
In Proceedings of the 7th International Symposium on High-Performance Computer Architecture, Jan. 22-24, 2001, Monterrey, Mexico, pp. 255-266.
(Best Student Paper Award)

A Delay Model and Speculative Architecture for Pipelined Routers

Li-Shiuan Peh William J. Dally
lspeh@cs.stanford.edu billd@csl.stanford.edu

Computer Systems Laboratory
Stanford University
Stanford, CA94305

Abstract

This paper introduces a router delay model that accurately
models key aspects of modern routers. The model accounts
for the pipelined nature of contemporary routers, the spe-
cific flow control method employed, the delay of the flow-
control credit path, and the sharing of crossbar ports
across virtual channels. Motivated by this model, we intro-
duce a microarchitecture for a speculative virtual-channel
router that significantly reduces its router latency to that of
a wormhole router. Simulations using our pipelined model
give results that differ considerably from the commonly-
assumed ‘unit-latency’ model which is unreasonably opti-
mistic. Using realistic pipeline models, we compare worm-
hole [6] and virtual-channel flow control [4]. Our results
show that a speculative virtual-channel router has the
same per-hop router latency as a wormhole router, while
improving throughput by up to 40%.

1. Introduction

Interconnection networks are used to connect proces-
sors to memories in multicomputers and multiprocessors
and to connect line cards in network switches and Internet
routers. The performance of interconnection networks and
hence of the systems in which they are employed depends
critically on the performance of the routers from which
these networks are constructed. Accurate performance
models are needed to enable the architecture of these net-
works to be optimized.

This paper introduces a router delay model that accu-
rately models key aspects of modern routers. This model
accounts for the pipelined nature of contemporary routers,
the specific flow-control method employed, the delay of
the flow-control credit path, and the sharing of crossbar
ports across virtual channels. Our model uses technology-
independent parametric equations for delay that are derived
from detailed gate-level designs and analyses.

Motivated by our model, we introduce a microarchitec-
ture for a speculative virtual-channel router. In a conven-

tional virtual-channel router, an arriving packet must first
arbitrate for an output virtual channel (VC) before arbitrat-
ing for switch bandwidth. This serialization of resource
arbitration significantly increases latency compared to a
wormhole router. A speculative virtual-channel router arbi-
trates for an output VC and switch bandwidth in parallel,
speculating that it will be allocated a VC. If the speculation
turns out to be incorrect, the crossbar passage is simply
wasted. As the switch allocator prioritizes non-speculative
requests over speculative ones, there is no adverse impact
on throughput.

We develop canonical pipelines for wormhole routers,
virtual-channel routers, and speculative virtual-channel
routers. For each of these pipelines, our gate-level models
are used to provide accurate estimates of delay and to
determine pipeline depth as a function of cycle time. Using
this model we compare wormhole and virtual-channel flow
control. Our results show that a speculative virtual-channel
router can achieve the same zero-load latency as a worm-
hole router but with 40% higher throughput. Compared to
the commonly assumed ‘unit-latency’ model, our model
shows substantial performance differences of 56% in zero-
load latency, and 30% in throughput. This establishes the
need to account for pipeline delays and credit latency in
performance models.

The paper next discusses current router models and
addresses their inaccuracies in Section 2. Section 3 delves
into the details of the proposed router delay model and
Section 4 applies the model to explore the effect of varying
numbers of physical and virtual channels on the latency of
a pipelined router. Simulation results comparing wormhole
and virtual-channel routers using pipelines proposed by the
model are presented in Section 5 and Section 6 concludes
the paper.

2. Related Work

Chien [2, 3] first noted the need for router delay models
which consider implementation complexity, and proposed
a router model for wormhole and virtual-channel routers.

Chien’s model uses the router architecture of Figure 1,
which was employed in the Torus Routing Chip [6], for all
routers regardless of the flow control method employed. It
defines per-hop router latency as the total delay of the
functions on the critical path through address decoding,
routing, crossbar arbitration, crossbar traversal, and virtual
channel allocation. Through detailed gate-level design and
analysis, the delay of these functions are expressed in
parameterized equations which are then grounded in a 0.8
micron CMOS process. By substituting the parameters of a
given router into Chien’s equations, a designer can obtain
estimates of router latency.

Chien’s model, however, has several significant short-
comings. First, it does not account for pipelining, assuming
instead that the entire critical path fits within a single clock
cycle. Second, this model assumes that the crossbar must
provide a separate port for each virtual channel. This
causes the crossbar and its arbitration and traversal latency
to grow very rapidly with the number of virtual channels.
Most real routers, on the other hand, share one or a few
crossbar ports across the virtual channels associated with a
single physical channel.

Duato [7] extended Chien’s model to consider a fixed
three-stage pipeline. The pipeline consists of a routing
stage, that contains the address decode, routing, and arbi-
tration functions of Chien’s model; a switching stage that
includes the crossbar traversal, and a channel stage that
includes the virtual channel allocation and the inter-node
delay.

Miller and Najjar extended Chien’s model for virtual
cut-through routers, modifying the parameterized delay
equation for flow control to include the parameter B, the
number of buffers in that input queue [8].

These models all assume that clock cycle time depends
solely on router latency. In practice, however, routers are
heavily pipelined, making cycle time largely independent
of router latency. Typically, router designers have to work

within the limits of a clock cycle that is determined by fac-
tors beyond the router, such as the fundamental limits of
chip-to-chip signalling [1], or the processor clock cycle. A
realistic delay model must work in an environment where
the cycle time is fixed and the number of pipeline stages
variable.

These previous models also attempt to fit all routers into
a single canonical architecture. This results in a mismatch
between the architecture and the flow control method. For
instance, passage through the crossbar is arbitrated on a
per-packet basis and held throughout the duration of a
packet, prompting the need for a huge crossbar in a virtual-
channel router, with the number of ports equal to the total
number of virtual channels. This contributes unnecessary
delay in the crossbar arbitration and traversal functions.
Buffering flits at virtual channel controllers whose arbitra-
tion delay increases with the number of virtual channels
also adds needless cost to a virtual-channel router.

