain silent until the level where it locates begins
running. When it is its turn, the dominator will try to
gather all the data from other dominators in lower levels
that have not been aggregated. If a dominator’s data have
been collected before, then it is unnecessary to be collected
again. Actually, we have to guarantee that every datum
should be and only be used once. Our algorithm imple-
ments this by discarding the dominators after their data
have been gathered to upper levels.

Note that in our algorithm after we process dominators
Bi (all dominators in level i), there may still have some
dominators in Biþ1 whose data are not aggregated. This
could happen because a dominator in Biþ1 could be within
two hops of some dominator in Bi�1, but not within two
hops of any dominator from Bi. We conclude that after the
execution of all the dominators in Bi , the data from all
dominators in Biþ2 have already been aggregated.

3.4 Distributed Implementation

Now we present a distributed implementation for our data
aggregation scheduling. The distributed implementation
consists of three stages:

1. Every dominatee transmits its data to the neighbor-
ing dominator with the lowest level.

2. Data are aggregated from dominators in lower levels
to dominators in upper levels, and finally, to the root
of the aggregation tree, which is the topology center
of the network.

3. Topology center then transmits the aggregated data
to the original sink via the shortest path.

The distributed implementation differs from the centra-
lized one in that the distributed one seeks to transmit
greedily: we will try to allocate a node v a time slot to transmit
whenever v has collected the aggregated data from all its
children nodes in the data aggregation tree T . Thus, the first
two phases may interleave in our distributed implementa-
tion. The interleaving will reduce the delay greatly since it
increases the number of simultaneous transmissions. Later,
we will provide the simulation result of our distributed
method, which shows that our distributed implementation is
quite close to ð1þ "ÞRþ�þ�ð1Þ, where " is a small positive
constant. Therefore, we conjecture that the data aggregation
delay by our distributed implementation indeed has a
theoretical performance guarantee of ð1þ "ÞRþ�þ�ð1Þ.
It will be interesting if we can prove or disprove this
conjecture, which is left as future work.

To run our algorithm, every node vi should maintain
some local variables, which are as follows:

1. Leaf indicator: Leaf½i� 2 f0; 1g, to indicate whether the
node vi is a leaf node in the data aggregation tree.

2. Competitor Set: CS½i�, the set of nodes such that for
each j 2 CS½i�, nodes vi and vj cannot transmit
simultaneously to their parents due to interference.
In other words, if j 2 CS½i�, we have either the parent
pT ðiÞ of node vi in the data aggregation tree T is
within the interference range of node vj; or the
parent pT ðjÞ of node vj in the data aggregation tree T
is within the interference range of node vi; or both.
Note that under the interference model studied in
this paper, each node in CS½i� is within a small
constant number of hops of i.

3. Ready Competitor Set: RdyCS½i�, which is the set of
nodes that collides with i and it is ready to send data
to its parent, i.e., it has received the data from all its
children nodes.

4. Time Slot to Transmit: TST½i�, which is the
assigned time slot that node vi indeed sends its
data to its parent.

5. Number of Children: NoC½i�, which is the number of
children nodes of vi in the data aggregation tree T .

Observe that here, at some time, if we let Rdy be the set
of nodes which are ready to transmit (i.e., v 2 Rdy iff v has
collected the aggregated data from all its children nodes in
the data aggregation tree T), and let F denote all the nodes
which have finished their transmission, then RdyCS½i� ¼
CS½i� \Rdy� F . The TST of all nodes is initialized to 0. The
details of our distributed method are shown in Algorithm 6.

Algorithm 6. Distributed Data Aggregation Scheduling

Input: A network G, and the data aggregation tree T ;

Output: TST½i� for every node vi
1: The node vi initializes the value NoC½i�, and Leaf½i�

based on the constructed aggregation tree T .

2: Initializes the set CS½i� based on the tree T and the

original interference relation,
3: RdyCS½i� CS½i� \ fj j j is a leaf in Tg.
4: TST½i� 0; DONE FALSE;

5: Node vi randomly selects an integer ri. Then we say

ðri; iÞ < ðrj; jÞ if (1) ri < rj or (2) ri ¼ rj and i < j.

6: while (not DONE) do

XU ET AL.: A DELAY-EFFICIENT ALGORITHM FOR DATA AGGREGATION IN MULTIHOP WIRELESS SENSOR NETWORKS 5

7: if NoC½i� ¼ 0 then

8: Send message READYði; riÞ to all nodes in CS½i�.
9: if ðri; iÞ < ðrj; jÞ for each j 2 RdyCS½i� then

10: Send message FINISHðiÞ&TST ½i� to all nodes

in CS½i�;
11: DONE TRUE;

12: if Node vi received a message FINISHðjÞ&TST ½i�
then

13: Delete j from RdyCS½i�;
14: TST½i� max {TST½i�;TST½j� þ 1};

15: if j is a child of i then

16: NoC½i� NoC½i� � 1;

17: if Node vi received a message READYðj; rjÞ then

18: if j is in CS½i� then

19: Add j to RdyCS½i�.
20: Node vi transmits data based on the time slot in TST½i�.
21: The topological center transmits aggregated data to the

sink.

When a node vi finishes its scheduling, it sends a message

FINISH to all nodes in its competitor set CS½i�. When a node

vi received a message FINISH, it sets its TST½i� to the larger

one of its original TST½i� and TST½j� þ 1. When all the

children of node vi finished their transmission, the node vi is

ready to compete for the transmission time slot and it will

send a message READYði; riÞ to all nodes in its competitor

set. When a node vi received a message READY from

another node vj, it will add the sender j to its ready

competitor set RdyCS½i� if j is in CS½i�. When the scheduling

ends, all nodes will transmit their data based on TST½i�. In

the end, the topology center aggregates all the data and sends

the result to the sink node via the shortest path.

