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Abstract

Physical design optimizations such as placement, interconnect synthe-
sis, ¤oorplanning, and routing require fast and accurate analysis of
RC networks. Because of its simple close form and fast evaluation,
the Elmore delay metric has been widely adopted. The recently pro-
posed delay metrics PRIMO and H-gamma match the £rst three circuit
moments to the probability density function of a Gamma statistical
distribution. Although these methods demonstrate impressive accu-
racy compared to other delay metrics, their implementations tend to
be challenging. As an alternative to matching to the Gamma distribu-
tion, we propose to match the £rst two circuit moments to a Weibull
distribution. The result is a new delay metric called Weibull based
Delay (WED). The primary advantages of WED over PRIMO and H-
gamma are its ef£ciency and ease of implementation. Experiments
show that WED is robust and has satisfactory accuracies at both near-
and far-end nodes.

1 Introduction

As CMOS technologies scale into nanometer regime, interconnect net-
works are becoming increasingly dominant in terms of total path delay
or total path capacitance. The effect of interconnect networks on sig-
nal propagation delay and transition time degradation has to be con-
sidered in various physical design tools, e.g., placement, ¤oorplan-
ning and routing. Model order reduction techniques [10] have been
proven to be highly effective in analyzing interconnect delay. Essen-
tially, these model order reduction techniques compute the £rst few
dominant poles and the corresponding residues by matching the mo-
ments of the circuit impulse response (either explicitly or implicitly).
The response of the interconnect network is then represented as the
sum of exponential functions. In order to calculate the 50% signal de-
lay, nonlinear solution methods such as Newton-Raphson have to be
used to solve the transcendental equation. The overall computational
cost of this approach is expensive and could have a negative impact on
the overall speed of the physical optimization.

Given its explicit nature of a simple closed form and ease of cal-
culation, Elmore delay[3] is widely used as the delay metric of choice
within physical design optimization algorithms. Although it has been
proven to be the upper bound of the propagation delay[4], Elmore de-
lay is known to be extremely inaccurate in some cases because it ig-
nores the effect of resistive shielding [9].

Various delay metrics have been proposed that achieve better accu-
racy than Elmore delay, such as those proposed in [1][5][6][7][8][14].
Among them, some metrics such as [6] and [14] try to construct a
stable two-pole approximation and provide an explicit solution to the
signal delay. Another metric in [5] simpli£es the two-pole approxima-
tion to a single pole by matching the transfer function. The resulting
delay metric is simple but its accuracy is far from satisfactory. More
recently, an empirical metric, D2M, was proposed[1]. Despite its sim-
plicity, D2M has remarkably high accuracy at the far-end nodes.

The PRIMO[7] and H-gamma[8] metrics extend the observation
of Elmore that the impulse response of an RC circuit can be treated as
the probability density function (PDF) of a statistical distribution[3].
By using the Gamma distribution in particular as the underlying “tem-
plate”, the calculation of the signal delay is transformed to the calcula-
tion of the median of the Gamma distribution. Despite some prob-
lems at the near-end with PRIMO, these two methods demonstrate
better overall accuracy than previous metrics, although their imple-
mentations require careful algorithmic tuning. A carefully constructed
two-dimensional look-up table is required to calculate the incomplete
gamma function, which is needed in order to obtain correct delay val-
ues.

In this paper, we propose a new delay metric for RC circuits called
WED (WEibull-based Delay). Like PRIMO and H-gamma, we in-
terpret the circuit impulse as a PDF; however, we match the £rst two
moments to a Weibull Distribution. Because of the characteristics of
the Weibull distribution, WED does not require the evaluation of in-
complete Gamma function. Although look-up tables are still needed to
speed up the delay calculation, instead of carefully constructed multi-
dimensional tables, only two small one-dimensional tables are neces-
sary. Experiments on large industrial design demonstrate that WED
achieves the same accuracy as PRIMO, but does not generate unreal-
istic results as PRIMO occasionally does at near-end nodes.