3. Proposed model

The proposed router delay model comprises a general
router model which outlines a design methodology for the
pipelining of a router given a clock cycle time, using the
delay estimates derived by a specific router model to pre-
scribe a pipeline design. We will walk through its applica-
tion to wormhole and virtual-channel routers, starting with
the definition of canonical router architectures which are
suited for each flow control method, proceeding on to
uncover the atomic modules of each flow control and the
dependencies between them, before deriving parametric
delay equations for each atomic module using the specific
router model. These equations provide delay estimates
which are used to arrive at a realistic pipeline design.

3.1 General router model

Canonical router architectures. Figure 2 illustrates
the canonical wormhole router architecture1. As shown, the
parameters affecting the delay of the various modules of a
wormhole router are p, the number of physical channels,
and w, the channel width or phit size.

Consider a two-flit packet, one head flit and one tail flit,
traversing the canonical wormhole router of Figure 2 from
the injection input channel to the eastern output channel.
The packet proceeds through the states of routing2, switch

Figure 1. Canonical router architecture proposed in Chien’s
model. The parameters of the delay model are P, the
number of ports on the crossbar; F, the number of output
route choices; and V, the number of virtual channels per
physical channel.

Crossbar
(P)

V C
(V)

RA (F)

FC
AD

FC
AD

FC
AD

FC
AD

FC
AD

V C
(V)
V C
(V)
V C
(V)
V C
(V)

1. This is similar to the canonical router architecture proposed in Chien’s
model.

2. Throughout the paper, our emphasis is on a comparison of flow con-
trol techniques. Hence, we will view routing as a black box and
assume decoding and routing takes a typical clock cycle of 20 τ4,
where τ4 is the delay of an inverter driving 4 other inverters [5].

arbitration, and switch traversal. When the head flit
arrives, the input controller decodes its type field and find-
ing it a head flit forwards the destination field to the rout-
ing logic, buffers the entire flit in the input queue, and sets
the channel state (inpc_state) to routing.

The routing logic returns the output port3 for this
packet, in this case the eastern output port. At this point,
the channel state is set to switch arbitration, and a request
for the eastern output port is sent to the global switch arbi-
ter, which receives arbitration requests from all input con-
trollers and assigns available output ports to the requestors,
resolving contention. In this case, the global switch arbiter
grants the eastern output port to the request from the injec-
tion input channel, and flags this output port as unavailable
to other requests.

Upon receipt of this grant from the global switch arbi-
ter, the state of the injection input channel is set to switch
traversal, and the head flit of the packet is read from the
input queue, and input to the crossbar. The crossbar con-
figuration is set by the switch arbiter, which in this exam-
ple, has connected the injection input port to the eastern
output port. The head flit hence traverses the crossbar and
proceeds over the output link for the next hop.

When the next flit arrives at the input controller, its type
field is again decoded and found to be a tail flit. Since it is
not a head flit, it need not go through routing or switch
arbitration. Instead, it is simply buffered in the input queue
and sent to the output port reserved by the head flit. When
the tail flit departs the input queue, it releases the resources
held by the packet by setting the input state to idle and sig-
naling the global switch arbiter to free up the reserved out-
put port.

Figure 3 shows the canonical router architecture for vir-
tual-channel flow control. The additional parameter here is
v, the number of virtual channels per physical channel.
This architecture differs from the canonical router architec-
ture proposed in Chien’s model, adopting a more efficient
design in which crossbar ports are shared across the virtual
channels of a physical channel and allocated on a flit-by-
flit basis.

Consider the same two-flit packet flowing through a vir-
tual-channel router. The packet proceeds as above but with
the addition of a virtual channel allocation state. In the vir-
tual-channel router, there is a separate input queue and a
separate copy of the channel state (invc_state), for each
virtual channel. When the head flit of this packet arrives at
the input controller of the injection channel, its virtual-
channel id (vcid) field is decoded and the entire flit is buff-
ered in the appropriate flit queue. For instance, the packet
in our example is injected into virtual channel 0 (VC 0) of
the injection channel, and buffered accordingly into queue
0. At this point, VC 0 enters the routing state, and the des-
tination field of the flit is sent to the routing logic, which
returns the output virtual channels (not physical channels)
the packet may use.

Upon receipt of the output virtual channels, VC 0 state
is set to virtual channel allocation. VC 0 then requests its
desired output virtual channels from the global virtual
channel allocator, which collects all the requests from
each VC of the input controllers and returns available out-
put virtual channels to successful requestors. It also
updates the status of these output virtual channels as
unavailable in outvc_state.

When VC 0 is allocated an output VC, say, output VC 1
of the eastern port, the head flit proceeds to the next step
and sends requests for the eastern output port to the global
switch allocator. Instead of reserving output ports for the
entire duration of a packet, the switch allocator of a virtual-
channel router allocates crossbar passage to flits of differ-

Figure 2. Canonical wormhole router architecture of the
proposed model.

3. We will assume a deterministic routing algorithm here. If it is an
adaptive routing algorithm, more than one output port may be sup-
plied.

Xbar (p,w)

sw arbiter (p)

outpc
state

routing
logic

inpc
state

outpc
state..

:

:

:

flit outflit in

input controller

credit out
credits in:

p: # of ports on xbar; w: channel width

Figure 3. Canonical virtual-channel router architecture of
the proposed model.

Xbar (p,w)

vc alloc (p,v)

outvc
state

routing
logic

invc
state

outvc
state

:

:

flit out
flit in

input controller

sw alloc (p,v)

invc
state
:

:
:

credits in:

credit out

p: # of ports on xbar; w: # of bits per flit; v: # of vcs per port

ent packets on a cycle-by-cycle basis. Once this head flit
secures passage through to the eastern output port, it leaves
for the crossbar and to the next hop, with its vcid field
updated to VC 1.

