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Abstract
We analyze a time-delay Caputo-type fractional mathematical model containing the
infection rate of Beddington–DeAngelis functional response to study the structure of
a vector-borne plant epidemic. We prove the unique global solution existence for the
given delay mathematical model by using fixed point results. We use the
Adams–Bashforth–Moulton P-C algorithm for solving the given dynamical model. We
give a number of graphical interpretations of the proposed solution. A number of
novel results are demonstrated from the given practical and theoretical observations.
By using 3-D plots we observe the variations in the flatness of our plots when the
fractional order varies. The role of time delay on the proposed plant disease dynamics
and the effects of infection rate in the population of susceptible and infectious classes
are investigated. The main motivation of this research study is examining the
dynamics of the vector-borne epidemic in the sense of fractional derivatives under
memory effects. This study is an example of how the fractional derivatives are useful
in plant epidemiology. The application of Caputo derivative with equal dimensionality
includes the memory in the model, which is the main novelty of this study.
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1 Introduction
Plant epidemiology is the branch of science in which we study various diseases in differ-
ent families of plants. A plant has to keep faith simply on cellular inborn immunity to
bargain with infections as it does not hold any shape of mobile protection, and therefore it
demonstrates many plant-exclusive behaviors [1]. A one of the plant viral epidemic, called
vector-borne diseases, has exerted the attention of scientists doing research via mathe-
matical modeling [2, 3]. Mathematical models are becoming very effective to utilize the
dynamics of vector-borne plant epidemic transmission in host plants. Some effective opti-
mal controls can be summarized via these frameworks [4]. Various mathematical models
have been utilized by the mathematicians to give a framework of particular disease mod-
elings. In this series the dynamics of Jatropha curcas mosaic epidemic, which is spread by
whitefly vectors, is studied mathematically in [5] by observing oscillations in the model
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due to a large rate of infection. Also, a structure of soil borne plant epidemic along with
host demography by showing limit cycle nature has framed in [6]. In the modeling studies,
researchers have been taken bilinear infection transmission. On the other side, in [7, 8] a
nonlinear rate of incidence is taken for defining the vector-borne plant epidemic prop-
agation. Here we have another form of modeling defined by including time delay in the
biological systems. The delay vector-borne plant epidemic systems can specify periodic
oscillations, stability switches, transcritical bifurcation, etc. [5, 6]. Such observations are
little crucial to estimate the firmness of infection and control of disease. Zhang et al. [9]
revised a plant disease model given in [10] by taking the plant incubation duration as a
delay to justify the necessary changes in the given dynamical structure. Also, a mathemat-
ical framework for the structure of soil-borne plant epidemic by taking the delay in time
cause of the latent period of vectors/inoculum is given in [6]. The modification in a model
given in [11] made by Jackson [7] for specifying the vector-borne epidemic dynamics in
plants by analyzing multiple delays to include the latent period in vectors and incubation
periods of plants.

Nowadays, fractional calculus is a very well-known phenomenon in the field of mathe-
matical modeling. In this tool, there are many fractional-order derivatives presented for
applying in modeling. A large study on theory and applications of fractional-order deriva-
tives have been done by researchers [12–14]. Some specific studies on fractional-order
Lotka–Volterra population model [15], population structure of two interacting species
[16], nonclassical type model for the spreading of pests in tea plants [17], fractional op-
timal control techniques [18], nonclassical chemical kinetics system [19], dynamics of
SEIR model of measles [20], immunogenetic tumor model [21], new technique to solve
noninteger-order PDEs [22] have been proposed. Sene et al. [23] has analyzed a four-
dimensional hyperchaotic system in the sense of Caputo-type fractional derivative. A clear
role of vaccine in the Covid-19 epidemic can be learned by using a fractional-order SEIR
model from [24]. In [25] the authors explored the dynamics of the mosaic disease via a non-
classical mathematical model. Moreover, some studies on CDV and rabies epidemics [26],
oncolytic virotherapy [27], and huanglongbing transmission [28] have been recently ex-
plored. Nonclassical derivatives have been regularly used to study the structures of various
deathly diseases. Recently, a number of researchers have used different fractional deriva-
tives in epidemiology for analyzing the structure of coronavirus [29–31], malaria [32], and
tuberculosis [33]. A Mittag-Leffler kernel-type SIR disease model is given in [34]. In [35]
the authors have analyzed a fractional-order predator–prey model. In [36] a stochastic
approach to derive the dynamics of a Covid-19 disease model has been used. Atangana
[37] has modeled the transmission of Covid-19 by using fractal-fractional operators. One
of the early applications of new generalized Caputo-type noninteger-order derivative in
ecology is given in [38]. An example of importance of fractional derivatives in physics is
presented in [39]. Fractional differential equations have both delay and nondelay cases,
and the derivatives of such nonclassical type are smoothly used to study them. In this pa-
per, we apply the well-known Caputo fractional derivatives with singular type memory for
studying the proposed time-delay plant epidemic model.