2 Background

2.1 Circuit Moments and Probability Moments

Assume that h(t) is the impulse response of a node voltage in an RLC
circuit and H(s) is the corresponding Laplace transformation. The
(circuit) moments, mk, are de£ned as the coef£cient of the Taylor ex-
pansion of H(s) at s = 0:

H(s) =
∫ ∞

0
h(t) · e−stdt =

∞

∑
k=0

(−1)k

k!
sk

∫ ∞

0
tkh(t)dt (1)

Therefore,
H(s) = m0 +m1s+m2s2 +m3s3 + · · · (2)

with

mk =
(−1)k

k!

∫ ∞

0
tkh(t)dt for k = 0,1,2, . . . (3)

The circuit moments can be computed ef£ciently, e.g., by path
tracing[12].

In [13], it was shown that for an RC circuit without resistive path
to ground, the impulse response h(t) satis£es the following conditions:

h(t) ≥ 0 ∀t and
∫ ∞

0
h(t)dt = 1 (4)

From probability theory[2], any continuous function which satis£es
Equation (4) is a probability density function (PDF). Therefore, the im-
pulse response of an RC circuit is a PDF; however, there is no known
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Figure 1: The CDF and PDF of a typical statistical distribution.

underlying statistical distribution for the impulse response PDF. Sim-
ilarly, the step response of the same circuit is a cumulative density
function (CDF). The de£nitions and properties of PDF and CDF can be
found in any probability theory book such as [2]. Informally, the PDF
describes how “dense” the statistical distribution is across the region,
while the CDF is the area from −∞ to a particular point underneath the
PDF curve. The relationship between PDF (P(t)) and corresponding
CDF (C(t)) is (see Fig. 1):

C(t) =
∫ t

−∞
P(τ)dτ (5)

Similar to a statistical distribution, the concept of the mean of an
impulse response is de£ned as:

µ =
∫ ∞

0
t ·h(t)dt (6)

We can also calculate the central moments or moments about the mean,
which is de£ned as:

µk =
∫ ∞

0
(t −µ)k ·h(t)dt (7)

The relationship between the central moments and the circuit moments
listed in Equation (3) is [4]:

µ1 = 0
µ2 = 2m2 −m2

1
µ3 = −6m3 +6m1m2 −2m3

1

(8)

According to probability theory, further characteristics of the dis-
tribution (or, the impulse response of an RC circuit) can be derived
from the central moments. Besides the mean, two other important
characteristics are variance (σ2) and skewness (γ):

µ = −m1
σ2 = µ2 = 2m2 −m2

1

γ = µ3
σ3 = −6m3+6m1m2−2m3

1

(
√

2m2−m2
1)3

(9)

For the circuit response, the mean (µ) describes the center of the grav-
ity of a impulse response curve. The variance σ2 (or its square root,
which is referred as the standard deviation), describes the spread of
the response curve. It also provides a measurement of the signal tran-
sition time. Finally the skewness describes the degree of asymmetry
of the impulse response curve.

Once the connection between the PDF function and impulse re-
sponse curve is established, calculating signal delay at 100 ·φ% point
is equivalent to £nding the φ percentile of the underlying statistical
distribution. For example, £nding the 50% delay point is equivalent to
£nding the median of the statistical distribution.

Elmore was the £rst to make the connection between the impulse
response of an RC circuit and the statistical distribution. It turns out
that the mean of an RC circuit can be calculated in a recursive way, and
the resulting Elmore delay is a simple closed form. However, what we
really want to £nd is not the mean but the median of the distribution
since it corresponds to the 50% delay point (see Fig 1). Unfortunately,
computing the median is quite elusive, hence Elmore approximates
the median with the mean. Although Elmore delay is proven to be the
upper bound of the propagation delay[4], in many cases, especially for
the near-end nodes, there is signi£cant distance between the mean and
the median of the impulse response waveform. For those nodes, using
Elmore delay can generate tremendous amount of error. The overall
accuracy of the Elmore delay can be far from satisfactory.