4 PERFORMANCE ANALYSIS

In this section, we first theoretically prove that the delay of

the data aggregation based on our scheduling is at most

16Rþ�� 14, where R is the radius of the network and � is

the maximum node degree in the original communication

graph. We conjecture that the theoretical performance of

our centralized and distributed algorithms could actually be

much better than 16Rþ�� 14, which is supported by our

extensive simulations. On the other hand, we also present a

network example to show that our centralized algorithm

cannot achieve a delay lower than 4Rþ�� 3. It remains as

future work to find bad network examples to show that our

distributed methods could perform worse than ð1þ "ÞR for

a sufficient small constant " > 0. At last, we present a

general lower bound on the delay of data aggregation for

any algorithm.

4.1 Performance of Our Algorithm

First, we show that after every time slot of Algorithm 4, for

each dominator, the number of neighboring dominatees

whose data are not collected is decreased by at least 1.

Claim 1. All the output links in S in Step 4 of Algorithm 3 are

conflict-free. In addition, after all the links transmit, for each

dominator, the number of neighboring dominatees whose data

are not collected is decreased by at least 1.

Proof. We first check the origin of these links. As shown in
Algorithm 3, each dominator u chooses a dominatee
randomly from its neighbors and lets the chosen
dominatee transmit to u. We call all chosen dominatees
as active transmitters for later references. Assume that
there are nd dominators, then we have a set L of (at most)
nd chosen links. We input L to Algorithm 4 and assume
that the output is the set S.

We define a Loop Invariant for Algorithm 4 as: for
each dominator, the number of neighboring dominatees
whose data are not collected is decreased by at least 1.
Initially, since each dominator u chooses a neighboring
dominatee to transmit to u, the loop invariant is true.

If these links in L do not conflict with each other,
Algorithm 4 will skip the execution of the while loop and
output a set of links which are the same as the input.
Clearly, the output links are conflict-free and the loop
invariant remains true.

Else, there exist interferences among links in L, then
Algorithm 4 will execute the loop body. In each loop,
Algorithm 4 adjusts a pair of conflicting links. By Lemma 2,
after one round of adjustment , we solve the interferences
caused by the pair of conflicting links, and the loop
invariant remains true. Algorithm 4 repetitively adjusts a
pair of conflicting links when interferences exist. Observe
that due to the recursive nature of our adjustment
algorithm, we must prove that Algorithm 4 will terminate
in a finite number of rounds. Clearly, when it terminates,
there is no pair of conflicting links and the loop invariant
remains true.

To show that Algorithm 4 terminates, we define a
Potential Function for a schedule as the cardinality of
the set C ¼ fðx1; x2Þ j x1; x2 are active transmitters and
their corresponding links x1y1; x2y2 are conflicting linksg.
We call the pair ðx1; x2Þ 2 C a pair of conflicting
transmitters. Clearly, the initial cardinality of the set C
is at most ndðnd � 1Þ=2. After one round of rescheduling,
the interferences between at least one pair of conflicting
transmitters are resolved. By Lemma 3, our adjustment
will not introduce any new pair of conflicting transmit-
ters. Thus, the potential function will be decreased by at
least 1 after one round, which means that Algorithm 4
will terminate after at most ndðnd�1Þ

2 rounds of execution
of the while loop in Algorithm 4.

Therefore, Algorithm 4 will terminate, which means
that there exists no conflict among the output links in S.
In addition, the loop invariant is true after Algorithm 4
terminates. Thus, claim 1 holds. tu

Lemma 2. After one round of adjustment (the loop body of
Algorithm 4), we solve the interferences caused by the pair of
conflicting links, and the loop invariant (every dominator’s
degree will be decreased by at least 1) remains true.

Proof. We prove the claim for each of the complementary
cases separately.

In Case 1 (juizjj � 1 and jujzij > 1), first, we prove that
the interferences are solved. If Dj ¼ ;, since we remove
one link, the interferences are clearly solved. Else,
Dj 6¼ ;, by definition, the distance between any dom-
inator in Dj and ui is greater than 1, thus, juizj0 j > 1. At
the same time, jujzij > 1, thus, the output adjusted links

6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. X, XXX 2011

uizi; ujzj0 are conflict-free, the interferences are solved.
Next, we prove that the loop invariant remains true. All
other dominators in Di are not affected by the adjust-
ment, thus, we only need to prove that for the
dominators in Di [Dj, the number of their neighboring
dominatees whose data are not collected is decreased by
at least 1. If Dj ¼ ;, we only need to for every dominator
in Di, the number of their neighboring dominatees
whose data are not collected is decreased by at least 1.
This is straightforward since ui transmits their data. Else,
Dj 6¼ ;, since both ui; uj transmit their data, thus, for
every dominator in Di [Dj, the number of their
neighboring dominatees whose data are not collected is
decreased by at least 1. Case 2 (jujzij � 1 and juizjj > 1) is
similar to Case 1.

In Case 3 (jujzij � 1 and juizjj � 1), we first prove that
the interferences are solved. If Dj ¼ ; or Dj ¼ ;, since we
remove one link, the interferences are clearly solved. Else,
by definition of Di;Dj, juizj0 j > 1; jujzi0 j > 1, thus, the
output adjusted links uizi0 ; ujzj0 are conflict-free, the
interference are solved. Then we prove that the loop
invariant remains true. Similar to Case 1, we only need to
prove that for the dominators in Di [Dj, the number of
their neighboring dominatees whose data are not col-
lected is decreased by at least 1. IfDi ¼ ;, we only need to
for every dominator in Dj, the number of their neighbor-
ing dominatees whose data are not collected is decreased
by at least 1. This is straightforward since uj transmits
their data. The proof is similar for Di ¼ ;. Else, both ui; uj
transmit their data, thus, for every dominator in Di [Dj,
the number of their neighboring dominatees whose data
are not collected is decreased by at least 1. tu

Lemma 3. The adjustment in one round of Algorithm 4 will not
introduce any new pair of conflicting transmitters.