The current paper is organized as follows. In the preliminaries Sect. 2, we recall the def-
inition of Caputo fractional derivative along with specifying the single-parameter form
of the Mittag-Leffler function. In Sect. 3, we specify the structure of integer-order plant
disease model proposed by Basir et al. [40]. Here we remind the corresponding basic re-
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productive number and the theorems on stability of disease-free equilibriums of the dy-
namical model. We reformulate the classical model in a fractional-order Caputo model by
giving the motivation of such changes because we believe that the fractional derivatives
better fit real-word phenomena. Section 4 is entitled with mathematical analysis of the
fractional model. In this section, we made some parts for existence of the unique global
solution for the time-delay Caputo modeling by using fixed-point theory. In the other
part of this section, we derive the solution of the model by using an efficient delay-type
numerical algorithm. As we know, when we study any real-world phenomena or, more
specifically, the dynamics of any epidemic, some common concerns always exist, for ex-
ample, how the disease will behave for the long time interval or how we can project the
real data for future predictions? To fulfil these requirements, the graphical interpretations
are very important. In Sect. 5, we establish a sufficient discussion on the graphical analysis
for the proposed model by using specific numerical values of the significant parameters.
We evaluate the role of infection rate and the time delay by using their various values for
the given time period. In the graphical structures, we give some 2D compatible plots and
some 3D graphics by the help of Python software. Finally, we conclude our all results by
giving a smooth finish to our study.

2 Preliminaries
Definition 1 ([14]) The Caputo fractional derivative of a function Y ∈ Cα

–1 is given by

Dλ
t Y(t) =

⎧
⎨

⎩

dαY(t)
dtα , λ = α ∈ N,

1
�(α–λ)

∫ t
a (t – ϑ)α–λ–1Y (α)(ϑ) dϑ , α – 1 < λ < α,α ∈N.

(1)

Definition 2 ([14]) The Riemann–Liouville fractional integral of a function Y ∈ Cα
–1 is

given by

JλY(t) =
1

�(λ)

∫ t

a
(t – s)λ–1Y(s) ds. (2)

Definition 3 ([14]) The one-parameter form of the Mittag-Leffler function is defined as

Eλ(z) =
∞∑

�=0

z�

�(λ� + 1)
, λ > 0, z ∈C. (3)

3 Model structure
In plant epidemiology, a number of deathly diseases or viruses have been observed, which
are becoming very harmful for our plants. In the mathematical point of view, some mod-
els have been analyzed to study the dynamics of these diseases like mosaic disease [41],
huanglongbing virus transmission within a citrus tree [42], Xylella fastidiosa epidemic in
olive trees [43], etc. In this paper, we adopt a mathematical delay model proposed by Basir
et al. [40] for defining the structure of vector-borne plant disease. In the model the authors
specified three different classes; plenty of susceptible plant x(t), infected plants y(t), and
virus carrier or infected vector v(t). The authors used the dimensions m–2 for x(t), y(t) and
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Table 1 Identification of model parameters [40]

Parameter Identification Values

g growth rate of plant density 0.1 day–1

� infection rate of plant 0.4 vector–1 day–1

k maximum plant density 1 m–2

α growth rate of infected vector 0.4 day–1

β infected plant removal rate 0.1 day–1

δ resistance rate of plant 0.5 m2


 additional death due to infection 0.025 day–1

γ mortality rate of vector 0.1 day–1

b crowding effect of vector 0.5 plant
τ delay in time [0, 6]

plant–1 for v(t). The integer-order model is as follows:

⎧
⎪⎪⎨

⎪⎪⎩

x′(t) = gx[1 – x+y
k ] – �xv

1+δx+bv ,

y′(t) = �e–βτ x(t–τ )v(t–τ )
1+δx(t–τ )+bv(t–τ ) – (β + 
)y,

v′(t) = αy – γ v.

(4)

In this model, the authors used the Beddington–DeAngelis-type infection rate �xv
1+δx+bv .

Here the plant resistance rate is denoted by δ, and the crowding effect rate of vectors is
given by b. The term �e–βτ x(t–τ )v(t–τ )

1+δx(t–τ )+bv(t–τ ) is the effect of time delay in the form of incubation
period of the plant. The basic reproduction number is calculated by R0 = k�e–βτ α

γ (β+
)(1+δk) (in-
dependent from the crowding effect b). The disease-free equilibrium (DFE) is calculated
by E1(k, 0, 0).