2.2 Probability Based Delay Metric: PRIMO/H-gamma

In PRIMO, the idea of statistical interpretation was extended by match-
ing the impulse response to a shifted Gamma distribution. Once a par-
ticular statistical distribution is available, using the mean to approxi-
mate the median becomes unnecessary. Instead, the median can be cal-
culated precisely from the parameters of the Gamma distribution. The
PDF of a GAMMA distribution, denoted GAM(λ,n), is determined by
two parameters λ and n:

PGAM(t) =
λntn−1e−λt

Γ(n)
for t > 0 (10)

in which Γ(n) is the (complete) Gamma function:

Γ(x) =
∫ ∞

0
ζx−1e−ζdζ for x > 0 (11)

which is the continuous extension to the discrete factorial function
(n − 1)!. For example Γ(3) = 2! = 2, Γ(4) = 3! = 6, while
Γ(3.5) = 3.323. The Gamma function also has the recursive prop-
erty which is quite useful:

Γ(1+ x) = x ·Γ(x) for x > 1 (12)

In PRIMO, three circuit moments are used to calculate the three
central moments as shown in Equation (8). Then the two parameters n
and λ of the Gamma distribution are calculated by matching the second
and third central moments. The Gamma parameters are given by:

λ = 2µ2/µ3 n = 4µ3
2/µ2

3 (13)

A shift is then added to the Gamma distribution so that its mean
matches the mean of the circuit response. The amount of the shift
is determined by:

∆ = −m1 − n
λ

(14)

In order to calculate the delay tφ at 100 ·φ% point, the CDF of the
Gamma distribution has to be calculated. However, the Gamma CDF
is not explicit. As a result, the following nonlinear equation has to be
solved numerically:

∫ tφ

0
PGAM(t)dt =

∫ tφ

0

λntn−1e−λt

Γ(n)
dt = φ (15)

The resulting tφ is then adjusted by ∆ given in Equation (14) to com-
pensate the shift.

Numerically solving Equation (15) is equivalent to evaluating the
incomplete Gamma function, which can only be implemented by
means of numerical iteration [11]. In order to alleviate the cost of
the iterations involved, it was suggested that a pre-calculated look-up
table be used[7]. Since the incomplete gamma function has two in-
put variables, a two-dimensional look-up table has to be constructed
in order to generate accurate delay values and careful algorithm tuning
is required to make the method robust. Furthermore, due to the shift
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Figure 2: The CDF of Weibull distribution with same β but different
shape parameter α.

described in Equation (14), at some near-end nodes, PRIMO returns
negative delays, which are unrealistic.

In H-gamma[8], an extension of PRIMO, the homogeneous com-
ponent of the step response is matched to a Gamma distribution. Com-
pared to PRIMO, H-gamma achieves better accuracy and overcomes
PRIMO’s problem at near-end nodes. However, its implementation is
even more challenging.

3 WED: Weibull based Delay

Both PRIMO and H-gamma recognize the bene£t of matching the im-
pulse response to the particular Gamma distribution. However, several
other statistical distributions may be equally viable. In particular, as
can be seen in Fig. 2, there is a large degree of similarity between the
step response at different nodes in an RC circuit and the Weibull CDF.
Hence, we sought to apply the same PDF matching principle to the
Weibull distribution. The Weibull distribution has a distinct advantage
over Gamma distribution in that the median (or any percentage delay
point) can be expressed explicitly as a function of its parameters. This
makes it much simpler for calculating delay or signal transition time
(rise/fall time).

3.1 Weibull Distribution

A Weibull distribution, denoted as WEI(α,β), is determined by two
parameters α and β. Its PDF is de£ned as[2]:

PWEI(t) = αβ−αtα−1e−(t/β)α
for t > 0; α, β > 0 (16)

while its CDF is de£ned as:

CWEI(t) = 1− e−(t/β)α
(17)

Compared to that of a Gamma distribution, the CDF of a Weibull dis-
tribution is much simpler. The parameter α is called a shape parame-
ter. Depending on whether α < 1, α = 1, or α > 1, the Weibull CDF
shows three different basic shapes (see Fig. 2). For convenience, we
use parameter θ = 1/α in the WED formulation.