Proof. We prove by contradiction. Suppose after an
adjustment for a pair of links ðuizi; ujzjÞ to ðuizi0 ; ujzj0Þ,
Algorithm 4 introduces a new pair of conflicting
transmitters ðu; vÞ. Since our adjustment only reconnects
either ui or uj to a new dominators while does not
change the links for other transmitters, one transmitter in
ðu; vÞ must be ui or uj. Assume that u is ui, and the
corresponding receiver of v is zk. Since ui and v conflict,
either ð1Þjuizkj � 1 or ð2Þjvzi0 j <¼ 1. In Case 1, ui and v is
a pair of conflicting transmitters before the adjustment,
which causes contradiction. Case 2 also causes contra-
diction since zi0 2 Di � DðuiÞ, by the definition of DðuiÞ,
the distance between other active transmitter v; v 6¼ ui,
and v 6¼ uj is greater than 1. (Refer to the first sentence in
the second paragraph, right column, Page 4: For every
other active transmitter v; v 6¼ ui and v 6¼ uj, we delete all
dominators from DðuiÞ (and also from DðujÞÞ that are
within the transmission range of v). tu

Lemma 4. Given a communication graph G of a network, under
the assumption that the interference range rI is the same as the
transmission range r, Algorithm 3 (aggregating data from
dominatees to dominators) costs at most � time slots, where �
is the maximum node degree in G.

Proof. Each dominator has at most � neighboring domina-
tees. We define a dominator’s unaggregated-node-degree

as the number of the neighboring dominatees whose data
have not been aggregated to dominators yet. At first, each
dominator’s unaggregated-node-degree is bounded by �.
By Claim 1, after one time slot, each dominator’s
unaggregated-node-degree is decreased by at least 1.
Thus, Algorithm 3 costs at most � time slots. tu

We now bound the number of connectors that a
dominator u will use to connect to all dominators within
two hops. Our proof is based on a technique lemma implied
from lemmas proved in [20].

Lemma 5. Suppose that dominator v and w are within two hops
of dominator u, v0 and w0 are the corresponding connectors for
v and w, respectively. Then either jwv0j � 1 or jvw0j � 1 if
ffvuw � 2 arcsin 1

4 .

Lemma 6. In Algorithm 5, a dominator requires at most
12 connectors to connect to all dominators within two hops.

Proof. Consider any dominator u, let I2ðuÞ be the set of
dominators within two hops of u in the original commu-
nication networkG. Assume that we have already deleted
all the redundant connectors for node u. LetC be the set of
connectors left for a dominator u. Then for each remaining
connector x 2 C, there is at least one dominator (called a
nonsharing dominator) that can only use this connector to
connect to u (otherwise, connector x is redundant, and
thus, will be removed). Assume that there are 13
connectors in C. Then there are at least 13 nonsharing
dominators in I2ðuÞ. From pigeonhole principle, we know
that there must be two dominators v1 and v2 such that
ffv1uv2 � 2�=13 < 2 arcsinð14Þ. Thus, using Lemma 5, v1 and
v2 will share a common connector in C, which contradicts
to the selection of v1 and v2. tu

In the rest of the proof, for a dominator u, we use CðuÞ to
denote the set of connectors used to connect all dominators
in D2ðuÞ.
Lemma 7. In Algorithm 5, a dominator u in level i can receive

the data from all neighboring dominators D2ðuÞ in at most
16 time slots.

Proof. Each dominatoruwill collect the aggregated data from
all dominators within two hops in lower level. Any
connector in CðuÞ has at most four other neighboring
dominators, besides u. Similar to the proof of Lemma 4, we
can show that it takes at most four time slots for each
connector to collect data from those neighboring dom-
inators other than u. Recall that at most 12 connectors are
needed for u to reach all dominators inD2ðuÞ. Thus, it will
take at most 12 time slots for the dominatoru to collect data
from all these connectors. Consequently, within at most
12þ 4 ¼ 16 time slots, every dominator u can collect the
aggregated data from all the dominators in D2ðuÞ. tu

Theorem 8. By using Algorithm 5, the sink can receive all the
aggregated data in at most 17Rþ�� 16 time slots.

Proof. Every dominatee’s data can be aggregated to a
dominator within � time slots from Lemma 4. Observe
that every dominator, except the root of the data
aggregation tree T , connects to at least one dominator
in the upper level within two hops. Then Algorithm 5

XU ET AL.: A DELAY-EFFICIENT ALGORITHM FOR DATA AGGREGATION IN MULTIHOP WIRELESS SENSOR NETWORKS 7

ensures that every dominator’s data can be aggregated at
the root finally. For each level of the BFS tree, every
dominator u including the root of data aggregation tree T
can collect aggregated data from all dominators in D2ðuÞ
within at most 16 time slots by Lemma 7. Since there is
no dominator in Level 1, after at most 16ðR� 1Þ time
slots, every dominator’s data can be aggregated to the
root. The root then uses at most R time slots to transmit
data to the original sink node via the shortest path.
Therefore, within 17Rþ�� 16 time slots, all the data
can be aggregated to the sink node. tu

Next, we provide a revised schedule that only needs
15 time slots for dominators in level i (i � 2) to aggregate
data from some dominators within two hops, which can
also ensure that data will be aggregated to the root finally.
This means that we can reduce our delay by R� 2 time
slots totally.

For a dominator u other than the root, we denote all
dominators within two hops of u by B2ðuÞ. Note that B2ðuÞ
includes at least one dominator v located in upper level of u.
By Lemma 6, u needs at most 12 connectors to connect to
B2ðuÞ, we denote the set of at most 12 connectors by CðuÞ.
There must exist a connector w 2 CðuÞ, which connects u to
v. Then all dominators in B2ðuÞ that are connected to w are
also two-hop neighbors of the dominator v, we denote the set
of these dominators by B02ðuÞ, thus, B02ðuÞ � B2ðvÞ. Clearly,
all data in B02ðuÞ can be collected by v, it is not necessary for
them to be collected by u. So we let u only collect the data in
B2ðuÞ nB02ðuÞ. It requires at most 11 connectors (all the
connectors in CðuÞ n fwg) to connect to the dominators in
B2ðuÞ nB02ðuÞ. So at most 15 (¼ 4þ 11) time slots are
required for u to aggregate the data from B2ðuÞ nB02ðuÞ. If
every dominator u other than the root aggregates the data
fromB2ðuÞ nB02ðuÞ, all the data can be aggregated to the root.