Further properties of the given model related to the disease-free and endemic equilib-
rium point stability, nonnegativity, boundedness of solutions, and model origin can be
studied from [40]. Table 1 is devoted to the parameter description and their numerical
values used in the practical simulations. Since early decade, a number of nonclassical type
derivatives have been proposed and applied by many mathematicians, where the Caputo
fractional derivative is derived in the sense of singular-type kernel. In this part, we re-
formulate the given integer-order model (4) into the Caputo sense. The main reason or
motivation of this replacement is to explore the dynamics of given integer-order model at
fractional-order values to simulate the memory effects. So the generalization of the given
model (4) into the Caputo-type model along with taking the equal dimension time–λ on
both sides is given as follows:

⎧
⎪⎪⎨

⎪⎪⎩

CDλ
t x(t) = gλx[1 – x+y

kλ ] – �λxv
1+δλx+bλv ,

CDλ
t y(t) = �λe–βτ x(t–τ )v(t–τ )

1+δλx(t–τ )+bλv(t–τ ) – (βλ + 
λ)y,
CDλ

t v(t) = αλy – γ λv,

(5)

where CDλ
t is the Caputo derivative operator of fractional order λ. The above model can

be written in its equivalent form by specifying three different singular type kernels Z1, Z2,
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Z3 as follows:

⎧
⎪⎪⎨

⎪⎪⎩

CDλ
t x(t) = Z1(t, x, x – τ ),

CDλ
t y(t) = Z2(t, y, y – τ ),

CDλ
t v(t) = Z3(t, z, z – τ ),

(6)

where Z1, Z2, Z3 are the respective singular kernels for the respective model equations
x(t), y(t). v(t) (equal to the right-hand sides of model (5)).

3.1 Some stability results
To state some analysis related to the stability of the disease-free equilibrium points for
given fractional-order system, we analyze the linearization of system (5) at equilibrium
point E(x∗, y∗, v∗) as follows:

⎧
⎪⎪⎨

⎪⎪⎩

CDλ
t x(t) = gλx[1 – 2x∗+y∗

kλ ] – �λxv∗(1+bλv∗)
(1+δλx∗+bλv∗)2 – rλx∗y

kλ – �λx∗v(1+δλx∗)
(1+δλx∗+bλv∗)2 ,

CDλ
t y(t) = �λe–βτ (1+bλv∗)x(t–τ )v∗

(1+δλx∗+bλv∗)2 + �λe–βτ (1+δλx∗)v(t–τ )x∗
(1+δλx∗+bλv∗)2 – (βλ + 
λ)y,

CDλ
t v(t) = αλy – γ λv.

(7)

Taking the Laplace transform of both sides of system (7) gives

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sλL[x(s)] – sλ–1x(0) = gλ[1 – 2x∗+y∗
kλ ]L[x(s)] – �λv∗(1+bλv∗)

(1+δλx∗+bλv∗)2 L[x(s)]

– rλx∗
kλ L[y(s)] – �λx∗(1+δλx∗)

(1+δλx∗+bλv∗)2 L[v(s)],

sλL[y(s)] – sλ–1y(0) = �λe–βτ (1+bλv∗)v∗
(1+δλx∗+bλv∗)2 e–sτ (L[x(s)] +

∫ 0
–τ

e–stφ(t) dt)

+ �λe–βτ (1+δλx∗)x∗
(1+δλx∗+bλv∗)2 e–sτ (L[v(s)] +

∫ 0
–τ

e–stφ(t) dt)

– (βλ + 
λ)L[y(s)],

sλL[v(s)] – sλ–1v(0) = αλL[y(s)] – γ λL[v(s)],

(8)

where L[x(s)], L[y(s)], and L[v(s)] are the Laplace transforms of x(t), y(t), and v(t). Sys-
tem (7) can be rewritten as

�(s) ·
⎡

⎢
⎣

L[x(s)]
L[y(s)]
L[v(s)]

⎤

⎥
⎦ =

⎡

⎢
⎣

η1(s)
η2(s)
η3(s)

⎤

⎥
⎦ ,

where

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

η1(s) = sλ–1x(0),

η2(s) = sλ–1y(0) + �λe–βτ (1+bλv∗)v∗
(1+δλx∗+bλv∗)2 e–sτ ∫ 0

–τ
e–stφ(t) dt

+ �λe–βτ (1+δλx∗)x∗
(1+δλx∗+bλv∗)2 e–sτ ∫ 0

–τ
e–stφ(t) dt,

η3(s) = sλ–1v(0),

(9)

�(s) =

⎡

⎢
⎢
⎣

sλ – gλ(1 – 2x∗+y∗
kλ ) + �λv∗(1+bλv∗)

(1+δλx∗+bλv∗)2
rλx∗
kλ

�λx∗(1+δλx∗)
(1+δλx∗+bλv∗)2

– �λe–βτ v∗(1+bλv∗)e–sτ

(1+δλx∗+bλv∗)2 sλ + (
λ + βλ) – �λe–βτ x∗(1+δλx∗)e–sτ

(1+δλx∗+bλv∗)2

0 –αλ sλ + γ λ

⎤

⎥
⎥
⎦ ,
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which is a characteristic matrix of system (7). Now the characteristic matrix of the system
at the disease-free equilibrium E1(kλ, 0, 0) is given by

�(s) =

⎡

⎢
⎣

sλ + gλ rλ �λkλ

(1+δλkλ)

0 sλ + (
λ + βλ) – �λe–βτ kλe–sτ

(1+δλkλ)
0 –αλ sλ + γ λ

⎤

⎥
⎦ .