The statistical characteristics of Weibull distribution involves
Gamma function. The mean and the variance of Weibull distribution
are:

µWEI = βΓ(1+θ)
σ2

WEI = β2(Γ(1+2θ)−Γ2(1+θ)) (18)

Other characteristics such as skewness can also be written explicitly
(see e.g. [2]).

3.2 WED Delay Metric

We seek to construct a Weibull distribution by matching the mean and
variance of the RC step response to the mean and variance of a Weibull
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Figure 3: Values of θ with different values of r. Note that r is in
logarithmic scale.

distribution. Dividing the second equation in Equation (18) by the
square of the £rst equation, we have:

Γ(1+2θ)
Γ2(1+θ)

−1 =
σ2

WEI

µ2
W EI

(19)

Matching µWEI and σ2
WEI to the circuit mean m1 and variance

2m2 − m2
1 de£ned in Equation (9), we have:

Γ(1+2θ)
Γ2(1+θ)

=
2m2

m2
1

(20)

Let r = m2/m2
1. The parameter θ is determined by solving the follow-

ing equation:

r =
1
2
· Γ(1+2θ)

Γ2(1+θ)
(21)

Although this equation is nonlinear and appears complicated, it ac-
tually can be solved with a simple table look-up operation (see Sec-
tion 3.3.)

Once θ is known, parameter β is determined by Equation 18:

β =
−m1

Γ(1+θ)
(22)

To calculate the signal delay at 100 · φ% point, we directly solve
the CDF of Weibull distribution shown in Equation (17):

1− e−(tφ/β)1/θ
= φ (23)

which yields the solution:

tφ = β · [ln(
1

1−φ
)]θ (24)

In particular, the 50% delay point can be calculated as:

t0.5 = β · (ln(2))θ ≈ β · (0.693)θ (25)

3.3 WED Implementation

The seemingly complicated algorithm described above can be imple-
mented quite easily. First, the nonlinear equation in Equation (21) can
be easily solved by bi-section. We observe that the range of r = m2/m2

1
for an RC circuit generally lies between 0.8 and 5, with some extreme
values reaching 10. If we plot the solution of Equation (21) against the
logarithm of r, we observe an almost linear relationship (see Fig. 3).
For such an “almost-linear” relationship, a look-up table is ideal and
even a coarse one returns quite accurate results. From our experience,
we found the table listed in Table 1 works very well in practice. Note



r log10(r) θ
0.63096 -0.2 0.48837
0.79433 -0.1 0.76029
1.00000 0.0 1.00000
1.25892 0.1 1.22371
1.58489 0.2 1.43757
1.99526 0.3 1.64467
2.51189 0.4 1.84678
3.16228 0.5 2.04507
3.98107 0.6 2.24031
5.01187 0.7 2.43305
6.30957 0.8 2.62371
7.94328 0.9 2.81262

10.00000 1.0 3.00000
12.58925 1.1 3.18607
15.84893 1.2 3.37098

Table 1: The look-up table for the calculation of θ.

x GAMMA(x)

1.0 1.00000
1.1 0.95135
1.2 0.91817
1.3 0.89747
1.4 0.88726
1.5 0.88623
1.6 0.89352
1.7 0.90864
1.8 0.93138
1.9 0.96176
2.0 1.00000

Table 2: The look-up table to evaluate Gamma function.

that because the relationship between θ and log10(r) is close to linear
while the relationship between θ and r is exponential, using entries of
log10(r) is more accurate.