Theorem 9. By using Algorithm 5, the sink can receive all the
aggregated data in at most 16Rþ�� 14 time slots.

Proof. Similar to the proof of Theorem 8, we need � time slots
for dominators to aggregate data from dominatees. After
that, for each level of the BFS tree, every dominatoru, other
than the root of the data aggregation tree T , can collect
aggregated data from all dominators inB2ðuÞ nB02ðuÞ in at
most 15 time slots as stated above. Thus, it costs at most
15ðR� 2Þ for data to be aggregated to the dominators in

level 2. The root rT can collect the aggregated data from
dominators in level 2 within 16 time slots. Thus, within
15ðR� 2Þ þ 16 time slots, every dominator’s data can be
aggregated to the root. The root then transmits the result to
the original sink node inR time slots. In total, within 16Rþ
�� 14 time slots, all the data can be aggregated to the sink
node. tu

Observe that although our analysis is based on the
centralized method, it is easy to show that all results carry
to the distributed implementation (Algorithm 6). Thus, we
have the following theorem:

Theorem 10. By using Algorithm 6, the sink can receive all the
aggregated data in at most 16Rþ�� 14 time slots.

4.2 Lower Bound of Our Algorithm

The lower bound of our algorithm is the delay for data
aggregation in the worst input case. It is an important
measurement to estimate the tightness of the upper bound
of our algorithm derived in Section 4.1. In the following
context, we present a network example, and show that
when applying our algorithm to it, the delay can be as bad
as 4Rþ�� 3.

In Fig. 3, the root v0 (which is the topology center) has
two children, which means that there are two symmetric
branches, each branch is symmetric with respect to the
horizontal axis. For some nodes in the left branch, we mark
their corresponding levels beside them. We use black nodes
to denote dominators and white nodes to denote connec-
tors. For each black node on the horizontal axis, we draw
two cocentric circles with radii r and 2r, respectively; all its
three neighboring connectors are located on the inner circle.
We omit all leaf nodes in the figure. The original sink vs is
located in the rightmost of the right branch.

Lemma 11. When applying a centralized algorithm to the
example shown in Fig. 3, the delay is 4Rþ�� 3 time slots.

Proof. First, aggregating data from dominatees to domina-
tors costs � time slots by Lemma 4.

Second, both branches aggregate data from lower to
upper levels. Between level i and level iþ 2 as shown in
Fig. 3, it costs three time slots to aggregate data from the
seven dominators in level iþ 2 to three connectors in level
iþ 1 and costs another three time slots to aggregate data
from three connectors in Level iþ 1 to a dominator in

8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. X, XXX 2011

Fig. 3. A network example to show the lower bound of our algorithm.

level i. So it costs ð3þ 3Þ 	 R�2
2 time slots to gather data from

dominators in level R toward dominators in level 2. After
that, it costs one time slot to gather data from dominators in
level 2 to connectors in Level 1 and then two time slots to
the topology center v0. Finally, v0 transmits the aggregated
data to the sink node, which will cost anotherR time slots.
Therefore, we need �þ ð3þ 3Þ 	 R�2

2 þ 1þ 2þR ¼ 4Rþ
�� 3 time slots in total. tu

4.3 Overall Lower Bound

In this section, we give the overall lower bound on the delay
for data aggregation. Here, overall lower bound refers to the
minimum time slots needed to finish the data aggregation
by any possible algorithm.

Theorem 12. Under any interference model, the overall lower
bound of delay for data aggregation by any method is
maxfR; logng time slots, where R is the network radius and
n is the number of nodes in the network.

Proof. The lower bound R immediately follows from the
fact that no matter what algorithm is implemented and
no matter what interference model we will use, it costs at
least R time slots for the farthest node v to transmit its
data to the sink node vs.

Next, we prove that logn is a lower bound for any

valid schedule under any interference model. Here, a

valid schedule is defined in Section 2.1, which is denoted

by a sequence of sender sets S1; S2; . . . ; Sl. Then for any

set of senders Sl�i, its receivers must be inside

fvsg [ð
Si�1
j¼0 Sl�jÞ. Consequently, jSl�ij < 1þ

Pi�1
j¼0 jSl�jj

since different senders in Sl�i must have different

receivers. Thus, we have

jSlj � 1 ¼ 20

jSl�1j < 1þ jSlj � 2 ¼ 21

jSl�2j < 1þ jSlj þ jSl�1j � 4 ¼ 22

	 	 	

jSl�ij < 1þ
Xi�1

j¼0

jSl�jj � 2i

	 	 	
jS1j � 2l�1:

8>>>>>>>>>><
>>>>>>>>>>:

Therefore, we have
Pl

i¼1 jSij � 2l � 1. From the precon-
dition for a valid schedule that [li¼1Si ¼ V n fvsg, we get
n� 1 �

Pl
i¼1 jSij � 2l � 1. Therefore, l � logn, which

means that we need at least logn time slots for any
schedule. Thus, logn time slots are a general overall
lower bound, which finishes the proof. tu
Under the protocol interference model when rI ¼ r, the

communication graph is a UDG. Using area argument, we can
get n ¼ Oð� 	 RÞ, where � is the maximum degree in UDG.
Thus, maxfR; logng ¼ maxfR; logOð� 	RÞg ¼ maxfR;
log �g. By Theorem 12, maxfR; log �g is also a lower bound
under the protocol interference model when rI ¼ r. In
Theorem 13, we will construct an example to show that the
lower bound of both maxfR; log �g and maxfR; logng can be
(approximately) achievable.

Theorem 13. Under the protocol interference model when rI ¼ r,
there is a placement of nodes such that the delay of data
aggregation is only 2 log �ð¼ 2 log nþ1

2 Þ. In other words, the

overall lower bound provided in Theorem 12 is (approxi-

mately) tight in this model.