The characteristic equation at E1(kλ, 0, 0) is

det
(
�(s)

)
=

(
sλ + gλ

)
[
(
sλ +

(

λ + βλ

))(
sλ + γ λ

)
–

αλ�λe–βτ kλe–sτ

(1 + δλkλ)

]

= 0.

Now there are two cases: (i) τ = 0 and (ii) τ > 0. We have the following theorems.

Theorem 1 For the time delay τ = 0, the disease-free equilibrium E1 of system (4) is stable
if R0 < 1 and unstable if R0 > 1.

Proof For τ = 0, let B = sλ. Then the characteristic equation is

(
B + gλ

) ·
(

B2 +
(
βλ + 
λ + γ λ

)
B +

(
βλ + 
λ

)
γ λ –

αλ�λkλ

1 + δλkλ

)

= 0. (10)

Thus at the DFE E1(kλ, 0, 0), one eigenvalue is –gλ < 0, and the other eigenvalues are nega-
tive or with negative real part if (βλ + 
λ)γ λ – αλ�λkλ

1+δλkλ > 0, which is equivalent to R0 < 1. �

When τ > 0, one eigenvalue is –gλ < 0, and the other roots satisfy the quadratic equation

Z(s, τ ) =
(
sλ +

(

λ + βλ

))(
sλ + γ λ

)
–

αλ�λe–βτ kλe–sτ

(1 + δλkλ)

= s2λ +
(
βλ + 
λ + γ λ

)
sλ +

(
βλ + 
λ

)
γ λ –

αλ�λkλe–(β+s)τ

1 + δλkλ
= 0. (11)

We study the following case.

Theorem 2 DFE E1 of system (5) for τ > 0 is asymptotically stable for R0 < 1 and unstable
for R0 > 1.

Proof Assume thatR0 > 1. Then Z(0, τ ) = (βλ +
λ)γ λ – αλ�λkλe–βτ

1+δλkλ = (βλ +
λ)γ λ(1–R0) <
0. Since lims→∞ Z(s, τ ) = ∞, there exists at least one real-positive root of the characteristic
equation (11), which gives that E1 is unstable.

Now let R0 < 1. We have to prove that for τ > 0, none of the characteristic roots can
approach the imaginary axis. Assume by contradiction that for some τ > 0, sλ = iθλ is
a root of (11). Taking sλ = iθλ in (11) and splitting real and imaginary parts, we get

– θ2λ + M2 = M3 cos θλτ ,

θλM1 = –M3 sin θλτ ,
(12)
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where M1 = (βλ + 
λ + γ λ), M2 = (βλ + 
λ)γ λ, and M3 = αλ�λkλe–βτ

1+δλkλ . Taking the square and
adding to the above equations, we finally get

θ4λ + θ2λ
((

βλ + 
λ
)2 + γ 2λ

)
+

(
M2

2 – M2
3
)

= 0. (13)

Note that R0 < 1 implies M3 < M2. Since the above equation has no real roots for θ , the
characteristic equation (11) cannot have purely imaginary roots. Thus, for R0 < 1, the
steady state E1 is asymptotically stable for all τ ≥ 0. �

4 Mathematical analysis of the Caputo-type model
4.1 Existence and uniqueness of the solution
Many research works are available in the literature where the existence and uniqueness
of solution for nondelay-type fractional differential equations are proved. In comparison,
there are less proofs of the existence of a unique solution for the delay-type fractional-
order initial value problems. A number of researchers have proposed their ideas on this
topic. In this part of the paper, we prove the existence and uniqueness of a solution for the
proposed singular fractional time-delay plant disease model by using the ideas of Cong and
Tuan et al. [44], who have proved the results by applying fixed point theory. Also, the same
results have been used by Kumar and Erturk [30] to simulate a coronavirus time-delay
dynamical model. Now we derive the proofs for the equation system Y(t) = (x(t), y(t), v(t)
with kernels B(Y(t),Y(t – τ )) = Z1(t, x, x – τ ),Z2(t, y, y – τ ),Z3(t, v, v – τ ). Let us consider
the singular type noninteger-order delay initial value problem (IVP)

CDλ
t Y(t) = B

(
t,Y(t),Y(t – τ )

)
, t ∈ [0, T], 0 < λ ≤ 1, (14)

with initial condition

Y(t) = k1, t ∈ [–τ , 0], (15)

where Y ∈ R
n, T > 0, and B : [0, T] ×R

n ×R
n →R

n is continuous.
(Rn is the n-dimensional Euclidean space with norm ‖ · ‖)

Lemma 1 ([44]) The mapping � ∈ C([–τ , T];Rn), where C([–τ , T];Rn) is a space of con-
tinuous mappings� from [–τ , T] toRn with the supremum norm ‖ · ‖∞), is a solution to the
IVP (14)–(15) on the interval [–τ , T] if and only if it solves the fractional-order time-delay
integral equation

Y(t) = Y(0) +
1

�(λ)