Next, the evaluation of the Gamma function in Equation (22) is
actually quite trivial. Gamma function is commonly available in many
numerical packages and math libraries. If it becomes necessary to im-
plement it, a detailed description of the procedure and a 10-line imple-
mentation in C can be found in the popular reference [11]. Further, the
Gamma function may also be implemented as a look-up table. Notice
that since the solution θ of Equation (21) is always positive, we only
have to evaluate Gamma function Γ(x) for x > 1. Due to the recursive
property of the Gamma function (Equation (12)), we only need to store
a look-up table for values between 1 and 2, which is shown in Table 2.

The ¤ow of carrying out WED calculation can be summarized as
the following:

Algorithm for the WED Metric
1. Calculate the two circuit moments m1, m2.
2. Calculate r = m2/m2

1.
3. Use Table 1 to £nd θ from r.
4. Use Table 2 to £nd Γ(1+θ).
5. Set β = −m1/Γ(1+θ).
6. Return 50% delay value of β(ln2)θ.

Figure 4: Algorithm for computing the WED metric.

Compared to the multi-dimensional look-up tables in PRIMO and
H-Gamma, only two 1-D tables are needed. This not only reduces the
memory requirement, but also makes WED easy to implement.

3.4 Stability of the WED Algorithm

Some delay metrics are not guaranteed to return nonnegative real val-
ues. By de£nition, a Weibull distribution WEI(α, β) is stable when
both α and β are positive. In Equation (24), the WED metric will re-
turn a positive delay value as long as θ and β are positive. Clearly from

Fig.3, θ is nonnegative as long as r is positive. From [4], we know that
for an RC circuit m2 is always positive. Therefore, θ is guaranteed to
be positive for any node in an RC circuit. Again from [4], m1 is neg-
ative for an RC circuit. Furthermore, Γ(1 + θ) is positive as long as θ
is positive. Consequently, β is always positive. Combining the above
arguments, we conclude that WED will always return a nonnegative
value for delays at any nodes in any RC circuit.

4 Experiments

In this section, we present some experimental results of WED.

4.1 A Simple Test Case

The £rst experiment is a simple RC chain as shown in Fig. 5. As a com-
parison, we implemented D2M and PRIMO. We also implemented the
metric in [14], which we call TDP, as well as the metric in [6], which
we call KM. The input signal is a step signal. We use SPICE for the
golden result. Results are presented in Table 3. Note PRIMO returns
a negative delay at node n1. As seen in the table, WED produced the
most accurate delays for n1, n3 and n4. PRIMO and D2M are slightly
more accurate at the far nodes n5 and n6. What is striking about the
WED results is that the magnitude of the deviations from SPICE are
less than for any of the other metrics.

+
−

5 16 15 3 11 19

10 13 11 12 17 14

n1 n2 n3 n4 n5 n6

Figure 5: A simple RC circuit to demonstrate the accuracy of WED.

node KM TDP D2M PRIMO WED SPICE

n1 850 0 113 -39 45 40
n2 1500 401 797 648 661 467
n3 1689 1494 1514 1486 1474 1437
n4 1703 1631 1640 1621 1620 1589
n5 1731 1961 1982 1974 2025 1975
n6 1741 2191 2258 2245 2348 2257

Table 3: Comparison between different delay metrics for the simple
test case in Fig. 5.

4.2 Comparison with H-gamma

We did not implement H-gamma as its complexity and look-up table
construction make it dif£cult, if not prohibitive. However, we can still
make a quick comparison of WED to H-gamma by running WED on
the same RC circuit used in [1] and [8], as shown in Fig. 6. The de-
lays of D2M, PRIMO, H-gamma, WED, and SPICE for this circuit
are listed in Table 4, assuming a step input signal. As one can see
that for this test example, WED is about as accurate as PRIMO but
slightly worse than H-gamma. This is not necessarily surprising given
H-gamma’s complexity. WED’s simplicity and ease of implementa-
tion may outweigh H-gamma’s superior accuracy for several physical
design applications.

