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Abstract

In this article we develop an explicit formula for pricing European options
when the underlying stock price follows a non-linear stochastic functional dif-
ferential equation. We believe that the proposed model is sufficiently flexible
to fit real market data, and is yet simple enough to allow for a closed-form
representation of the option price. Furthermore, the model maintains the com-
pleteness of the market. The derivation of the option-pricing formula is based
on an equivalent martingale measure.

1 Introduction

The connection between the modeling of uncertainty and the description of fi-
nancial variables was first established as early as 1900 with the doctoral disser-
tation of Louis Bachelier, a student of Henri Poincaré. Bachelier hypothesized
that the movement of speculative prices in the market could be described as a
random walk and gave the first mathematical description of Brownian motion,
pointing out its Markovian nature ([Bac], [C]).

Subsequent advances in probability theory, particularly in stochastic anal-
ysis, were essential in the development of the theory of mathematical finance.
In fact, what we know today as the modern theory of finance has evolved,
from an essentially descriptive discipline to a rigorous theory. This is mainly
because of the use of continuous-time models and stochastic analysis ([Me1],
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[Me2]). The Black and Scholes Formula has been one of the most important
consequences of the study of continuous time models. On the other hand, the
need for better ways of understanding the behavior of many natural processes
has motivated the development of dynamic models of these processes that take
into consideration the influence of past events on the current and future states
of the system ([I.N], [Ku], [K.N], [Mo1], [Mo2], [M.T], [E.Ø.S]). This view is
specially appropriate in the study of financial variables, since predictions about
their evolution take strongly into account the knowledge of their past ([H.Ø],
[S.K]). In this framework we will derive a formula for pricing options on stocks
with hereditary structure (Theorem 4).

We recall that an option is a contract giving the owner the right to buy
or sell an asset, in accordance with certain conditions and within a specified
period of time. In particular, a call option gives its owner the right to buy a
share of stock at the maturity or expiration date of the option, for a specified
exercise price. The option is exercised when the exercise price is paid.

In this paper we consider the effect of the past in the determination of the
fair price of a call option. In particular, we assume that the stock price satisfies
a stochastic functional differential equation (sfde). We consider call options
that can be exercised only at the maturity date, viz. European call options.
We derive an explicit formula for the valuation of a European call option on
a given stock (Theorem 4) (cf. ([B.S], [Me1], [H.R]). Note that based on the
preprint version of the present paper, the logarithmic utility of an insider has
been computed and the stability of the European call option has been proved
in [S].

Tests of the classical Black and Scholes model against real market data
suggest the existence of significant levels of randomness in the volatility of the
stock price, as manifested in the observed phenomenon of frowns and smiles
([Bat]). One of the motivations behind our model for the stock price is to
account for such volatility in a natural manner, while at the same time maintain
an explicit formula for the option price. It is hoped that the parameters of the
proposed model will allow enough flexibility for a better fit than that of the
Black and Scholes model when tested against real market data.

Although options are a very particular class of financial securities, they
show the characteristic properties of more general forms of investment such as
contingent claims or derivatives. International markets for contingent claims
have experienced remarkable growth in the last thirty years. This makes the
study of option pricing of special interest in the present context, since this
theory may lead to a general theory of pricing contingent claims with hereditary
structure.
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2 Stochastic delay models for the stock price

In this section we propose a stochastic delay model for the evolution of the
stock price. We prove that the proposed model is feasible. In Section 3, we
formulate and solve the option pricing problem for the model.

Consider a stock whose price at time t is given by a stochastic process S(t)
satisfying the following stochastic functional differential equation (sfde):

dS(t) = f(t, St) dt+ g(S(t− b))S(t) dW (t), t ∈ [0, T ]
S(t) = ϕ(t), t ∈ [−L, 0]

}
(1)

on a probability space (Ω,F , P ) with a filtration (Ft)0≤t≤T satisfying the usual
conditions. In the above sfde, L, b and T are positive constants with L ≥ b.
The space C([−L, 0],R) of all continuous functions η : [−L, 0] → R is a Banach
space with the supremum norm

‖η‖ := sup
s∈[−L,0]

|η(s)|.

The drift coefficient f : [0, T ]×C([−L, 0],R) −→ R is a given continuous func-
tional, and g : R → R is continuous. The initial process ϕ : Ω → C([−L, 0],R)
is F0-measurable with respect to the Borel σ-algebra of C([−L, 0],R). The
process W is a one-dimensional standard Brownian motion adapted to the fil-
tration (Ft)0≤t≤T ; and St ∈ C([−L, 0],R) stands for the segment St(s) :=
S(t+ s), s ∈ [−L, 0], t ≥ 0.

In the sequel, we will consider the following two candidates for the drift
coefficient f .

Define the functionals fi : [0, T ]× C([−L, 0],R) −→ R, i = 1, 2, by

f1(t, η) := µη(−a)η(0), f2(t, η) = µη(−a),

for all (t, η) ∈ [0, T ] × C([−L, 0],R), where µ, a are positive constants with
L = max{a, b}. In other words, under these choices of f , the sfde (1) reduces
to the following stochastic differential delay equations (sdde’s):

dS(t) = µS(t− a)S(t) dt+ g(S(t− b))S(t) dW (t), t ∈ [0, T ]
S(t) = ϕ(t), t ∈ [−L, 0].