Proof. We prove by construction. In Fig. 4, we construct a

network example like a complete binary tree. There are R

levels and level i has 2i nodes. The distance between all

nodes in level R is at most r. Thus, the degrees of all

nodes in level R reach �. We order all nodes in level i

from the highest to the lowest, it means that a node with

order j is the j-highest among all nodes in level i (we

note the node by vði;jÞ). The sink node is located on level

0, which is the root of the binary tree. The distance

between any corresponding pair of nodes located in two

consecutive levels is r, such as the pair of vði;2j�1Þ and

vði�1;jÞ or the pair of vði;2jÞ and vði�1;jÞ. The distance of any

other pair of nodes located in two different levels is

greater than r, such as vði;kÞ and vði�1;jÞ when k 6¼ 2j� 1

and k 6¼ 2j.
We produce a valid schedule for the network example

as follows: For i ¼ R;R� 1; . . . ; 1

1. All links of vði;2j�1Þvði�1;jÞð1 � j � 2i�1Þ transmit
simultaneously.

2. All links of vði;2jÞvði�1;jÞð1 � j � 2i�1Þ transmit
simultaneously.

From the schedule, we can see that we only need two

time slots to aggregate data from level i to level ði� 1Þ.
This implies that totally we need 2R time slots to

aggregate data from all nodes to the sink. Since

R ¼ log � ¼ logðnþ 1Þ=2, this finishes the proof. tu
Now we provide the overall lower bound under the

protocol interference model when r < rI < 3r and rI � 3r.

Theorem 14. Under the protocol interference model when

r < rI < 3r, the overall lower bound of data aggregation is

maxfR;�
�g, where

� ¼ 2�

barcsin ��1
2� c

and � ¼ rI
r ; when rI � 3r, the overall lower bound is

maxfR;�g.
Proof. By Theorem 12, R is a lower bound.

Assume that node u has � neighbors. Since every
neighbor of u needs to transmit at least once to report its
data, we try to compute the maximum number of u’s
neighbors that can transmit simultaneously without
interference, which implies a lower bound.

XU ET AL.: A DELAY-EFFICIENT ALGORITHM FOR DATA AGGREGATION IN MULTIHOP WIRELESS SENSOR NETWORKS 9

Fig. 4. An overall lower bound example.

When r < rI < 3r, assume that two neighbors p; s of u
transmit simultaneously, and q; t are their corresponding
receivers. From [22, Lemma 5], ffqut must be no larger
than � ¼ arcsin ��1

2� to ensure that links pq and st are
interference-free with each other. So the maximum
number of u’s neighbors that can transmit simulta-
neously is � ¼ b2�� c. Therefore, �

� is an overall lower
bound. Thus, the overall lower bound of delay is
maxfR;�

�g when r < rI < 3r.
When rI � 3r, if one of u’s neighbors is transmitting to

the node w, the distance between w and any other
neighbor of u is smaller than 3r, thus, smaller than rI . So
the maximum number of u’s neighbors that can transmit
simultaneously is only one. Therefore, � is an overall
lower bound. Thus, the overall lower bound of delay is
maxfR;�g when rI � 3r. This finishes the proof. tu

5 OTHER NETWORK MODELS

To schedule two links at the same time slot, we must ensure

that they are interference-free with each other. Previous

studies on stable link scheduling mainly focused on the

protocol interference model in which the transmission and

interference ranges are the same. In addition to the protocol

interference model, several different interference models

have been used to model the interference. We briefly review

these models below.
k-hop interference model. A sending node u (with

receiver p) is said to cause interference at another receiving

node w if w is within k-hops of the node u, i.e., the hop

distance between u and w in the communication graph G is

at most k.
RTS/CTS model. For every pair of transmitter and

receiver, all nodes that are within the interference range of

either the transmitter or the receiver cannot transmit. In this

case, we assume that node u will interfere the receiving of

another node w from another sender v if either v or w is in

the transmission range of u. Although RTS/CTS is not the

interference itself, for convenience of our notation, we will

treat the communication restriction due to RTS/CTS as

RTS/CTS interference model.
Now we discuss data aggregation in other interference

models. Similar to the algorithms in Section 3, we apply a

scheme in which all the data in the dominatees are

aggregated to the dominators first, then dominators

transmit their data toward the root level by level until all

data reach the root. As already shown in Lemma 4, all the

data can be aggregated to the dominators by at most � time

slots (here, � is the maximum degree in the interference

graph instead of communication graph). The only differ-

ence is how to collect data from all dominators to the root.

We still use the scheme similar to Algorithm 5. To analyze

the performance, we need to count the maximum number

of dominators in kþ 1 hops. Observe that here RTS/CTS

model is essentially two-hop interference model. We first

discuss two-hop model, the other models are similar.

Theorem 15 (Wegner Theorem [10]). The area of the convex

hull of any n � 2 nonoverlapping unit-radius circular disks is

at least 2
ffiffiffi
3
p
ðn� 1Þ þ ð2�

ffiffiffi
3
p
Þd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12n� 3
p

� 3e þ �.

Lemma 16. There are at most 41 independent nodes within any
disk of radius 3.

Proof. Fix a disk D2 centered at a point u. Let S denote the

set of independent nodes in D2. If for each node in S we

consider a disk of radius 0.5 centered at this node, then

all of those disks must be disjoint. Therefore, the convex

hull of S must be contained in the disk of radius 3.5

centered at u. By applying Wegner Theorem with proper

scaling, we have 2
ffiffiffi
3
p
ðjSj � 1Þ þ ð2�

ffiffiffi
3
p
Þd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12jSj � 3

p
�

3e þ � < 49�. Straightforward calculation shows that the

maximum integer to make the above inequality hold is

jSj ¼ 41. tu
Thus, similar to Theorem 8, we have the following

theorem on the delay of our data aggregation method under
two-hop interference model:

Theorem 17. Under two-hop interference model, the sink can
receive all the aggregated data in at most OðRþ�Þ time slots.

Note that under two-hop interference model, any two
senders x and y cannot be communication neighbors
(otherwise, x will cause interference at the receiver of y).
Thus, given � neighbors of a node, we need at least �=5
time slots to just let every of these � neighbors transmit
once. Thus, the below theorem follows:

Theorem 18. Under two-hop interference model, for any data
aggregation method, it will take at least maxðR;�=5Þ time
slots for the sink to receive the aggregated data.