∫ t

0
(t – ζ )λ–1B

(
ζ ,Y(ζ ),Y(ζ – τ )

)
dζ ∀t ∈ [0, T], (16)

with initial values

Y(t) = k1, t ∈ [–τ , 0]. (17)

Note: [44] In the given exclusive proof modus, we did not consider whether the time-
delay variable of B satisfies the Lipschitz condition or not. We only considered the satis-
faction of the Lipschitz property of B for the delay-free parameter t.
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Theorem 3 (Existence of a unique global solution) Suppose that B : [0, T] ×R
n ×R

n →
R

n is a continuous mapping satisfying the Lipschitz property with respect to the nondelay
variable and that there exists a continuous nonnegative function L : [0, T] × R

n → R≥0

such that

∥
∥B(t,Y ,Yd) – B(t,Y1,Yd)

∥
∥ ≤ L(t,Yd)‖Y – Y1‖ (18)

for all t ∈ [0, T] and Y ,Yd,Y1 ∈ R
n. Then the IVP (14)–(15) has a unique global solution

� on the time interval [–τ , T].

Proof By Lemma (1) Eqs. (14)–(15) are equivalent to the IVP (16)–(17). Firstly, we consider
the case 0 < T ≤ τ . In that case, Eq. (16) has the form

Y(t) = Y(0) +
1

�(λ)

∫ t

0
(t – ζ )λ–1B

(
ζ ,Y(ζ ), k1

)
dζ ∀t ∈ [0, T]

by Tisdell [45, Theorem 6.4, p. 310]. This integral equation has a unique solution on the
interval [0, T]. We denote this solution by � ∗

τ and take

�T (t, k1) :=

⎧
⎨

⎩

k1, t ∈ [–τ , 0],

� ∗
τ (t), t ∈ [0, T].

(19)

Then �T (t, k1) is the unique solution of Eqs. (16)–(17) on [–τ , T].
In the other case where T > τ , we break the interval [0, T] into [0, τ ] ∪ · · · ∪ [(a0 –

1)τ , a0τ ] ∪ [a0τ , T], where a0 ∈N and 0 ≤ T – a0τ < τ . For the interval [–τ , τ ], in a similar
way as above, we write a unique solution of Eqs. (16)–(17) specified by �τ . Now, by us-
ing the induction property, we will proof the existence of unique solution on the interval
[–τ , a0τ ]. Now suppose that Eqs. (16)–(17) have a unique solution on the interval [–τ , aτ ]
for some 1 ≤ a < a0. We denote that solution by �aτ (., k1). On [aτ , (a + 1)τ ], we define the
operator A(a+1)τ ,k1 : C([aτ , (a + 1)τ ];Rn) → C([aτ , (a + 1)τ ];Rn) as follows:

(A(a+1)τ ,k1� )(t)

:= Y(0) +
1

�(λ)

∫ aτ

0
(t – ζ )λ–1B

(
ζ ,�aτ (ζ , k1),�aτ (ζ – τ , k1)

)
dζ

+
1

�(λ)

∫ t

aτ

(t – ζ )λ–1B
(
ζ ,� (ζ ),�aτ (ζ – τ , k1)

)
dζ ∀t ∈ [

aτ , (a + 1)τ
]
.

Let βa be a positive constant satisfying βa > 2 maxt∈[aτ ,(a+1)τ ] L(t,�aτ (t – τ , k1)). On the
space C([aτ , (a + 1)τ ];Rn), we define the new metric

dβa(� ,�1) := sup
t∈[aτ ,(a+1)τ ]

‖� (t) – �1(t)‖
Eλ(βatλ)

∀�,�1 ∈ C
([

aτ , (a + 1)τ
]

: Rn),

where Eλ : R → R is the Mittag-Leffler function (3). Then the space C([aτ , (a + 1)τ ];Rn)
equipped with the metric dβa is complete. Next, we will prove that the operator A(a+1)τ ,k1

is contractive on (C([aτ , (a + 1)τ ];Rn), dβa ). Indeed, for all � ,�1 ∈ C([aτ , (a + 1)τ ];Rn)
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and t ∈ [aτ , (a + 1)τ ], we have

∥
∥(A(a+1)τ ,k1� )(t) – (A(a+1)τ ,k1�1)(t)

∥
∥

≤ maxt∈[aτ ,(a+1)τ ] L(t,�aτ (t – τ , k1))
�(λ)

∫ t

aτ

(t – ζ )λ–1∥∥� (ζ ) – �1(ζ )
∥
∥dζ

≤ maxt∈[aτ ,(a+1)τ ] L(t,�aτ (t – τ , k1))
�(λ)

×
∫ t

aτ

(t – ζ )λ–1Eλ

(
βaζ

λ
)‖� (ζ ) – �1(ζ )‖

Eλ(βaζ λ)
dζ . (20)

This implies that

‖(A(a)τ ,k1� )(t) – (A(a)τ ,k1�1)(t)‖
Eλ(βatλ)