}
(2)

dS(t) = µS(t− a) dt+ g(S(t− b))S(t) dW (t), t ∈ [0, T ]
S(t) = ϕ(t), t ∈ [−L, 0].

}
(3)

In our next result, we will show that the above three models (1), (2) and (3)
are feasible in the sense that they admit pathwise unique solutions such that
S(t) > 0 almost surely for all t ≥ 0 whenever the initial path ϕ(t) > 0 for all
t ∈ [−L, 0].
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Hypotheses (E).

(i) There is a positive constant L′ such that

|f(t, η)| ≤ L′(1 + ‖η‖)

for all (t, η) ∈ [0, T ]× C([−L, 0],R).

(ii) For each integer n > 0, there is a positive constant Ln such that

|f(t, η1)− f(t, η2)| ≤ Ln‖η1 − η2‖

for all (t, ηi) ∈ [0, T ]× C([−L, 0],R) with ‖ηi‖ ≤ n, i=1,2.

(iii) f(t, η) > 0 for all (t, η) ∈ [0, T ]× C([−L, 0],R).

(iv) g : R → R is continuous.

(v) a and b are positive constants.

It is easy to see that f2 satisfies Hypotheses (E)(i),(ii) (but not (E)(iii)).
Although f1 does not satisfy (E)(i), we will show in Theorem 1 below that the
sdde (2) still admits a pathwise-unique positive solution.

Theorem 1 Assume Hypotheses (E). Then each of the sfde’s (1), (2) and
(3) has a pathwise unique solution S for a given F0-measurable initial process
ϕ : Ω → C([−L, 0],R). Furthermore, if ϕ(t) ≥ 0 for all t ∈ [−L, 0] a.s., then
S(t) ≥ 0 for all t ≥ 0 a.s.. If in addition ϕ(0) > 0 a.s., then S(t) > 0 for all
t ≥ 0 a.s..

Proof.
Case 1: f = f1.

Define l := min{a, b} > 0 and let t ∈ [0, l]. Then (2) gives

dS(t) = S(t)[µϕ(t− a) dt+ g(ϕ(t− b)) dW (t)], t ∈ [0, l]
S(0) = ϕ(0).

}
(4)

Define the semimartingale

N(t) := µ

∫ t

0
ϕ(u− a) du+

∫ t

0
g(ϕ(u− b)) dW (u), t ∈ [0, l],

and denote by [N,N ](t) =
∫ t
0 g(ϕ(u− b))2 du, t ∈ [0, l], its quadratic variation.

Then (4) becomes

dS(t) = S(t) dN(t), t > 0, S(0) = ϕ(0),

4



which has the unique solution

S(t) = ϕ(0) exp{N(t)− 1
2
[N,N ](t)},

= ϕ(0) exp
{
µ

∫ t

0
ϕ(u− a) du

+
∫ t

0
g(ϕ(u− b)) dW (u)− 1

2

∫ t

0
g(ϕ(u− b))2 du

}
,

for t ∈ [0, l]. This clearly implies that S(t) > 0 for all t ∈ [0, l] almost surely,
when ϕ(0) > 0 a.s. By a similar argument, it follows that S(t) > 0 for all
t ∈ [l, 2l] a.s.. Therefore S(t) > 0 for all t ≥ 0 a.s., by induction. Note that the
above argument also gives existence and pathwise-uniqueness of the solution to
(2).

Case 2: f = f2.
First let t ∈ [0, l] and let ϕ(t) ≥ 0 a.s. for all t ∈ [−L, 0]. Then (3) becomes

dS(t) = µϕ(t− a) dt+ g(ϕ(t− b))S(t) dW (t), t ∈ [0, l]
S(0) = ϕ(0).

}
(5)

Define the martingale

M(t) :=
∫ t

0
g(ϕ(u− b)) dW (u), t ∈ [0, l].

Then S solves the stochastic ordinary differential equation (sode)

dS(t) = µϕ(t− a) dt+ S(t) dM(t), t ∈ [0, l]
S(0) = ϕ(0).

}
(6)

Let ψ be the solution of the sode

dψ(t) = ψ(t) dM(t), t ∈ [0, l]
ψ(0) = 1,

}
(7)

and define the random process y by

y′(t) = µψ(t)−1ϕ(t− a), t ∈ [0, l]
y(0) = ϕ(0).

}
(8)

Denote by [M,M ] the quadratic variation of M . Then, from (7), it follows that

ψ(t) = exp{M(t)− 1
2
[M,M ](t)} > 0

for all t ∈ [0, l].
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Define the process S̃ by S̃(t) := ψ(t)y(t) for t ∈ [0, l]. Then by the product
rule, it follows that

dS̃(t) = µϕ(t− a) dt+ S̃(t) dM(t), t ∈ [0, l]
S̃(0) = ϕ(0).