When the subsequent tail flit arrives, it is enqueued into
the appropriate queue based on its vcid field. It then inher-
its the output VC reserved by its head flit, and submits a
request to the global switch allocator for the eastern output
port. Once it is granted crossbar passage, it informs the vir-
tual-channel allocator to release the reserved output VC,
and leaves for the next hop, with its vcid field also updated
to VC 1. Note that in this canonical architecture, the func-
tion of multiplexing virtual channels onto a physical chan-
nel rests upon the switch allocator, instead of the virtual
channel controllers of Chien’s architecture.

Atomic modules and dependencies. The canonical
router architectures shown in Figures 2 and 3 include a
number of modules that are not easily pipelined because
they contain state that is dependent on the module output.
These modules are termed atomic modules in our model,
and are best kept intact within a single pipeline stage. An
example of an atomic module is the virtual-channel alloca-
tor in a virtual-channel router. If this module straddles mul-
tiple pipeline stages, it can result in grants not being
reflected correctly before the next allocation4. Also, with a
separable allocator, there are a large number of wires con-
necting the input and output ports, which will require
excessive latching should the allocator be partitioned
across multiple pipeline stages. Figure 4 shows the various
atomic modules of wormhole and virtual-channel routers in
our model.

The inputs of these atomic modules may depend on the
outputs of another, in which case, a dependency exists.
These dependencies determine the critical path of a router.
Figure 4(a) and (b) shows the basic dependencies of a
wormhole and virtual-channel router respectively.

These dependencies can sometimes be averted with
speculation. For instance, the switch allocator in a virtual-
channel router can speculatively assume that the packet
will succeed in obtaining a free output virtual channel from
the virtual channel allocator, and thus, proceed to request
the desired output port5 before it has secured an output vir-
tual channel. Should the speculation be incorrect, the cross-
bar passage reserved will just be wasted. With speculation,
a virtual-channel router removes the dependency between
the virtual channel allocation and switch allocation mod-
ules, and cuts down on its critical path delay, as shown in
Figure 4(c). To avoid any impact on throughput, the specu-
lative switch allocator needs to prioritize non-speculative
requests over speculative ones. Note that as the switch is
arbitrated on a cycle-by-cycle basis, and is not held indefi-
nitely by a packet, there is no possibility of a deadlock as a
result of switch allocation being performed speculatively
with virtual-channel allocation.

For the two-flit packet example in a speculative virtual-
channel router, while the head flit is submitting its requests
for output virtual channels to the global virtual-channel
allocator, it will at the same time send its request for the
eastern output port to the global switch allocator. If no
other non-speculative packets are requesting for the eastern
output port and this packet wins the arbitration, the switch
allocator will grant the eastern output port to the head flit,
which will leave for the crossbar once it is also granted an
output virtual channel. The subsequent tail flit will still
send requests to the switch allocator, but its request will be
a non-speculative one since it has already inherited the out-
put VC reserved by its head flit.

Pipeline design. The delay of each atomic module is
modelled by the parametric equations derived by the spe-
cific router model (Section 3.2) which generates two delay
estimates: latency (ti) and overhead (hi). Latency spans
from when inputs are presented to the module, to when the
outputs needed by the next module are stable. Overhead
refers to the delay expended by additional circuitry
required before the next set of inputs can be presented to

Figure 4. Atomic modules and dependences of (a) a
wormhole router; (b) a virtual-channel router; (c) a
speculative virtual-channel router.

4. There are many different ways to pipeline a virtual-channel allocator
should it require more than a single clock cycle. One possibility is to
pessimistically update all requested virtual channels as taken so that
the first level of arbitration can continue at the next cycle. Once the
actual granted virtual channels are known, the status is then brought
up-to-date. As with most ways of pipelining an atomic module, per-
formance may suffer.

switch arbitration crossbardecode+routing

switch allocation crossbardecode+routing vc allocation

spec. sw allocation
crossbardecode+routing

vc allocation

(a)

(b)

(c)

5. For a deterministic router, there is a single desired output port. Thus,
the objective of the speculative switch allocator is straight-forward:
bid for this output port. In an adaptive router, the speculative switch
allocator can either bid for all desired output ports returned by the
routing function, and only permit crossbar passage if the output port
granted matches that granted by the virtual-channel allocator; or the
routing function may be limited to returning only a single output port
(), and packets reiterates through the routing process upon
failure in obtaining a free virtual channel.
R p→

the module. Figure 5 shows these delay components. In a
switch arbiter, for instance, latency spans from when
requests for switch ports are presented to when grant sig-
nals are stable, while overhead refers to the delay in the
arbiter for updating the priorities between requestors in
preparation for the next set of requests.

Armed with ti and hi of each atomic module on the crit-
ical path, and the clock cycle time (clk), the model pre-
scribes the pipelining of the router as follows :-

...(EQ 1)

3.2 Specific router model

Logical effort. We calculate the delays of each atomic
module using the method of logical effort [10, 11]. Using
this method, the circuit delay, T (in τ), along a path is cal-
culated as the sum of the effort delay (Teff) and the para-
sitic delay (Tpar) of that path where the effort delay of each
stage is the product of logical effort and electrical effort
(EQ 2). Logical effort is the ratio of a logical function’s
delay to the delay of an inverter with identical input capac-
itance6. Electrical effort is the fanout, the ratio of output
capacitance to input capacitance. Parasitic delay refers to
the intrinsic delay of a gate due to its own internal capaci-
tance, and is expressed relative to the parasitic delay of an
inverter.

...(EQ 2)

As an example, we apply the method of logical effort to
derive the delay of an inverter driving four other inverters,
shown in Figure 6. Its electrical effort, hi, is 4 since output
capacitance is 4 times input capacitance; and both logical
effort gi and parasitic delay pi are 1 given they are defined
relative to an inverter (EQ 3). Thus, the delay of an inverter
driving 4 other inverters, τ4 = 5τ.

...(EQ 3)

Design of switch and virtual-channel allocators. The
switch and virtual channel allocators match resource
requests with free resources. Our model assumes a separa-
ble design of each of these allocators in which requests for
a given resource from a single input port are arbitrated in
the first stage of the allocator. The winning request from
each input port then arbitrates for the resource in the sec-
ond stage. Separable allocators admit a simple implemen-
tation while sacrificing a small amount of allocation
efficiency compared to more complex approaches.