For k-hop interference model, where k � 3, then any two
nodes x and y that are neighbors of a node u clearly cannot
transmit simultaneously. Thus, � is a lower bound on delay
of data aggregation. For general k-hop interference model,
we are also able to prove the following:

Theorem 19. Under k-hop interference model (k � 3), the sink
can receive all the aggregated data in at most Oðk2ÞðRþ�Þ
time slots. For any data aggregation method, it will take at
least maxðR;�Þ time slots for the sink to receive all the
aggregated data.

6 SIMULATION RESULTS

In this section, we present the simulation results, which
evaluate our Distributed Data Aggregation Algorithms
(Algorithm 6).

6.1 Evaluating the Worst-Case Performances

Since in our paper and all related works, the performance
analysis part mainly focuses on the upper bound on
latencies, which is the worst-case performances as well,
we evaluate the worst-case performance of our algorithm
first. Here, we compare our algorithm (which has an upper
bound on delay of 16Rþ�� 14 time slots) with the
previously known best result (which has an upper bound
on delay of 24Dþ 6�þ 16 time slots in [3]).

We can see that when the network radius R is fixed, our
worst-case performances are 3 to 4.5 times better than
previous best result (Fig. 5a); when the maximum node
degree � is fixed, our worst-case performances are 1.5 to
2 times better than previous best result (Fig. 5b).

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. X, XXX 2011

6.2 Evaluating the Average Performances

Now we compare the average performances of three

algorithms (Algorithm 6, Yu et al. [3], and Huang et al.

[11]). We randomly deploy nodes (representing sensors)

into a region of 200 m
 200 m. All nodes have the same

transmission radius.
In Fig. 6a, the transmission radius of each sensor is fixed

to 25 m. The figure shows the delay for aggregating data

from all nodes to the sink by running three algorithms

while the number of deployed nodes increases.
Fig. 6b compares the latencies for aggregating data using

three algorithms when the maximum node degree varies.

Here, the maximum node degree � is fixed to 25. It can be

seen in the figure that our algorithm (nearly the same with

Yu et al.’s) outperforms Huang et al.’s algorithm with much

lower latencies.

6.3 Evaluations on TOSSIM of TinyOS 2.0.2

We implemented IAS on TOSSIM of TinyOS 2.0.2. We
randomly deploy a number of sensor nodes in a two-
dimensional square region, all nodes have the same
transmission range. Each node will generate a random 16-
bit nonnegative number as its own datum. The objective of

the sink node is to report the aggregation result of all data
(totally n data, n is the network size) correctly.

In order to evaluate the efficiency of IAS, we also
implemented another data aggregation algorithm by com-
bining BFS tree and Collection Tree Protocol (CTP, which is
provided by TinyOS 2.0.2) using TOSSIM. We call this
method BFS+CTP method for simplicity. The main idea of
BFS+CTP method is to construct a BFS tree rooted at the
sink node based on the link quality. In other words, during
the procedure of constructing BFS, the link quality
computed by CTP will be considered as the link weight.
Note that the original CTP method (components) provided
in TinyOS 2.0.2 is used to collect data to the sink node. To
enable CTP to support data aggregation rather than to
collect all data to the sink, we modified CTP in the upper
layer such that each node will not send data to its parent (on
the BFS tree) until it aggregates all necessary data from all
children (on the BFS tree).

We tested and compared the latencies for IAS method
and BFS+CTP method in two different cases. For the first
case, we randomly generated the network topology (con-
nected) with different network size (increasing from 30 to
210 with step 30) while ensuring the network density
unchanged, i.e., the network deployment area increases
with the increment of the network size. Actually, by doing
this, we fixed the maximum degree � (in our simulation, �
is around 22) for each case; thus, the radius of communica-
tion graph increases with the increment of network size.
The delay performance of two methods, IAS and BFS+CTP,
is illustrated in Fig. 7a. Note that here the definition of delay
is the time duration from the time the first datum is
transmitted heading for the sink node to the time the sink
node reports the result finally. From Fig. 7a, we can see that
when the network density is not big, the delay difference
between two methods is not so big. In most cases, our IAS
method has better performance than that of BFS+CTP. The
radius R for each case is indicated by the value in the
brackets right after the network size on x-coordinate.

For the second case, we fix the deployment area as
(300
 300) and continue to increase the network size from
50 to 200 with step 30 while keeping the network connected.

XU ET AL.: A DELAY-EFFICIENT ALGORITHM FOR DATA AGGREGATION IN MULTIHOP WIRELESS SENSOR NETWORKS 11

Fig. 5. Comparisons of worst-case performances for two methods.

(a) Fixed R. (b) Fixed �.

Fig. 6. Comparisons of average performances for three methods.

(a) Fixed R. (b) Fixed �.

Fig. 7. Simulation results for our algorithm and BFS+CTP. (a) Fixed R.

(b) Fixed �.

By doing this, we can fix the radius R and test the
performance of both algorithms with the increment of
network density (maximum degree �).

As we can see in Fig. 7b, there is a big gap between these
two methods when the density (maximum degree �)
continues increasing. This is because the interference will
be greatly decreased after IAS gathers all data to dominators.
Hence, the total delay decreases significantly. However, for
BFS+CTP method, the number of relay nodes will continue to
increase with the increment of network size such that the
delay increases greatly due to the interference. From the
simulation results, we can see that in most cases, IAS has
better performance than BFS+CTP method. Especially, the
denser the network is, the more efficient our IAS algorithm is.

7 RELATED WORK

Data aggregation in sensor networks has been well studied
recently [2], [12], [15], [25]. In-network aggregation means
computing and transmitting partially aggregated data
rather than transmitting raw data in networks, thus,
reducing the energy consumption [16].