}
(9)

Comparing (6) and (9), it follows by uniqueness that P -a.s., S(t) = S̃(t) for all
t ∈ [0, l]. Now using (8) and the fact that ϕ(t) ≥ 0 a.s. for all t ∈ [−L, 0], it
follows that y(t) ≥ 0 a.s. for all t ∈ [0, l]. Also it follows from (8) that y(t) > 0
for all t ∈ [0, l] a.s. if ϕ(0) > 0 a.s.. Hence S(t) = S̃(t) > 0 for all t ∈ [0, l] a.s..
Using forward steps of length l, it is easy to see that S(t) > 0 a.s. for all t ≥ 0.

Case 3: f satisfies (E).
This is similar to Case 2. Details are left to the reader. �

Remarks 1.

(i) In Case 1 above, we need only require φ(0) ≥ 0 (or φ(0) > 0) to conclude
that the solution of (2) satisfies a.s. S(t) ≥ 0 for all t ≥ 0 (or S(t) > 0 for
all t ≥ 0, resp.).

(ii) A fourth feasible model for the stock price is obtained by taking f = f3

where

f3(t, ξ) := h(t, ξt−a)ξ(0), (t, ξ) ∈ [0, T ]× C([−L, T ],R),

with ξt(s) := ξ(t ∧ s), t, s ∈ [−L, T ], and h : [0, T ] × C([−L, T ],R) → R
is a continuous functional. Hence the stock price S satisfies the sfde

dS(t) = h(t, St−a)S(t) dt+ g(S(t− b))S(t) dW (t), t ∈ [0, T ],
S(t) = ϕ(t), t ∈ [−L, 0].

Theorem 1 holds for the above model of the stock if Hypotheses (E) hold
with E(iii) replaced by the following monotonicity condition:

(E)(iii)′ For each ξ ∈ C([−L, T ],R) with ξ(t) ≥ 0 for all t ∈ [−L, T ], one
has

h(t, ξ) ≥ 0 for all t ∈ [0, T ].

The proof is analogous to Case 2 in the proof of Theorem 1.

3 A delayed option pricing formula

Consider a market consisting of a riskless asset (e.g., a bond or bank account)
B(t) with rate of return r ≥ 0 (i.e., B(t) = ert ) and a single stock whose
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price S(t) at time t satisfies the sdde (2) where ϕ(0) > 0 a.s.. In the sdde (2),
assume further that the delays a, b are positive and g is continuous. Consider
an option, written on the stock, with maturity at some future time T > t and
an exercise price K. Assume also that there are no transaction costs and that
the underlying stock pays no dividends. Our main objective is to derive the
fair price of the option at time t. In the following discussion, we will obtain an
equivalent martingale measure with the help of Girsanov’s theorem.

Let
S̃(t) :=

S(t)
B(t)

= e−rtS(t), t ∈ [0, T ],

be the discounted stock price process. Then by Itô’s formula (the product rule),
we obtain

dS̃(t) = e−rtdS(t) + S(t)(−re−rt) dt

= S̃(t)
[
{µS(t− a)− r} dt+ g(S(t− b)) dW (t)

]
.

Let

Ŝ(t) :=
∫ t

0
{µS(u− a)− r} du+

∫ t

0
g(S(u− b)) dW (u), t ∈ [0, T ].

Then
dS̃(t) = S̃(t) dŜ(t), 0 < t < T. (10)

Taking into account that S̃(0) = ϕ(0), we have

S̃(t) = ϕ(0) +
∫ t

0
S̃(u) dŜ(u), t ∈ [0, T ]. (11)

We now recall Girsanov’s theorem (see, e.g., Theorem 5.5 in [K.K]).

Theorem 2 (Girsanov) Let W (t), t ∈ [0, T ], be a standard Wiener process
on (Ω,F , P ). Let Σ be a predictable process such that

∫ T
0 |Σ(u)|2du < ∞ a.s.,

and let

%t := exp
{∫ t

0
Σ(u) dW (u)− 1

2

∫ t

0
|Σ(u)|2 du

}
, t ∈ [0, T ].

Suppose that EP (%T ) = 1, where EP denotes expectation with respect to the
probability measure P . Define the probability measure Q on (Ω,F) by dQ :=
%T dP . Then the process

Ŵ (t) := W (t)−
∫ t

0
Σ(u) du, t ∈ [0, T ],

is a standard Wiener process under the measure Q.
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From now on, we will assume that the function g : R → R in the sdde (2)
satisfies the following hypothesis:

Hypothesis (B). g(v) 6= 0 whenever v 6= 0.

We want to apply Girsanov’s theorem with the process

Σ(u) := −{µS(u− a)− r}
g(S(u− b))

, u ∈ [0, T ].