As the switch in a wormhole router is held throughout
the duration of a packet, status needs to be kept for each
output port, as shown in Figure 7(a)7. In a virtual-channel
router, on the other hand, the switch is allocated on a cycle-
by-cycle basis and no state needs to be stored. Figure 7(b)
shows the switch allocator of a non-speculative virtual-
channel router, with a v:1 arbiter in the first stage deter-
mining which virtual channels of an input port gets to bid
for its output port, and a pi:1 arbiter for each output port in
the second allocation stage. In a speculative virtual-chan-
nel router, the switch allocator needs to ensure non-specu-
lative requests have higher priority than speculative ones.
A way to achieve this is shown in Figure 7(c), where two
switch allocators handle non-speculative and speculative
requests in parallel, and successful non-speculative
requests are selected over speculative ones.

Figure 5. Latency and overhead estimates derived by the
specific router model.

6. The delay of an inverter with identical input capacitance is τ [5].

inputs
supplied

outputs
ready

latency

start of
next cycle

overhead

Given a, the first atomic module and
 b, the last atomic module in the pipeline stage,

ti hb+
i a=

b

∑ clk and≤

ti
i a=

b 1+

∑ hb 1++ clk and ti
i a 1–=

b

∑ hb+ clk>>

∑ ∑+=
+=

iii

pareff

phg

TTT

w h e r e g i = log ica l e f for t per s tage
 h i = e lec t r i ca l e f for t per s tage
 p i = paras i t i c de lay

Figure 6. An inverter driving four other inverters. Its delay,
τ4, is derived using the method of logical effort to be 5τ.

7. We assume a deterministic routing algorithm for the wormhole router,
since adaptive wormhole routers will need to be deadlock-free without
using virtual channels.

Teff gihi 1 4×=∑=

Tpar 1=

T Teff Tpar 4 1+=+= 5=

The complexity and latency of a virtual-channel alloca-
tor of a virtual-channel router depends on the range of the
routing function. If the routing function returns a single
virtual channel (), the virtual-channel allocator needs
only arbitrate among input virtual channels which are com-
peting for the same output virtual channel, as in
Figure 8(a). If the routing function is more general and

returns any candidate virtual channels of a single physical
channel (), each of the arbiters now needs to arbi-
trate among v possible requests in the first stage of the sep-
arable allocation, before forwarding to the arbiters in the
second stage, as in Figure 8(b). Using these restricted rout-
ing functions require iterating through the routing function
upon each unsuccessful bid8. If we use the most general

Figure 7. (a) A switch arbiter for a wormhole router, with a pi:1 arbiter for each output port. Since a wormhole router holds the
switch for the duration of a packet, state needs to be stored reflecting the status of each output port. Updating of state is not
on the critical path, and is thus not detailed for brevity. (b) A separable switch allocator for a non-speculative virtual-channel
router, with the first stage of v:1 arbiters for each input port, and a second stage of pi:1 arbiters for each output port. For
simplicity, the diagram shows the outputs of v:1 arbiters connected to the inputs of pi:1 arbiters, while in reality, the outputs of
the v:1 arbiters select the output port request of the winning VC and forward it on to the second stage of pi:1 arbiters. (c)
Separable switch allocators for a speculative virtual-channel router, one handling non-speculative requests, and another
handling speculative requests. Non-speculative requests have higher priority over speculative ones. (pi, number of input
switch ports, and po, number of output switch ports = p, the number of ports in the router; v is the number of virtual channels
per physical channel)

Figure 8. Complexity of a virtual-channel allocator, given routing functions with different ranges. (a) Given a routing function
which returns a single virtual channel (), the virtual-channel allocator only needs a piv:1 arbiter for each output virtual
channel. (b) Given a routing function which returns virtual channels of a single physical channel (), the virtual-channel
allocator needs the first stage of v:1 arbiters for each input virtual channel, followed by a second stage of piv:1 arbiters for
each output virtual channel. (c) Given the most general routing function which returns candidate virtual channels of any
physical channels (), the first stage of a virtual-channel allocator needs a pov:1 arbiter to handle the maximum pov
output virtual channels desired by each input virtual channel, followed by a piv:1 arbiter for each output virtual channel. (pi,
number of input switch ports, and po, number of output switch ports = p, the number of physical ports in the router; and v is
the number of virtual channels per physical channel)

pi:1
arbiter

1
: :

:

v:1
arbiter

1
: :

v:1
arbiter

pi

: :

:
:

pi:1
arbiter

1
: :

pi:1
arbiter

po

: :

:
:

(a) (b)

v:1
arbiter

1
: :

v:1
arbiter

pi

: :

:
:

pi:1
arbiter

1
: :

pi:1
arbiter

po

: :

:
:

allocates
non-speculative

requests

(c)

v:1
arbiter

1
: :

v:1
arbiter

pi

: :

:
:

pi:1
arbiter

1
: :

pi:1
arbiter

po

: :

:
:

allocates
speculative

requests

state

pi:1
arbiter

po
: :

state

v:1
arbiter

1 piv:1
arbiter

1
: :

piv:1
arbiter

pov
: :

:
:

(b)

piv:1
arbiter

1
: :

piv:1
arbiter

pov
: :

:
:

(a)

pov:1
arbiter

1
: :

pov:1
arbiter

piv
: :

:
:

piv:1
arbiter

1
: :

piv:1
arbiter

pov
: :

:
:

(c)

::

v:1
arbiter

po

::

:

v:1
arbiter

1
::

v:1
arbiter

po

::

:

:

1

pi

R v→
R p→

R pv→

R v→

R p→

routing function which returns all possible candidate vir-
tual channels of all physical channels (), this heaps
on more responsibility onto the virtual-channel allocator,
which now needs to go through two stages of pv:1 arbiters
on its critical path, as shown in Figure 8(c).