≤ maxt∈[aτ ,(a+1)τ ] L(t,�aτ (t – τ , k1))
Eλ(βatλ)

dβa(� ,�1)
1

�(λ)

∫ t

aτ

(t – ζ )λ–1Eλ

(
βaζ

λ
)

dζ

≤ maxt∈[aτ ,(a+1)τ ] L(t,�aτ (t – τ , k1))
Eλ(βatλ)

dβa(� ,�1)
1

�(λ)

∫ t

0
(t – ζ )λ–1Eλ

(
βaζ

λ
)

dζ

≤ maxt∈[aτ ,(a+1)τ ] L(t,�aτ (t – τ , k1))
Eλ(βatλ)

dβa(� ,�1)Iλ
0

(
CDλ

0

(
Eλ(βatλ)

βa

))

≤ maxt∈[aτ ,(a+1)τ ] L(t,�aτ (t – τ , k1))
βa

dβa(� ,�1) (21)

for all t ∈ [aτ , (a + 1)τ ]. Therefore

dβa (A(a+1)τ ,k1� , A(a+1)τ ,k1�1) ≤ maxt∈[aτ ,(a+1)τ ] L(t,�aτ (t – τ , k1))
βa

dβa(� ,�1)

≤ 1
2

dβa (� ,�1) (22)

for all � ,�1 ∈ C([aτ , (a + 1)τ ];Rn). By the Banach fixed-point theorem, of A(a+1)τ ,k1 has
a unique fixed-point � ∗

(a+1)τ in C([aτ , (a + 1)τ ];Rn). Put

�(a+1)τ (t, k1) :=

⎧
⎨

⎩

�aτ (t,k1), t ∈ [–τ , aτ ],

�∗
(a+1)τ (t), t ∈ [aτ , (a + 1)τ ].

(23)

Then �(a + 1)τ (t, k1) is the unique solution of Eqs. (16)–(17) on [–τ , (a + 1)τ ].
Finally, we adopt the operator Ak1 : C([a0τ , T];Rn) → C([a0τ , T];Rn) on the range

[a0τ , T] by

(Ak1 )(t) := Y(0) +
1

�(λ)

∫ a0τ

0
(t – ζ )λ–1B

(
ζ ,�a0τ (ζ , k1),�a0τ (ζ – τ , k1)

)
dζ

+
1

�(λ)

∫ t

a0τ

(t – ζ )λ–1B
(
ζ ,� (ζ ),�a0τ (ζ – τ , k1)

)
dζ ∀t ∈ [a0τ , T].
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Let βa0 be a positive constant such that βa0 > 2 maxt∈[a0τ ,T] L(t,�a0τ (t –τ , k1)). On the space
C([a0τ , T];Rn), we establish the new metric

dβa0
(� ,�1) := sup

t∈[a0τ ,T]

‖� (t) – �1(t)‖
Eλ(βa0 tλ)

,

and as above, we can prove that the operator Ak1 has a unique fixed-point � ∗ on [a0τ , T].
Define the function

�T (t, k1) :=

⎧
⎨

⎩

�a0τ (t, k1), t ∈ [–τ , a0τ ],

� ∗(t), t ∈ [a0τ , T].
(24)

It is obvious that �T is the unique solution of the given IVP (16)–(17) on the time inter-
val [–τ , T]. �

4.2 Derivation of the solution
Here we establish the solution of the given fractional time-delay model (5) by using the
well-known Adams–Bashforth–Moulton P-C scheme specified in [46]. A modified ver-
sion of this method is given in [47]. We know that the numerical algorithm for nonde-
lay and delay systems have their own different dynamics. Also, the stability of nondelay
methods can be easily derived but not in delay problems. The advantage of using delay
algorithms is that such methods can be also used for solving nondelay problems by setting
the time delay parameter equal to zero.

Now consider the following common delay problem for system (5):

CDλ
t Y(t) = B

(
t,Y(t),Y(t – τ )

)
, t ∈ [0, T], 0 < λ ≤ 1, (25a)

Y(t) = k1, t ∈ [–τ , 0]. (25b)

Consider the uniform grid {tμ = μh : μ = –�, –� + 1, . . . , –1, 0, 1, . . . ,N}, where � and N are
integers such that h = T/N and h = τ /�. Let

Y(tj) = k1, j = –�, –� + 1, . . . , –1, 0, (26)

and consider

Y(tj – τ ) = Y(jh – �h) = Y(tj–�), j = 0, 1, . . . ,N. (27)

Assume that we have previously established the approximations Y(tj) ≈ Y(tj) (j = –�, –� +
1, . . . , –1, 0, 1, . . . ,μ), and we want to find Y(tμ+1) using the Volterra integral equation cor-
responding to Eqs. (25a) and (25b),

Y(tμ+1) = Y(0) +
1

�(λ)

∫ tμ+1

0
(tμ+1 – ζ )λ–1B

(
ζ ,Y(ζ ),Y(ζ – τ )