Hypothesis (B) implies that Σ is well-defined, since by Theorem 1, S(t) > 0
for all t ∈ [0, T ] a.s.. Clearly Σ(t), t ∈ [0, T ], is a predictable process. More-
over,

∫ T
0 |Σ(u)|2du < ∞ a.s., since almost sure continuity of the process S(t),

t ∈ [0, T ], implies almost sure boundedness of S(t), t ∈ [0, T ], and Hypoth-
esis (B) implies that 1/g(v), v ∈ (0,∞), is bounded on bounded intervals.
Now let l := min(a, b). Set Ft := F0 for t ≤ 0. Then Σ(u), u ∈ [0, T ],
is measurable with respect to the σ-algebra FT−l. Hence, the stochastic inte-
gral

∫ T
T−l Σ(u) dW (u) conditioned on FT−l has a normal distribution with mean

zero and variance
∫ T
T−l Σ(u)2 du. Consequently, by the formula for the moment

generating function of a normal distribution, we obtain

EP

(
exp

{∫ T

T−l
Σ(u) dW (u)

} ∣∣∣∣FT−l

)
= exp

{
1
2

∫ T

T−l
|Σ(u)|2 du

}

a.s.. Hence

EP

(
exp

{∫ T

T−l
Σ(u) dW (u)− 1

2

∫ T

T−l
|Σ(u)|2du

} ∣∣∣∣FT−l

)
= 1

a.s.. Now the above relation easily implies that

EP

(
exp

{∫ T

0
Σ(u) dW (u)− 1

2

∫ T

0
|Σ(u)|2du

} ∣∣∣∣FT−l

)
= exp

{∫ T−l

0
Σ(u) dW (u)− 1

2

∫ T−l

0
|Σ(u)|2 du

}
a.s.. Let k to be a positive integer such that 0 ≤ T −kl ≤ l. Then by successive
conditioning using backward steps of length l, an inductive argument gives

EP

(
exp

{∫ T

0
Σ(u) dW (u)− 1

2

∫ T

0
|Σ(u)|2du

} ∣∣∣∣FT−kl

)
= exp

{∫ T−kl

0
Σ(u) dW (u)− 1

2

∫ T−kl

0
|Σ(u)|2 du

}
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a.s.. Taking conditional expectation with respect to F0 on both sides of the
above equation, we obtain

EP

(
exp

{∫ T

0
Σ(u) dW (u)− 1

2

∫ T

0
|Σ(u)|2du

} ∣∣∣∣F0

)
= EP

(
exp

{∫ T−kl

0
Σ(u) dW (u)− 1

2

∫ T−kl

0
|Σ(u)|2du

} ∣∣∣∣F0

)
= 1

a.s.. Taking the expectation of the above equation, we immediately obtain

EP (%T ) = 1.

Therefore, the Girsanov’s theorem (Theorem 2) applies and the process

Ŵ (t) := W (t) +
∫ t

0

{µS(u− a)− r}
g(S(u− b))

du, t ∈ [0, T ],

is a standard Wiener process under the measure Q defined by dQ := %T dP
with

%T := exp

{
−
∫ T

0

{µS(u− a)− r}
g(S(u− b))

dW (u)− 1
2

∫ T

0

∣∣∣∣µS(u− a)− r

g(S(u− b))

∣∣∣∣2 du
}

a.s.. Since the process Ŝ(t), t ∈ [0, T ], can be written in the form

Ŝ(t) =
∫ t

0
g(S(u− b)) dŴ (u), t ∈ [0, T ], (12)

we conclude that Ŝ(t), t ∈ [0, T ], is a continuousQ-martingale (i.e., a continuous
martingale under the measure Q ). Furthermore, by the representation (11),
the discounted stock price process S̃(t), t ∈ [0, T ], is also a continuous Q-
martingale. In other words, Q is an equivalent martingale measure. By the
well-known theorem on trading strategies (e.g., Theorem 7.1 in [K.K]), it follows
that the market consisting of {B(t), S(t) : t ∈ [0, T ]} satisfies the no-arbitrage
property: There is no admissible self-financing strategy which gives an arbitrage
opportunity.

We now establish the completeness of the market {B(t), S(t) : t ∈ [0, T ]}.
From the proof of Theorem 1, it follows that the solution of the sdde (2)

satisfies the relation

S(t) = ϕ(0) exp
{∫ t

0
g(S(u− b)) dW (u) + µ

∫ t

0
S(u− a) du− 1

2

∫ t

0
g(S(u− b))2du

}
a.s. for t ∈ [0, T ]. Hence we have

S̃(t) = ϕ(0) exp
{∫ t

0
g(S(u− b)) dŴ (u)− 1

2

∫ t

0
g(S(u− b))2du

}
(13)
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for t ∈ [0, T ]. [S(t) and S̃(t) are the same except we consider S̃(t) as a functional
of W̃ and S(t) is considered as a functional of W ]. This implies that FS

t =
F S̃

t = FŴ
t , the σ-algebras generated by {S(u) : u ≤ t}, {S̃(u) : u ≤ t},

{Ŵ (u) : u ≤ t}, respectively. Let X be a contingent claim, viz. a bounded
FS

T -measurable random variable. Consider the Q-martingale

M(t) := EQ(e−rTX | FS
t ) = EQ(e−rTX | FŴ

t ), t ∈ [0, T ].

By the martingale representation theorem (e.g., Theorem 9.4 in [K.K]), there
exists an (FŴ

t )-predictable process h(t), t ∈ [0, T ], such that∫ t

0
h(u)2 du <∞ a.s.,

and
M(t) = EQ(e−rTX) +

∫ t

0
h(u) dŴ (u), t ∈ [0, T ].