Design of crossbar. Figure 9 shows the design of a p-
port crossbar, with each port w bits wide. Select signals
direct the connections between input and output ports, and
originate from the switch allocator. Critical-path delay
comprises the fan-out of select signals to the multiplexers
in the w bit-slices of the crossbar and the delay through the
multiplexers. It should be noted that the proposed model
does not take into account wire delay, which is a signifi-
cant delay component in the crossbar. To alleviate the

impact this has on simulation results, the crossbar pipeline
stage is kept as a single pipeline stage, assuming it requires
all 20 τ4. This is a reasonable assumption for the small
crossbar sizes considered in this paper, as traversal, includ-
ing wire delays, will fit comfortably within 20 τ4

9.
Derivation of parametric delay equations for a

switch arbiter of a wormhole router. This arbiter10 con-
sists of po pi:1 arbiters, one for each output port. State is
maintained for each output port to indicate if that port is
already held by a packet and hence unavailable for a new
request. Each pi:1 arbiter is implemented using an upper
triangular pi x pi matrix of flip-flops that records the binary
priority between each pair of inputs. A requestor wins if it
has a higher priority than all other requestors of that
resource. Once a requestor succeeds in an arbitration, its
priority is set to be the lowest among all requestors. The
gate-level design of the switch arbiter is sketched in
Figure 10. Note that the updating of the status flip-flops
can occur during the arbitration and does not contribute to
hSB, since an output port will be granted as long as it has at
least one request.

The derivations of the effort delay () and parasitic
delay () of a n:1 matrix arbiter are shown in (EQ 4)
and the derivations of the latency (tSB) and overhead (hSB)
equations of the switch arbiter atomic module are shown in
(EQ 5) and (EQ 6) respectively :-

...(EQ 4)

8. Note that for a deterministic router, the routing function which returns
candidate virtual channels of a single physical channel () is
the most general possible.

Figure 9. A diagram of the gate-level design of a crossbar
with pi input ports and po output ports, each w bits wide.

Figure 10. A sketch of the gate-level design of a switch
arbiter in a wormhole router. (a) shows the switch arbiter for
a single output port, which consists of a pi:1 matrix arbiter
and a flip-flop storing the status of the output port. (b)
shows the key components of the matrix arbiter, with the
circuitry contributing to tSB unshaded, and the circuitry
contributing to hSB shaded in grey.

R p→

p:1 mux
1

input port
p

.....

:
:

.....

output port
1

bit w

pi:1 mux
1

input port
1

input port
pi

pi:1 mux
po

.....

:
:

.....

output port
1

output port
po

bit 1

. .

. .

input select
signal for an
output port

..

..

Q

Q
SET

CLR

S

R

status

grant0

arbreq0

:

matrix
priorities

Q

Q
SET

CLR

S

R

Q

Q
SET

CLR

S

R

.. ..

arbreqn

:

fans out to n circuits for
generating n grant
signals

:

reset
grant_row

grant_column

fans out to n circuits for
updating matrix
priorities

pi:1
matrix
arbiter

arbreq0

arbreqp

grant0

grantp

request0

requestp

:

(a) (b)

:

R pv→

9. This assumption may not hold for the crossbars in Chien’s model
which require pv ports instead of p ports. In these cases, crossbar tra-
versal may have to be pipelined into multiple stages.

10. We assume an arbiter for wormhole routers, because we are assuming
the routing function returns a single output port. This is reasonable
even for adaptive routing functions, which can iterate and return
another output port should the arbitration fails. Besides, it makes no
difference to performance as we are using separable allocators.

Teffarb
Tpararb

6log5

log

)44(
2

)
2

(log

8)(

4
3log

2
16

log4

)
3
9

3
6(

2

)
2

(log

3
6)(

4

)(4

)log:
2

(

4

)(

4

)(4

)log:
2

(

4

)(

+=

++

+=

+=

++

+=

−

−

n

n

n

nT

n

n

n

nT

prioritiesmatrixupdatingforcircuitsntofanout

norsandnandsoftreeandinput
n

aoiarbpar

prioritiesmatrixupdatingforcircuitsntofanout

norsandnandsoftreeandinput
n

aoi
arbeff

...(EQ 5)

...(EQ 6)

Through detailed gate-level design and analysis of the
circuits of each atomic module, technology-independent11

parameterized delay equations for each atomic module are
then derived and listed in Table 1. Preliminary validation
of the model against Synopsys timing analyzer in a 0.18
micron12 CMOS technology found projections to be close
(within 2 τ4). More extensive validation of the model
against actual router implementations and other models in
different technologies will be beneficial.

4. Pipeline latency results

The model of Table 1 enables us to calculate the effect
of varying the number of physical and virtual channels on
the latency of a pipelined virtual-channel router.
Figure 11(a) shows the pipelines proposed by the model
for non-speculative virtual-channel routers, with a clock
cycle of 20 τ4. The virtual-channel allocator shown here
assumes the most general routing function (), and is
thus the most complex. For a 2-dimensional virtual-chan-
nel router with 5 or 7 physical channels, 4 pipeline stages

are sufficient for up to 8 virtual channels per physical chan-
nel, while a wormhole router fits within a 3-stage pipeline.
Thus, for most practical numbers of virtual channels, a

11. Technology independence is inherited through the adoption of the
technology-independent τ-model of delay.

12. In a 0.18 micron process, τ4 = 90 ps. Thus, a 20 τ4 cycle time is
approximately 2 ns, corresponding to a 500 MHz clock.