There are a lot of existing researches on in-network
aggregation in the literature [6], [17]. Suppression scheme
and model-driven methods were proposed in [5], [7]
toward reducing communication cost. The trade-off be-
tween energy consumption and time delay was considered
in [25]. A heuristic algorithm for both broadcast and data
aggregation was designed in [1]. Another heuristic algo-
rithm for data aggregation was proposed [18], aiming at
reducing time delay and energy consumption. Kesselman
and Kowalski [13] proposed a randomized and distributed
algorithm for aggregation in WSNs with an expected delay
of OðlognÞ. Their method is based on two assumptions: One
is that sensor nodes can adjust their transmission range
without any limitation. The other is that each sensor node
has the capability of detecting whether a collision occurs
after transmitting data. Both assumptions pose some
challenges for hardware design and are impractical when
the network scales. A collision-free scheduling method for
data collection is proposed in [14], aiming at optimizing
energy consumption and reliability. All these works did not
discuss the minimal delay aggregation scheduling problem.

In addition, the minimum delay of data aggregation
problem was proved NP-hard and a ð�� 1Þ-approximation
algorithm was proposed in [4], where � is the maximum
degree of the network graph. Another aggregation schedul-
ing algorithm was proposed in [11], which has a delay bound
of 23Rþ�þ 18, where R is the network radius and � is the
maximum degree. Recently, Wan et al. [21] proposed three
novel centralized data aggregation methods for networks
when nodes have the same transmission radius and
interference radius, which achieve schedules of latency
15Rþ�� 4, 2RþOðlogRÞ þ�, and ð1þOðlogRffiffiffi

R3
p ÞÞRþ�,

respectively. Recently, Xu et al. [24] studied aggregation
with multiple queries in WSNs. All the algorithms men-
tioned above are centralized. In many cases, centralized
algorithms are not practical, especially when the network
topology changes often in a large sensor network.

The distributed algorithms for convergecast scheduling
were proposed in [3], [8], [13]. [8], [13] focused on the

scheduling problem for data collection in sensor networks.
In data collection, since data cannot be merged, the sink
must receive N packets from all the nodes, where N is the
number of sensor nodes in the network. Thus, the lower
bound of delay is N . The upper bound of the time delay of
this algorithm is maxð3nk � 1; NÞ, where nk is the number of
nodes in the largest one-hop subtree. Bo Yu and Li [3]
proposed a distributed scheduling algorithm generating
collision-free schedules that has a delay bound of
24Dþ 6�þ 16, where D is the network diameter.

8 CONCLUSIONS

Data aggregation is critical to the network performance in
WSNs and aggregation scheduling is a feasible way of
improving the quality. In this paper, we study the problem
of distributed aggregation scheduling in WSNs and
propose a distributed scheduling method with an upper
bound on delay of 16Rþ�� 14 time slots. This is a nearly
constant approximate algorithm, which significantly re-
duces the aggregation delay. The theoretical analysis and
the simulation results show that our method outperforms
the previous methods.

In addition, we provide the overall lower bound on
delay for data aggregation under any interference model
with formal proofs and give an example to show that the
lower bound is (approximately) tight under the protocol
interference model when rI ¼ r, where r is the transmission
range and rI is the interference range. We also derive the
lower bound on delay under the protocol interference
model when r < rI < 3r and rI � 3r.

ACKNOWLEDGMENTS

The research of authors is partially supported by US National
Science Foundation (NSF) NSF CNS-0832120, NSF CNS-
1035894, National Natural Science Foundation of China
under Grant No. 60828003, program for Zhejiang Provincial
Key Innovative Research Team, program for Zhejiang
Provincial Overseas High-Level Talents (One-hundred Ta-
lents Program), National Basic Research Program of China
(973 Program) under grant No. 2010CB328100 and
2010CB334707, and by Tsinghua National Laboratory for
Information Science and Technology (TNList).

REFERENCES

[1] V. Annamalai, S. Gupta, and L. Schwiebert, “On Tree-Based
Convergecasting in Wireless Sensor Networks,” Proc. IEEE Comm.
and Networking Conf. (WCNC), 2003.

[2] J. Beaver, M. Sharaf, A. Labrinidis, and P. Chrysanthis, “Location-
Aware Routing for Data Aggregation in Sensor Networks,” Proc.
Geosensor Networks Workshop, 2004.

[3] J.L. Bo Yu and Y. Li, “Distributed Data Aggregation Scheduling in
Wireless Sensor Networks,” Proc. IEEE INFOCOM, 2009.

[4] X. Chen, X. Hu, and J. Zhu, “Minimum Data Aggregation Time
Problem in Wireless Sensor Networks,” Proc. First Int’l Conf.
Mobile Ad-Hoc and Sensor Networks (MSN), vol. 133, 2005.

[5] D. Chu, A. Deshpande, J. Hellerstein, and W. Hong, “Approx-
imate Data Collection in Sensor Networks Using Probabilistic
Models,” Proc. Int’l Conf. Data Eng. (ICDE), 2006.

[6] J. Considine, F. Li, G. Kollios, and J. Byers, “Approximate
Aggregation Techniques for Sensor Databases,” Proc. Int’l Conf.
Data Eng. (ICDE), 2004.

12 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. X, XXX 2011

[7] A. Deshpande, C. Guestrin, W. Hong, and S. Madden, “Exploiting
Correlated Attributes in Acquisitional Query Processing,” Proc.
Int’l Conf. Data Eng. (ICDE), 2005.

[8] S. Gandham, Y. Zhang, and Q. Huang, “Distributed Minimal Time
Convergecast Scheduling in Wireless Sensor Networks,” Proc.
IEEE Int’l Conf. Distributed Computing Systems (ICDCS), 2006.

[9] P. Gupta and P.R. Kumar, “The Capacity of Wireless Networks,”
Proc. IEEE Trans. Information Theory, vol. 46, no. 2, pp. 388-404,
Mar. 2000.

[10] G. Wegner, “€Uber Endliche Kreispackungen in Der Ebene,” Studia
Scientiarium Mathematicarium Hungarica, vol. 21, pp. 1-28, 1986.

[11] S. Huang, P. Wan, C. Vu, Y. Li, and F. Yao, “Nearly Constant
Approximation for Data Aggregation Scheduling in Wireless
Sensor Networks,” Proc. IEEE INFOCOM, pp. 366-372, 2007.