By (10) and (12) we obtain dS̃(u) = S̃(u)g(S(u− b)) dŴ (u). Define

πS(t) :=
h(t)

S̃(t)g(S(t− b))
, πB(t) := M(t)− πS(t)S̃(t), t ∈ [0, T ].

Consider the strategy {(πB(t), πS(t)) : t ∈ [0, T ]} which consists of holding
πS(t) units of the stock and πB(t) units of the bond at time t. The value of the
portfolio at time t is given by

V (t) := πB(t)ert + πS(t)S(t) = ertM(t),

hence
dV (t) = ertdM(t) +M(t)dert = πB(t)dert + πS(t)dS(t).

Consequently, {(πB(t), πS(t)) : t ∈ [0, T ]} is a self-financing strategy. More-
over, V (T ) = erTM(T ) = X, hence the contingent claim X is attainable.
This shows that the market {B(t), S(t) : t ∈ [0, T ]} is complete, since every
contingent claim is attainable. Moreover, in order for the augmented market
{B(t), S(t), X : t ∈ [0, T ]} to satisfy the no-arbitrage property, the price V (t)
of the claim X must be

V (t) = e−r(T−t)EQ(X | FS
t )

at each t ∈ [0, T ] a.s.. See, e.g., [B.R] or Theorem 9.2 in [K.K].

The above discussion may be summarized in the following formula for the
fair price V (t) of an option on the stock whose evolution is described by the
sdde (2).
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Theorem 3 Suppose that the stock price S is given by the sdde (2), where
ϕ(0) > 0 and g satisfies Hypothesis (B). Let T be the maturity time of an
option (contingent claim) on the stock with payoff function X, i.e., X is an
FS

T -measurable integrable random variable. Then at any time t ∈ [0, T ], the
fair price V (t) of the option is given by the formula

V (t) = e−r(T−t)EQ(X | FS
t ), (14)

where Q denotes the probability measure on (Ω,F) defined by dQ := %T dP with

%t := exp

{
−
∫ t

0

{µS(u− a)− r}
g(S(u− b))

dW (u)− 1
2

∫ t

0

∣∣∣∣µS(u− a)− r

g(S(u− b))

∣∣∣∣2 du
}

for t ∈ [0, T ]. The measure Q is a martingale measure and the market is
complete.

Moreover, there is an adapted and square integrable process h(u), u ∈ [0, T ]
such that

EQ(e−rTX | FS
t ) = EQ(e−rTX) +

∫ t

0
h(u) dŴ (u), t ∈ [0, T ]

and the hedging strategy is given by

πS(t) :=
h(t)

S̃(t)g(S(t− b))
, πB(t) := M(t)− πS(t)S̃(t), t ∈ [0, T ]. (15)

The following result is a consequence of Theorem 3. It gives a Black-Scholes-
type formula for the value of a European option on the stock at any time prior
to maturity.

Theorem 4 Assume the conditions of Theorem 3. Let V (t) be the fair price
of a European call option written on the stock S with exercise price K and
maturity time T . Let ϕ denote the distribution function of the standard normal
law, i.e.,

ϕ(x) :=
1√
2π

∫ x

−∞
e−u2/2 du, x ∈ R.

Then for all t ∈ [T − l, T ] (where l := min{a, b}), V (t) is given by

V (t) = S(t)ϕ(β+(t))−Ke−r(T−t)ϕ(β−(t)), (16)

where

β±(t) :=
log S(t)

K +
∫ T
t

(
r ± 1

2g(S(u− b))2
)
du√∫ T

t g(S(u− b))2du
.
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If T > l and t < T − l, then

V (t) = ertEQ

(
H

(
S̃(T − l),−1

2

∫ T

T−l
g(S(u− b))2du,

∫ T

T−l
g(S(u− b))2du

) ∣∣∣∣Ft

)
(17)

where H is given by

H(x,m, σ2) := xem+σ2/2ϕ(α1(x,m, σ))−Ke−rTϕ(α2(x,m, σ)),

and
α1(x,m, σ) :=

1
σ

[
log

(
x

K

)
+ rT +m+ σ2

]
,

α2(x,m, σ) :=
1
σ

[
log

(
x

K

)
+ rT +m

]
,

for σ, x ∈ R+, m ∈ R.
The hedging strategy is given by

πS(t) = ϕ(β+(t)), πB(t) = −Ke−rTϕ(β−(t)), t ∈ [T − `, T ].

Remark 2.

If g(x) = 1 for all x ∈ R+ then equation (16) reduces to the classical
Black and Scholes formula. Note that, in contrast with the classical (non-
delayed) Black and Scholes formula, the fair price V (t) in a general delayed
model considered in Theorem 4 depends not only on the stock price S(t) at the
present time t, but also on the whole segment {S(v) : v ∈ [t − b, T − b]}. (Of
course [t− b, T − b] ⊂ [0, t] since t ≥ T − l and l ≤ b.)

Proof of Theorem 4.