12
114log

2
121

)()()(

10log7

)(

log2

log2)(

12
14log

2
114

)(

log4
3
4

log42)(

4

4

)1:(

)(4)(

)(4)(

4

)1:(

)(4
)(

)(4)(

+=

+=∴

+=

++

++=

+=

++

++=

−

−

p

pTpTpt

p

pT

p

ppT

p

pT

p

ppT

SBSB

arb

SB

arb

SB

tparteffSB

arbitermatrixppar

arbitertheincircuitsgrantptofanoutnandinput2

requestsptofanoutlatchstatustpar

arbitermatrixpeff

arbitertheincircuitsgrantptofanout
nandinput2

requestsptofanoutlatchstatusteff

9)()()(

532)(

4
3
7

3
5)(

)3()2(

)3()2(

=+=∴

=+=

=+=

−−

−−

pTpTph

pT

pT

SBSB

SB

SB

hparheffSB

norinputnorinputhpar

norinputnorinput
heff

R pv→

TABLE 1. Parameterized delay equations (in τ) for
wormhole and virtual-channel routers.(1τ4 = 5τ)

p=5; w=32; v=2;
clk=20τ4

Module Parametric delay equation (τ)

Model
(ti+hi)
(τ4)

Synopsys
Timing

Analyzer
(τ4)

Wormhole router

Switch
arbiter (SB) 9.6 9.9

Crossbar
traversal

(XB)
8.4 10.5

Virtual-channel router
Virtual-
channel
allocator

(VC:)

11.8 11.0

Virtual-
channel

 allocator

(VC:)

13.1 13.3

Virtual-
channel

 allocator

(VC:)

16.9 15.3

Switch
allocator

(SL)
10.9 12.0

(XB) As above
Speculative virtual-channel router

(VC:) As above

14.6

()

14.6

()

18.3

()

16.2

()

16.2

()

16.8

()

(VC:) As above

(VC:) As above

Speculative
switch

allocator
(SS)

Combina-
tion of VC

and SS (CB)

(XB) As above

tSB p() 211
2
---log4p 14 1

12
------+=

hSB p() 9=

tXB p w,()
9log8 w p

2
--- 

  +

6 log2p 6+
=

hXB p w,() 0=

vR→

tVC :R v→ p v,() 211
2
---log4pv 14 1

12
------+=

hVC :R v→ p v,() 9=

pR→

tVC :R p→ p v,()
161

2
---log4pv +

161
2
---log4v 205

6
---+

=

hVC :R p→ p v,() 9=

pvR→

tVC :R pv→ p v,() 33log4pv 205
6
---+=

hVC : R pv→ p v,() 9=

tSL p v,()
111

2
---log

4
p +

23log4v 205
6
---+

=

hSL p v,() 9=

vR→

vR→

pR→

pvR→

vR→

pR→

pvR→

pR→

pvR→

tSS p v,() 18log4p 23log4v 245
6
---+ +=

hSS p v,() 0=

tCB p v,() 61
2
---log4pv 51

3
---+=

hCB p v,() 0=

non-speculative virtual-channel router requires just one
more pipeline stage than a wormhole router.

Figure 11(b) shows the pipelines derived by the model
for speculative virtual-channel routers, again assuming a
typical clock cycle of 20 τ4. Here, the routing function
() is assumed. The model indicates that a speculative
virtual-channel router with up to 16 virtual channels per
physical channel (for 5 and 7 physical channels) fits within
a 3-stage pipeline, and thus has the same per-node router
latency as a wormhole router.

Figure 12 next shows the effect of different routing
functions on the delay of the combined allocation stage in a
speculative virtual-channel router. In many configurations,
using a less general routing function enables the entire allo-
cator to fit within a single cycle, lowering the per-node
latency of a virtual-channel router to that of a wormhole
router.

5. Simulation results

Based on the pipeline designs prescribed by the model,
detailed Verilog code for wormhole, virtual-channel, and
speculative virtual-channel routers was written and simula-
tions carried out to determine their latency-throughput
characteristics. A typical clock cycle of 20 τ4 was assumed.
The simulator generates uniformly distributed traffic13

across an 8-by-8 mesh network to random destinations.
Each simulation is run for a warm-up phase of 10,000

cycles. Thereafter, 100,000 packets are injected and the
simulation is continued till these packets in the sample
space have all been received. A constant rate source injects
5-flit packets at a percentage of the capacity of the network
and the average latency of the packets is calculated.
Latency is calculated from the time when the first flit of the
packet is created, to the time when its last flit is ejected at
the destination node, including source queuing time and
assuming immediate ejection. Each router uses credit-
based flow control to regulate the use of buffers, and prop-
agation delay across the channel is assumed to take a single
cycle. Since the purpose of our simulations is to explore

Figure 11. Effect of p, the number of physical channels (pcs) and v, the number of virtual channels (vcs) on the per-node
latency of (a) non-speculative virtual-channel routers and (b) speculative virtual-channel routers. A typical clock cycle of 20 τ4
was assumed. Each bar illustrates the router pipeline, with the shaded regions corresponding to the fraction of clock cycle
time used by each respective atomic module. The 3-stage pipeline of a wormhole router is graphed for reference.

Route+Decode
VC Allocation

SW Arbitration/Allocation

Crossbar

(a)

Route+Decode
VC&SW Allocation Crossbar

(b)

0.00

1.00

2.00

3.00

4.00

5.00

wormhole 2vcs,5pcs 4vcs,5pcs 8vcs,5pcs 16vcs,5pcs 32vcs,5pcs 2vcs,7pcs 4vcs,7pcs 8vcs,7pcs 16vcs,7pcs 32vcs,7pcs

pe
r-

no
de

 la
te

nc
y

(n
um

be
r

of
 c

yc
le

s)

0.00

1.00

2.00

3.00

4.00

5.00

wormhole 2vcs,5pcs 4vcs,5pcs 8vcs,5pcs 16vcs,5pcs 32vcs,5pcs 2vcs,7pcs 4vcs,7pcs 8vcs,7pcs 16vcs,7pcs 32vcs,7pcs

pe
r-

no
de

 la
te

nc
y

(n
um

be
r

of
 c

yc
le

s)

13. Uniformly distributed traffic was selected since we are comparing dif-
ferent flow control techniques, which are relatively invariant to traffic
patterns, unlike routing strategies.

R v→

Figure 12. Effect of p, the number of physical channels
(pcs) and v, the number of virtual channels (vcs) on the
delay of the combined virtual-channel and switch allocation
pipeline stage of a speculative virtual-channel router. The
effect of different routing functions (, ,)
on the complexity and delay of the virtual-channel allocator
is also graphed.

0

20

40

2v
cs

,5p
cs

4v
cs

,5p
cs

8v
cs,

5p
cs

16
vcs

,5p
cs

32
vcs

,5p
cs

2v
cs

,7p
cs

4v
cs

,7p
cs

8v
cs

,7p
cs

16
vcs

,7p
cs

32
vcs

,7p
cs

Delay (τ4)

R:v
R:p
R:pv

R v→ R p→ R pv→

the performance of flow control strategies, we chose sim-
ple dimension-ordered routing14.