)
dζ . (28)
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We use approximations Y(tμ) for Y(tμ) in (28). The integral in Eq. (28) is derived by using
product the trapezoidal quadrature rule. So the corrector equations are

Y(tμ+1) = Y(0) +
hλ

�(λ + 2)
B

(
tμ+1,Y(tμ+1),Y(tμ+1 – τ )

)

+
hλ

�(λ + 2)

μ∑

j=0

aj,μ+1B
(
tj,Y(tj),Y(tj – τ )

)

= Y(0) +
hλ

�(λ + 2)
B

(
tμ+1,Y(tμ+1),Y(tμ+1–�)

)

+
hλ

�(λ + 2)

μ∑

j=0

aj,μ+1B
(
tj,Y(tj),Y(tj–�)

)
, (29)

where

aj,μ+1 =

⎧
⎪⎪⎨

⎪⎪⎩

μλ+1 – (μ – λ)(μ + 1)λ, j = 0,

(μ – j + 2)λ+1 – 2(μ – j + 1)λ+1 + (μ – j)λ+1, 1 ≤ j ≤ μ,

1, j = μ + 1.

The unknown term Y(tμ+1) appears on every side of (29), and because of nonlinearity
of A1, equation (29) cannot be simulated clearly for Y(tμ+1). So we shift the term Y(tμ+1)
on the right-hand direction by an approximation YP(tμ+1), called a predictor. We apply
the product rectangle rule in (29) to find the predictor term

YP(tμ+1) = Y(0) +
1

�(λ)

μ∑

j=0

bj,μ+1B
(
tj,Y(tj),Y(tj – τ )

)

= Y(0) +
1

�(λ)

μ∑

j=0

bj,μ+1B
(
tj,Y(tj),Y(tj–�)

)
, (30)

where

bj,μ+1 =
hλ

λ

(
(μ + 1 – j)λ – (μ – j)λ

)
.

Finally, by all given estimations the corrector terms for the proposed model of equations
(6) are

x(tμ+1) = x(0) +
hλ

�(λ + 2)
Z1

(
tμ+1, x(tμ+1), x(tμ+1–�)

)

+
hλ

�(λ + 2)

μ∑

j=0

aj,μ+1Z1
(
tj, x(tj), x(tj–�)

)
,

y(tμ+1) = y(0) +
hλ

�(λ + 2)
Z2

(
tμ+1, y(tμ+1), y(tμ+1–�)

)

+
hλ

�(λ + 2)

μ∑

j=0

aj,μ+1Z2
(
tj, y(tj), y(tj–�)

)
,

(31)
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v(tμ+1) = v(0) +
hλ

�(λ + 2)
Z3

(
tμ+1, v(tμ+1), v(tμ+1–�)

)

+
hλ

�(λ + 2)

μ∑

j=0

aj,μ+1Z3
(
tj, v(tj), v(tj–�)

)
,

where

aj,μ+1 =

⎧
⎪⎪⎨

⎪⎪⎩

μλ+1 – (μ – λ)(μ + 1)λ, j = 0,

(μ – j + 2)λ+1 – 2(μ – j + 1)λ+1 + (μ – j)λ+1, 1 ≤ j ≤ μ,

1, j = μ + 1.

Similarly, the predictor terms are

xP(tμ+1) = x(0) +
1

�(λ)

μ∑

j=0

bj,μ+1Z1
(
tj, x(tj), x(tj–�)

)
,

yP(tμ+1) = y(0) +
1

�(λ)

μ∑

j=0

bj,μ+1Z2
(
tj, y(tj), y(tj–�)

)
,

vP(tμ+1) = v(0) +
1

�(λ)

μ∑

j=0

bj,μ+1Z3
(
tj, v(tj), v(tj–�)

)
,

(32)

where

bj,μ+1 =
hλ

λ

(
(μ + 1 – j)λ – (μ – j)λ

)
.

Theorem 4 (Error analysis) Let us assume that the solution Y(t) of the IVP (25a)–(25b)
satisfies the following constraint:

∣
∣
∣
∣
∣

∫ tμ+1

0
(tμ+1 – ζ )λ–1CDλ

t Y(t) dt –
hλ

λ(λ + 1)

μ∑

j=0

aj,μ+1
CDλ

t Y(tj)

∣
∣
∣
∣
∣
≤ Ctγ

μ+1hδ (33)

for some δ > 0, γ ≥ 0, and suppose that B satisfies the Lipschitz condition for both delay
and nondelay variables, i.e.,

∥
∥B(t,Y1,Yd) – B(t,Y2,Yd)

∥
∥ ≤ L1(t,Yd)‖Y1 – Y2‖,

∥
∥B(t,Y ,Yd1) – B(t,Y ,Yd2)

∥
∥ ≤ L2(t,Y)‖Yd1 – Yd2‖.