Consider a European call option in the above market with exercise price K
and maturity time T . Taking X = (S(T ) −K)+ in Theorem 3, the fair price
V (t) of the option is given by

V (t) = e−r(T−t)EQ((S(T )−K)+ | Ft) = ertEQ((S̃(T )−Ke−rT )+ | Ft),

at any time t ∈ [0, T ].
We now derive an explicit formula for the option price V (t) at any time

t ∈ [T − l, T ]. The representation (13) of S̃(t) implies that

S̃(T ) = S̃(t) exp

{∫ T

t
g(S(u− b)) dŴ (u)− 1

2

∫ T

t
g(S(u− b))2du

}

12



for all t ∈ [0, T ]. Clearly S̃(t) is Ft-measurable. If t ∈ [T − l, T ], then
−1

2

∫ T
t g(S(u − b))2du is also Ft-measurable. Furthermore, when conditioned

on Ft, the distribution of
∫ T
t g(S(u − b)) dŴ (u) under Q is the same as that

of σξ, where ξ is a Gaussian N(0, 1)-distributed random variable, and σ2 =∫ T
t g(S(u− b))2du. Consequently, the fair price at time t is given by

V (t) = ertH

(
S̃(t),−1

2

∫ T

t
g(S(u− b))2du,

∫ T

t
g(S(u− b))2du

)
,

where

H(x,m, σ2) := EQ(xem+σξ −Ke−rT )+, σ, x ∈ R+, m ∈ R.

Now, an elementary computation yields the following:

H(x,m, σ2) = xem+σ2/2ϕ(α1(x,m, σ))−Ke−rTϕ(α2(x,m, σ)).

Therefore, V (t) takes the form:

V (t) = S(t)ϕ(β+)−Ke−r(T−t)ϕ(β−),

where

β± =
log S(t)

K +
∫ T
t

(
r ± 1

2g(S(u− b))2
)
du√∫ T

t g(S(u− b))2du
.

For T > l and t < T − l, from the representation (13) of S̃(t), we have

S̃(T ) = S̃(T − l) exp

{∫ T

T−l
g(S(u− b)) dŴ (u)− 1

2

∫ T

T−l
g(S(u− b))2du

}
.

Consequently, the option price at time t with t < T − l is given by

V (t) = ertEQ

(
H

(
S̃(T − l),−1

2

∫ T

T−l
g(S(u− b))2du,

∫ T

T−l
g(S(u− b))2du

) ∣∣∣∣Ft

)
.

To calculate the hedging strategy for t ∈ [T − `, T ], it suffices to use an idea
from [B.R], pages 95–96. This completes the proof of the theorem. �

Remark 3.

For T > l and t < T − l, one can develop a recursive procedure to calculate
(17) by taking backwards steps of length l from the maturity time T of the
option. Coupled with numerical approximations, this recursive procedure can
be used to compute the option price at any time t ∈ [0, T ]. Obviously

V (t) = ertEQ

(
EQ((S̃(T )−Ke−rT )+ | FT−l)

∣∣∣Ft

)
.

13



The measurability arguments in the proof of Theorem 4 yield the following

EQ((S̃(T )−Ke−rT )+ | FT−l)

= H

(
S̃(T − l),−1

2

∫ T

T−l
g(S(u− b))2du,

∫ T

T−l
g(S(u− b))2du

)
.

In order to calculate the conditional expectation of EQ((S̃(T )−Ke−rT )+ | FT−l)
with respect to the σ-algebra Ft, we will study the distribution of S̃(T − l) and
{S(u − b) : u ∈ [T − l, T ]} under the equivalent martingale measure Q. We
will discuss only the conditional distribution of the solution process S(u − b)
for u ∈ [T − l, T ]. The corresponding distribution of S̃(T − l) can be handled
in a similar way.

Now if T > kl for some positive integer k and t ∈ [T − (k+1)l, T −kl], then
for all u ∈ [T − l, T ] the solution formula (13) implies that

S(u−b) = er(u−b)S̃(t)
k∏

j=1

exp

{∫ τj

τj−1

g(S(v − b)) dŴ (v)− 1
2

∫ τj

τj−1

g(S(v − b))2dv

}
,

(18)
where

τj :=


t, if j = 0,
T − (k − j + 1)l, if j = 1, . . . , k − 1,
u− b, if j = k.

Clearly S̃(t) is Ft-measurable. The first factor in the product in (18) is

exp

{∫ T−kl

t
g(S(v − b)) dŴ (v)− 1

2

∫ T−kl

t
g(S(v − b))2dv

}
. (19)

This can be handled as before: −1
2

∫ T−kl
t g(S(v − b))2dv is Ft-measurable,

the integrand {g(S(v − b)) : v ∈ [t, T − kl]} is also Ft-measurable, and Ŵ
is a standard Wiener process under the measure Q. Based on the condi-
tional distribution under Q, one can construct an approximation of the integral∫ T−kl
t g(S(v − b)) dŴ (v) (see, e.g., [K.P] and [K.P.S]), which in turn yields an

approximation of (19).
The second factor in the product in (18) has the form

exp

{∫ T−(k−1)l

T−kl
g(S(v − b)) dŴ (v)− 1

2

∫ T−(k−1)l

T−kl
g(S(v − b))2dv

}
. (20)

Using again (13), the integrand {g(S(v− b)) : v ∈ [T − kl, T − (k− 1)l]} in the
above expression can be rewritten using the relation:

S(v−b) = er(v−b)S̃(t) exp

{∫ v−b

t
g(S(s− b)) dŴ (s)− 1

2

∫ v−b

t
g(S(s− b))2ds

}
.