4.3 Results on Industrial Nets

Finally, we perform tests on several nets from an industrial ASIC part
in a 0.20um technology. We selected 432 high capacitance nets, and
extracted SPICE netlists from the actual Steiner routes. The nets were
identi£ed as those with a large Elmore error in order to provide a re-
alistic, yet challenging set to the delay metrics. Each net has at least
two sinks with an average of 5.4 sinks per net. The nets typically are
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Figure 6: A simple RC circuit to compare the accuracy of WED, D2M,
PRIMO and H-gamma.

node D2M PRIMO H-γ WED SPICE

n1 299 241 194 246 196
n2 514 498 486 485 476
n3 696 699 701 698 700
n4 830 836 840 855 844
n5 905 909 912 943 919
n6 420 376 355 386 374
n7 492 450 431 470 453

Table 4: Comparison between D2M, PRIMO, H-gamma and WED for
a small test circuit shown in Fig 6.

extremely “stiff” in the sense that the delays at different sinks may be
orders of magnitude apart. As an example, Table 5 lists the delays for
three sinks in one net “test 17” as well as the relative error compared
to SPICE. The SPICE delays range from 80ps to 1170ps. Observe that
the near-end node n1 causes the biggest problems for the delay met-
rics, resulting in the largest margins of error, while almost all the delay
metrics do much better for the easier far-end node n3.

D2M Err PRIMO Err WED Err SPICE

n1 138 74% 32 -60% 81 2% 80
n2 722 8% 701 5% 684 2% 669
n3 1164 -1% 1159 -1% 1187 2% 1170

Table 5: Delay values of three fan-out nodes in net “test 17”. All units
in pico-second.

The total number of nets considered prohibits presenting net-by-
net results for all the nets in the design. Instead, we report the accuracy
of different delay metrics by calculating the statistical characteristics
of the error distributions. First, for each net, we separate all sink nodes
into three categories: near-end, middle and far-end. If the SPICE delay
for a given sink is less than 25% of the delay to the furthest sink in the
net, it is classi£ed as a near-end sink. If lies between 25% than 75%,
then it is a middle sink. Finally, larger than 75%, then it’s a far-end
sink. For our example net “test 17”, n1 is a near-end, n2 is middle,
and n3 is a far-end sink. Out of 2313 sinks considered, 507 are near-
end, 636 are middle, and 1170 are far-end. The breakdown is also
listed in the £rst column of Table 6.

We ran scaled Elmore, D2M, PRIMO, and WED for every sink
and computed the delay and error relative to SPICE. Table 6 reports
the mean and the standard derivation of the error distribution. A small
mean error indicates that on average the delay metric performs well,
while a small standard distribution indicates stability from net to net.
Note that among 507 near-end sinks, PRIMO generates negative de-
lays for 281 sink nodes. Since negative delay is unrealistic, we rounded
them to zero. It is clearly shown that WED performs better than the
other metrics at both the near-end and middle nodes, but marginally
worse than D2M at the far-end.

nodes S.Elmore D2M PRIMO WED
near end
(507)

mean 205.1% 56.4% 73.0% 49.3%
std 139.1% 39.6% 36.3% 31.1%

middle
(636)

mean 28.0% 15.9% 8.4% 6.3%
std 20.7% 11.8% 5.9% 5.9%

far end
(1170)

mean 6.7% 0.7% 0.9% 0.8%
std 2.6% 0.5% 0.4% 0.6%

overall
(2313)

mean 55.8% 17.0% 18.7% 12.9%
std 102.9% 29.2% 33.6% 24.4%

Table 6: Statistical characteristics of the error distribution in an indus-
trial ASIC design. The numbers in the £rst column indicates the total
number of nodes in the particular category.

5 Conclusions

This paper describes WED a new delay metric for RC circuits. Two
circuit moments are used to match the circuit’s impulse response to
a Weibull distribution. WED can be easily implemented as two one-
dimensional table look-up operations and the procedure can be run in
constant time. Experimental results on industrial design demonstrate
that WED outperforms existing delay metrics. WED has a wide spec-
trum of potential applications such as interconnect synthesis, place-
ment and routing. In the future work, we seek to apply WED to those
applications in the physical design ¤ow.
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