5.1 Comparison of wormhole, non-speculative
virtual-channel and speculative virtual-channel
routers

Figure 13 shows latency-throughput curves for each of
the 3 routers with 8 flit buffers per physical channel. The
zero-load latency of the wormhole router (29 cycles) is
lower than that of the virtual-channel router (36 cycles),
because it has fewer pipeline stages, three vs. four. The
speculative virtual-channel router, which also has three
pipeline stages has a zero-load latency of 30 cycles15, com-
parable to that of a wormhole router.

The figure shows that the throughput of wormhole flow
control saturates at 40% of capacity. Virtual-channel flow
control with 2 virtual channels extends this saturation point
to 50%, and speculative virtual-channel flow control
pushes it even further to 55% capacity. This 5% improve-
ment is due to the sensitivity of throughput to pipeline
latency, and in particular the latency of the credit path.

Latency-throughput curves for routers with 16 flit buff-
ers per physical channel are shown in Figure 14 (8 flit buff-
ers per VC) and Figure 15 (4 flit buffers per VC). Again, a
virtual-channel router has a higher zero-load latency (35
cycles) as compared to that of a wormhole router (29
cycles), due to the additional pipeline stage per hop. The
speculative VC router manages to lower the zero-load

latency back down to 29 cycles. A virtual-channel router
with 2 virtual channels has a throughput of 65% capacity,
while a speculative virtual-channel router achieves 70%
capacity, a 40% improvement over wormhole flow control
(50% capacity). With 4 virtual channels, both virtual-chan-
nel routers, speculative and non-speculative, have a
throughput of 70% capacity. In this case, there is sufficient
buffering to cover the delay of the credit loop, so the
reduced pipeline latency of the speculative VC router no
longer translates into higher throughput.

5.2 Effect of assuming single-cycle router latency
vs. multiple-cycle pipelined design

Most published research compares the performance of
different router designs assuming single-cycle router

Figure 13. Latency-throughput curves of wormhole, virtual-
channel, and speculative virtual-channel routers with 8
buffers per input port. The routers adhere to the proposed
pipelined router model.

14. This is a routing function, which is the most general possible
for deterministic routing.

15. This is a cycle more than that achieved by wormhole flow control
because the 4 buffers per virtual channel do not sufficiently cover the
credit loop.

0

20

40

60

80

100

120

140

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Traffic (fraction of capacity)

Latency (cycles)

WH (8 bufs)

VC (2vcsX4bufs)

specVC (2vcsX4bufs)

R p→

Figure 14. Latency-throughput curves of wormhole, virtual-
channel, and speculative virtual-channel routers with 16
buffers per input port. The virtual-channel routers have 2
virtual channels per physical channel. All routers adhere to
the proposed pipelined router model.

Figure 15. Latency-throughput curves of wormhole, virtual-
channel, and speculative virtual-channel routers with 16
buffers per input port. The virtual-channel routers have 4
virtual channels per physical channel. All routers adhere to
the proposed pipelined router model.

0

20

40

60

80

100

120

140

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Traffic (fraction of capacity)

Latency (cycles)

WH (16 bufs)

VC (2vcsX8bufs)

specVC (2vcsX8bufs)

0

20

40

60

80

100

120

140

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Traffic (fraction of capacity)

Latency (cycles)

WH (16 bufs)

VC (4vcsX4bufs)

specVC (4vcsX4bufs)

latency, without taking into account implementation com-
plexity and cost. This results in inaccuracies in both zero-
load latency, since the differences in per-hop latency are
not accounted for, and in saturation throughput because it
assumes faster buffer turnaround.

Increasing latency, and in particular the latency of the
backward credit path reduces the effective amount of buff-
ering in a router by increasing buffer idle time between
uses. The timing of this buffer turnaround is illustrated in
Figure 16. This figure extends the buffer turnaround time-
line in [9] to include flit and credit pipeline delays. The
timeline in the figure shows how the buffer is held idle for
the delay of the credit loop, while the credit for the buffer
is sent back to the previous node and the next flit is for-
warded to the current node. Increased pipeline latency
increases the delay of both the credit and flit portions of the
credit loop resulting in increased idle time and hence lower
throughput.

To quantify this effect, we simulated wormhole, virtual-
channel and speculative virtual-channel routers with sin-
gle-cycle router latency on a cycle accurate “C” simulator
and compared the results to the verilog simulations. All
other experimental parameters of the “C” simulation are
identical to that of the Verilog simulator. Experimental
results are shown in Figure 17. With single-cycle router
latency, both wormhole and virtual-channel routers have a
zero-load latency of 16 cycles, while simulations using the
more accurate pipeline models show increased latency for
all cases and reflect the larger pipeline delay of the non-
speculative VC router.

The figure dramatically illustrates the effect of pipeline
latency on throughput. A single-cycle VC router achieves
65% throughput while a realistically pipelined VC router
saturates at 50% without speculation and 55% with specu-
lation. This significant difference is due to the effects of

buffer turnaround. In a single-cycle router, a credit can be
sent and received in 2 cycles, while in our pipelined model,
a wormhole and speculative virtual-channel router needs 4
cycles to turnaround credits, and a non-speculative virtual-
channel router needs 5 cycles. Thus, throughput is lower in
the pipelined model than in one which ignores implementa-
tion delay.

To validate that this effect is due to credit latency, we
ran simulations of identical speculative virtual-channel
routers (2 VCs with 4 buffers each) with a credit propaga-
tion latency of 1 cycle, and a credit propagation latency of
4 cycles. In the latter case, 7 cycles are needed to turn-
around a credit. The results graphed in Figure 18 clearly
show an 18% reduction in throughput from 55% to 45%
capacity.