14



In the same way as above, one can construct an approximation of the integrals
in the required interval v ∈ [T − kl, T − (k − 1)l], which will give an approx-
imation of (20). Clearly one can treat the other factors in (18) in a similar
fashion. Numerical approximation together with the rate of convergence may
be discussed in the spirit of the work [H.M.Y] and will not be dealt with here.

Remark 4.

In the last delay period [T − l, T ], one can rewrite the option price V (t), t ∈
[T − l, T ] in terms of the solution of a random Black-Scholes pde of the form

∂F (t, x)
∂t

= −1
2
g(S(t− b))2x2∂

2F (t, x)
∂x2

− rx
∂F (t, x)
∂x

+ rF (t, x), 0 < t < T

F (T, x) = (x−K)+, x > 0.


(21)

The above time-dependent random final-value problem admits a unique (Ft)t≥0-
adapted random field F (t, x). Using the classical Itô-Ventzell formula ([Kun])
and (14) of Theorem 3, it can be shown that

V (t) = e−r(T−t)F (t, S(t)), t ∈ [T − b, T ].

Note that the above representation is no longer valid if t ≤ T − b, because in
this range, the solution F of the final-value problem (17) is anticipating with
respect to the filtration (Ft)t≥0.

4 A stock price model with variable delay

In this section, we give an alternative model for the stock price dynamics with
variable delay. In this case we are also able to develop a Black-Scholes formula
for the option price.

Throughout this section, suppose h is a given fixed positive number. Denote
btc := kh if kh ≤ t < (k + 1)h. Consider a market consisting of a riskless asset
ξ with a variable (deterministic) continuous rate of return λ, and a stock S
satisfying the following equations

dξ(t) = λ(t)ξ(t) dt
dS(t) = f(t, S(btc))S(t)dt+ g(t, S(btc))S(t)dW (t)

}
(22)

for t ∈ (0, T ], with initial conditions ξ(0) = 1, S0 ∈ C([−h, 0],R) and S(0) > 0.
In the above model, let (Ft)0≤t≤T and W be as in Section 2; and suppose f :
[0, T ]×R → R is a continuous function. Assume further that g : [0, T ]×R → R
is continuous and g(t, v) 6= 0 for all (t, v) ∈ [0, T ]×R.
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Under the above conditions, this model is feasible: That is S(t) > 0 a.s.
for all t > 0. This follows by an argument similar to the proof of Theorem 1,
Section 2, and Remark 1(i).

Next, we will establish the completeness of the market {ξ(t), S(t) : t ∈ [0, T ]}
and the no-arbitrage property, following the approach in Section 3.

For t ∈ [kh, (k+1)h], the solution of the second equation in (22) is given by

S(t) = S(kh) exp
(∫ t

kh
g(s, S(kh)) dW (s) +

∫ t

kh
f(s, S(kh)) ds− 1

2

∫ t

kh
g(s, S(kh))2 ds

)
.

(23)
As in Section 3, let

S̃(t) :=
S(t)
ξ(t)

= S(t)e−
∫ t

0
λ(s)ds, t ∈ [0, T ],

be the discounted stock price process. Again by Itô’s formula, we obtain

dS̃(t) =
1
ξ(t)

dS(t) + S(t)
(
− λ(t)
ξ(t)

)
dt

= S̃(t)
[
{f(t, S(btc))− λ(t)} dt+ g(t, S(btc)) dW (t)

]
.

Let

Ŝ(t) :=
∫ t

0
{f(u, S(buc))− λ(u)} du+

∫ t

0
g(u, S(buc)) dW (u), t ∈ [0, T ].

Then
dS̃(t) = S̃(t) dŜ(t), 0 < t < T, (24)

and
S̃(t) = S(0) +

∫ t

0
S̃(u) dŜ(u), t ∈ [0, T ]. (25)

Define the stochastic process

Σ(u) := −{f(u, S(buc))− λ(u)}
g(u, S(buc))

, u ∈ [0, T ].

It is clear that Σ(u) is FS
buc-measurable for each u ∈ [0, T ]. Furthermore, by

backward conditioning using steps of length h, the reader may check that

EP (ρT ) = 1

where

%T := exp

{
−
∫ T

0

{f(u, S(buc))− λ(u)}
g(u, S(buc))

dW (u)− 1
2

∫ T

0

∣∣∣∣f(u, S(buc))− λ(u)
g(u, S(buc))

∣∣∣∣2 du
}
.
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(See the argument in Section 3 following the statement of Theorem 2.) Hence
the Girsanov theorem (Theorem 2) applies, and it follows that the process

Ŵ (t) := W (t) +
∫ t

0

{f(u, S(buc))− λ(u)}
g(u, S(buc))

du, t ∈ [0, T ],

is a standard Wiener process under the probability measure Q defined by dQ :=
%T dP .