[12] C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidemann,
“Impact of Network Density on Data Aggregation in Wireless
Sensor Networks,” Proc. IEEE Int’l Conf. Distributed Computing
Systems (ICDCS), vol. 22, pp. 457-458, 2002.

[13] A. Kesselman and D. Kowalski, “Fast Distributed Algorithm for
Convergecast in Ad Hoc Geometric Radio Networks,” J. Parallel
and Distributed Computing, vol. 66, no. 4, pp. 578-585, 2006.

[14] H. Lee and A. Keshavarzian, “Towards Energy-Optimal and
Reliable Data Collection via Collision-Free Scheduling in Wireless
Sensor Networks,” Proc. IEEE INFOCOM, pp. 2029-2037, 2008.

[15] S. Madden, M. Franklin, J. Hellerstein, and W. Hong, “TAG: A
Tiny AGgregation Service for Ad-Hoc Sensor Networks,” Proc.
USENIX Symp. Operating Systems Design and Implementation, 2002.

[16] M. Sharaf, J. Beaver, A. Labrinidis, and P. Chrysanthis, “TiNA: A
Scheme for Temporal Coherency-Aware In-Network Aggrega-
tion,” Proc. Third ACM Int’l Workshop Data Eng. for Wireless and
Mobile Access, pp. 69-76, 2003.

[17] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri, “Medians
and Beyond: New Aggregation Techniques for Sensor Networks,”
Proc. ACM Conf. Embedded Networked Sensor Systems (SenSys),
pp. 239-249, 2004.

[18] S. Upadhyayula, V. Annamalai, and S. Gupta, “A Low-Latency
and Energy-Efficient Algorithm for Convergecast in Wireless
Sensor Networks,” Proc. IEEE Global Comm. Conf. (GlobeCom),
vol. 6, 2003.

[19] P.-J. Wan, K. Alzoubi, and O. Frieder, “Distributed Construction
of Connected Dominating Set in Wireless Ad Hoc Networks,”
Mobile Networks and Applications, vol. 9, pp. 141-149, 2004.

[20] P.J. Wan, C.W. Yi, X. Jia, and D. Kim, “Approximation Algorithms
for Conflict-Free Channel Assignment in Wireless Ad Hoc
Networks,” Wiley Wireless Comm. and Mobile Computing, vol. 6,
pp. 201-211, 2006.

[21] P.J. Wan, S.C.-H. Huang, L.X. Wang, Z.Y. Wan, and X.H. Jia,
“Minimum-Latency Aggregation Scheduling in Multihop Wire-
less Networks,” Proc. ACM MobiHoc, pp. 185-194, 2009.

[22] W. Wang, Y. Wang, X.Y. Li, W.Z. Song, and O. Frieder, “Efficient
Interference-Aware TDMA Link Scheduling for Static Wireless
Networks,” Proc. ACM MobiCom, pp. 262-273, 2006.

[23] X.-H. Xu, S.-G. Wang, X.-F. Mao, S.-J. Tang, and X.-Y. Li, “An
Improved Approximation Algorithm for Data Aggregation in
Multi-Hop Wireless Sensor Networks,” Proc. ACM MobiHoc
FOWANC Workshop, 2009.

[24] X.-H. Xu, S.-G. Wang, X.-F. Mao, S.-J. Tang, P. Xu, and X.-Y. Li,
“Efficient Data Aggregation in Multi-Hop WSNs,” Proc. IEEE
Global Comm. Conf. (GlobeCom), 2009.

[25] Y. Yu, B. Krishnamachari, and V. Prasanna, “Energy-Latency
Tradeoffs for Data Gathering in Wireless Sensor Networks,” Proc.
IEEE INFOCOM, vol. 1, 2004.

Xiaohua Xu received the BS degree from
ChuKochen Honors College at Zhejiang Uni-
versity, P.R. China, in 2007. He is currently
working toward the PhD degree in computer
science at Illinois Institute of Technology. His
research interests include algorithm design and
analysis, optimization in mesh network, and
energy efficiency and security in wireless net-
work. He is a student member of the IEEE.

Xiang-Yang Li received the BEng degree in
computer science and the bachelor’s degree in
business management from Tsinghua Univer-
sity, P.R. China, in 1995, and the MS and PhD
degrees in computer science from the University
of Illinois at Urbana-Champaign in 2000 and
2001, respectively. He has been an associate
professor since 2006 and assistant professor of
computer science at Illinois Institute of Technol-
ogy from 2000 to 2006. He was a visiting

professor at Microsoft Research Asia from May 2007 to August 2008.
His research interests include wireless ad hoc and sensor networks,
noncooperative computing, computational geometry, and algorithms. He
was a guest editor of special issues for the ACM Mobile Networks and
Applications, the IEEE Journal on Selected Areas in Communications,
and editor of the Networks journal. He is a member of the ACM and a
senior member of the IEEE.

Xufei Mao received the BS degree from
Shenyang University of Technology, China, in
1999, and the MS degree from Northeastern
University, China, in 2003. He is currently
working toward the PhD degree in computer
science at Illinois Institute of Technology. His
research interests include design and analysis of
algorithms concerning wireless networks, net-
work security, etc. Topics include navigation
problem in sensor network, Top-k query, capa-

city (throughput) study, channel assignment, link scheduling and TinyOS
programming, etc. He is a student member of the IEEE.

Shaojie Tang received the BS degree in radio
engineering from Southeast University, P.R.
China, in 2006. He is currently working toward
the PhD degree in computer science at Illinois
Institute of Technology. His current research
interests include algorithm design and analysis
for wireless ad hoc network and online social
network. He is a student member of the IEEE.

Shiguang Wang received the BS degree from
Nanjing University, P.R. China, in 2008. He is
currently working toward the PhD degree in
computer science at Illinois Institute of Technol-
ogy. His research interests include algorithm
and system design for wireless ad hoc and
sensor networks, game theoretical study of
networks, and RFID system. He is a student
member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

XU ET AL.: A DELAY-EFFICIENT ALGORITHM FOR DATA AGGREGATION IN MULTIHOP WIRELESS SENSOR NETWORKS 13