Figure 16. Timeline illustrating buffer turnaround time for
wormhole and virtual-channel flow control. Buffers are held
unnecessarily throughout the propagation and pipeline
delays. Thus, the longer the pipeline latency, the longer the
buffer turnaround time, and the lower the network
throughput.

flit
propagation

delay

credit
propagation

delay

flit
pipeline
delay

flit
propagation

delay

actual
buffer
usage

Flit departs
current node
and buffer is
held

Flit arrives
at next

node and
uses buffer

Flit leaves
next node
and credit
is sent

Credit is
received

New flit
arrives and
reuses the

buffer

New flit
leaves for
next node

Credit is
processed and
freed buffer
allocated to
another flit

credit
pipeline
delay

Figure 17. Performance of wormhole, non-speculative and
speculative virtual-channel routers, as modelled by the
proposed delay model, and as modelled assuming a single-
cycle router delay. (8 buffers per input port)

Figure 18. Performance of speculative virtual-channel
routers with a 1-cycle credit propagation delay and a 4-
cycle credit propagation delay (2 virtual channels with 4
buffers per virtual channel).

0

20

40

60

80

100

120

140

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Traffic (fraction of capacity)

Latency (cycles)

WH (8 bufs)

VC (2vcsX4bufs)

WH (8 bufs)
(single-cycle)

VC (2vcsX4bufs)
(single-cycle)

specVC (2vcsX4bufs)

0

20

40

60

80

100

120

140

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Traffic (fraction of capacity)

Latency (cycles)

specVC
(4-cycle credit propagation)

(2vcsX4bufs)

specVC
(1-cycle credit propagation)
(2vcsX 4bufs)

6. Conclusions

Accurate performance models of routers enable archi-
tects to tune router parameters for optimum performance
before starting detailed design. In this paper we have pre-
sented a model of router delay that accurately accounts for
pipelining and propose pipelines which are matched to
flow control methods. The model uses technology-inde-
pendent parametric equations for delay that are derived
from detailed gate-level designs. Given the type of flow
control and key parameters (number of physical channels,
number of virtual channels, and phit size), the model gives
the overall latency of the router in technology independent
units, and the number of pipeline stages as a function of the
cycle time.

Motivated by this model, we have introduced a specula-
tive virtual-channel router which optimistically arbitrates
for the crossbar switch in parallel with allocating an output
virtual channel. Because non-speculative crossbar requests
are given priority over speculative requests, the speculation
is conservative - i.e., it will never reduce router perfor-
mance. This speculative architecture largely eliminates the
latency penalty of using virtual-channel flow control,
reducing the latency of a virtual-channel router to that of a
wormhole router. The shorter pipeline of a speculative vir-
tual-channel router also results in increased throughput for
small numbers of buffers as it reduces buffer turnaround
time.

Using this accurate model we compare the performance
of wormhole, virtual-channel, and speculative virtual-
channel flow control. Our results show that both virtual-
channel routers give a substantial throughput gain over a
straight wormhole router, contrary to previously reported
results [3].

We compare simulations using our accurate pipelined
model with simulations based on a single-cycle router
model and find considerable differences between the two
models. The single-cycle model greatly underestimates
latency by ignoring pipeline delays. It also overestimates
throughput by not accounting for buffer turnaround time.
These results indicate that accurate pipeline models are
needed to get meaningful results from network perfor-
mance analyses.

Our simulation results highlight the importance of
latency in the credit path. While credit latency does not
directly impact zero-load latency, it does affect buffer turn-
around time and hence has a considerable influence on
overall throughput. Our experiments show an 18% reduc-
tion in throughput for a speculative virtual-channel router
when the credit propagation latency is increased from 1 to
4 cycles.

There are many exciting directions in which the work
presented here can be extended. We are currently working

on extending our performance model to other flow control
methods including flit-reservation flow control [9]. The
work can also be extended to consider other topologies and
other routing policies, for example, adaptive.

Acknowledgements
We wish to thank the anonymous reviewers for their

valuable suggestions and comments. This work was spon-
sored in part by the Defence Advanced Research Projects
Agency (DARPA) under contract number MDA904-98-C-
A933.

 References

[1] Kevin Bolding et. al., “The Chaos Router Chip: Design and
Implementation of an Adaptive Router”, In Proceedings of
IFIP Conference on VLSI, September 1993.

[2] Andrew A. Chien, “A Cost and Speed Model for k-ary n-
cube Wormhole Routers”, In Proceedings of Hot Intercon-
nects, Palo Alto, August 1993.

[3] Andrew A. Chien, “A Cost and Speed Model for k-ary n-
cube Wormhole Routers”, IEEE Transactions of Parallel
and Distributed Systems, vol. 9, no. 2, February 1998.

[4] William J. Dally, “Virtual-Channel Flow Control”, IEEE
Transactions on Parallel and Distributed Systems, vol. 3, no.
2, pp. 194-205, March 1992.

[5] William J. Dally and J. W. Poulton, “Digital Systems Engi-
neering”, Cambridge University Press, 1998.

[6] William J. Dally and Charles Seitz, “The Torus Routing
Chip”, Distributed Computing, Vol. 1, No. 3, 1986.

[7] Jose Duato and Pedro Lopez, “Performance Evaluation of
Adaptive Routing Algorithms for k-ary n-cubes”, In Pro-
ceedings of Parallel Computer Routing and Communication
Workshop, May 1994.

[8] D. R. Miller and W. A. Najjar, “Empirical Evaluation of
Deterministic and Adaptive Routing with Constant-Area
Routers”, In Proceedings of International Conference on
Parallel Architectures and Compilation Techniques, San
Francisco, November 1997.

[9] Li-Shiuan Peh and William J. Dally, “Flit-Reservation Flow
Control”, In Proceedings of 6th International Symposium on
High-Performance Computer Architecture, Toulouse, Janu-
ary 2000.

[10] R. F. Sproull and I. E. Sutherland, “Logical Effort: Design-
ing for Speed on the Back of an Envelope”, IEEE Advanced
Research in VLSI, C. Sequin (editor), MIT Press, 1991.

[11] Ivan Sutherland, Bob Sproull and David Harris, “Logical
Effort: Designing Fast CMOS Circuits”, Morgan Kaufman
Publishers, 1999.