We now establish the no-arbitrage property. To do so, let X be any con-
tingent claim, viz. a bounded FS

T -measurable random variable. Define the
process

M(t) := EQ

(
X

ξ(T )

∣∣∣∣FS
t

)
= EQ

(
X

ξ(T )

∣∣∣∣FŴ
t

)
, t ∈ [0, T ].

Then M(t), t ∈ [0, T ], is an (FŴ
t )-adapted Q-martingale. Hence, by the mar-

tingale representation theorem, there exists an (FŴ
t )-predictable process h(t),

t ∈ [0, T ], such that ∫ t

0
h(u)2 du <∞ a.s.,

and
M(t) = EQ

(
X

ξ(T )

)
+
∫ t

0
h(u) dŴ (u), t ∈ [0, T ].

Define

πS(t) :=
h(t)

S̃(t)g(t, S(btc))
, πξ(t) := M(t)− πS(t)S̃(t), t ∈ [0, T ].

Consider the strategy {(πξ(t), πS(t)) : t ∈ [0, T ]} which consists of holding
πS(t) units of the stock and πξ(t) units of the bond at time t. The value of the
portfolio at time t is given by

V (t) := πξ(t)ξ(t) + πS(t)S(t) = ξ(t)M(t).

Moreover,

dV (t) = ξ(t)dM(t) +M(t)dξ(t) = πξ(t)dξ(t) + πS(t)dS(t).

Consequently, {(πξ(t), πS(t)) : t ∈ [0, T ]} is a self-financing strategy. Clearly
V (T ) = ξ(T )M(T ) = X, thus the contingent claim X is attainable. This shows
that the market {ξ(t), S(t) : t ∈ [0, T ]} is complete.

Moreover, in order for the augmented market {ξ(t), S(t), X : t ∈ [0, T ]} to
satisfy the no-arbitrage property, the price V (t) of the claim X must be

V (t) =
ξ(t)
ξ(T )

EQ(X | FS
t )

17



at each t ∈ [0, T ] a.s.. See, e.g., [B.R] or Theorem 9.2 in [K.K].

The above discussion may be summarized in the following formula for the
fair price V (t) of an option on the stock whose evolution is described by the
sdde (22).

Theorem 5 Suppose that the stock price S is given by the sdde (22), where
S(0) > 0 and g satisfies Hypothesis (B). Let T be the maturity time of an
option (contingent claim) on the stock with payoff function X, i.e., X is an
FS

T -measurable integrable random variable. Then at any time t ∈ [0, T ], the
fair price V (t) of the option is given by the formula

V (t) = EQ(X | FS
t )e−

∫ T

t
λ(s)ds, (26)

where Q denotes the probability measure on (Ω,F) defined by dQ := %T dP with

%t := exp

{
−
∫ t

0

{f(u, S(buc))− λ(u)}
g(u, S(buc))

dW (u)− 1
2

∫ t

0

∣∣∣∣f(u, S(buc))− λ(u)
g(u, S(buc))

∣∣∣∣2 du
}

for t ∈ [0, T ]. The measure Q is a martingale measure and the market is
complete.

Moreover, there is an adapted and square integrable process h(u), u ∈ [0, T ]
such that

EQ

(
X

ξ(T )

∣∣∣∣FS
t

)
= EQ

(
X

ξ(T )

)
+
∫ t

0
h(u) dŴ (u), t ∈ [0, T ]

and the hedging strategy is given by

πS(t) :=
h(t)

S̃(t)g(t, S(btc))
, πξ(t) := M(t)− πS(t)S̃(t), t ∈ [0, T ]. (27)

The following result gives a Black-Scholes-type formula for the value of a
European option on the stock at any time prior to maturity.

Theorem 6 Assume the conditions of Theorem 5. Let V (t) be the fair price
of a European call option written on the stock S with exercise price K and
maturity time T . Then for all t ∈ [T − bT c, T ], V (t) is given by

V (t) = S(t)ϕ(β+(t))−Kϕ(β−(t))e−
∫ T

t
λ(s)ds, (28)

where

β±(t) :=
log S(t)

K +
∫ T
t

(
λ(u)± 1

2g(u, S(buc))2
)
du√∫ T

t g(u, S(buc))2du
.
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If T > h and t < T − bT c, then

V (t) = e
∫ t

0
λ(s)dsEQ

(
H

(
S̃(T − bT c),−1

2

∫ T

T−bT c
g(u, S(buc))2du,

∫ T

T−bT c
g(u, S(buc))2du

) ∣∣∣∣Ft

)
(29)

where H is given by

H(x,m, σ2) := xem+σ2/2ϕ(α1(x,m, σ))−Kϕ(α2(x,m, σ))e−
∫ T

0
λ(s)ds,

and

α1(x,m, σ) :=
1
σ

[
log

(
x

K

)
+
∫ T

0
λ(s)ds+m+ σ2

]
,

α2(x,m, σ) :=
1
σ

[
log

(
x

K

)
+
∫ T

0
λ(s)ds+m

]
,

for σ, x ∈ R+, m ∈ R.
The hedging strategy is given by

πS(t) = ϕ(β+(t)), πξ(t) = −Kϕ(β−(t))e−
∫ T

0
λ(s)ds, t ∈ [T − bT c, T ].
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