(34)

Then for T > 0, we have

max
0≤j≤N

∣
∣Y(tj) – Yj

∣
∣ ≤ khδ ,

where N = T
h , k is a positive constant, Y(tj) is the exact solution, and Yj is the approximate

solution of the IVP (25a)–(25b).
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Proof Using the method of mathematical induction, let us assume that the statement is
true for j = 0, 1, 2, . . . ,μ. We have

∣
∣B

(
tj,Y(tj),Y(tj – τ )

)
– B(tj,Yj,Ydj)

∣
∣

=
∣
∣B

(
tj,Y(tj),Y(tj – τ )

)
+ B

(
tj,Yj,Y(tj – τ )

)

– B
(
tj,Yj,Y(tj – τ )

)
– B(tj,Yj,Ydj)

∣
∣

≤ ∣
∣B

(
tj,Y(tj),Y(tj – τ )

)
– B

(
tj,Yj,Y(tj – τ )

)∣
∣

+
∣
∣B

(
tj,Yj,Y(tj – τ )

)
– B(tj,Yj,Ydj)

∣
∣

≤ L1
∣
∣Y(tj) – Yj

∣
∣ + L2

∣
∣Y(tj – τ ) – Ydj

∣
∣ ≤ (L1 + L2)hδ . (35)

By induction hypothesis Eq. (33) holds for j = 1, 2, . . . ,μ, and now a need to prove the same
for j = μ + 1. At the (μ + 1)th step,

∣
∣Y(tμ+1) – YP

μ+1
∣
∣

=
1

�(λ)

∣
∣
∣
∣
∣

∫ tμ+1

0
(tμ+1 – ζ )λ–1B

(
ζ ,Y(ζ ),Y(ζ – τ )

)
dζ

–
hλ

λ(λ + 1)

μ∑

j=0

aj,μ+1B
(
tj,Y(tj),Ydj

)
∣
∣
∣
∣
∣

≤ 1
�(λ)

∣
∣
∣
∣
∣

∫ tμ+1

0
(tμ+1 – ζ )λ–1CDλ

t Y(t) dt –
hλ

λ(λ + 1)

μ∑

j=0

aj,μ+1
CDλ

t Y(tj)

∣
∣
∣
∣
∣

+
1

�(λ)
hλ

λ(λ + 1)

μ∑

j=0

aj,μ+1
∣
∣B

(
tj,Y(tj),Y(tj – τ )

)
– B(tj,Yj,Ydj)

∣
∣

≤ Ctγ
μ+1hδ

�(λ)
+

(L1 + L2)hλ+δTλ

λ�(λ + 2)
, (36)

since

μ∑

j=0

aj,μ+1 ≤
μ∑

j=0

[
(μ – j + 2)λ+1 – 2(μ – j + 1)λ+1 + (μ – j)λ+1]

×
μ∑

j=0

[
(μ – j + 2)λ+1 – (μ – j + 1)λ+1 – (μ – j + 1)λ+1 + (μ – j)λ+1]

=
[∫ tμ+1

0
(tμ+2 – t)λ dt –

∫ tμ+1

0
(tμ+1 – t)λ dt

]

=
1
λ

∫ tμ+1

0

[
(tμ+1 – t)λ

]′(t) dt =
1
λ

tλ
μ+1 ≤ Tλ

λ
. (37)

Thus

∣
∣Y(tμ+1) – YP

μ+1
∣
∣ ≤ Ctγ

μ+1hδ

�(λ)
+

(L1 + L2)hλ+δTλ

λ�(λ + 2)
. (38)
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Figure 1 Plots of model classes at distinct fractional-order values λ for time delay τ = 0

Using Eqs. (35) and (38), we get a bound for the difference between actual and approximate
solutions:

∣
∣
∣
∣Y(tμ+1) –

[

YP
μ+1 +

hλ

�(λ + 2)
B

(
tμ+1,YP

μ+1,Yd(μ+1)
)
]∣
∣
∣
∣

=
∣
∣
∣
∣Y(0) +

1
�(λ)

∫ tμ+1

0
(tμ+1 – ζ )λ–1B

(
ζ ,Y(ζ ),Y(ζ – τ )

)
dζ

–
[

YP
μ+1 +

hλ

�(λ + 2)
B

(
tμ+1,YP

μ+1,Yd(μ+1)
)
]∣
∣
∣
∣

≤ 1
�(λ)

{∣
∣
∣
∣
∣

∫ tμ+1

0
(tμ+1 – ζ )λ–1B

(
ζ ,Y(ζ ),Y(ζ – τ )

)
dζ
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Figure 2 Plots of model classes at distinct fractional order values λ for time delay τ = 2

–
hλ

λ(λ + 1)

μ+1∑

j=0

aj,μ+1B
(
ζj,Y(ζj),Y(ζj – τ )

)
∣
∣
∣
∣
∣

+
hλ

λ(λ + 1)

μ∑

j=0

aj,μ+1
∣
∣B(tj,Yj,Ydj) – B

(
tj,Y(tj),Y(tj – τ )

)∣
∣

+
hλ

λ(λ + 1)
∣
∣B

(
tμ+1,Y(tμ+1),Y(tμ+1 – τ )

)
– B

(
tμ+1,YP

μ+1,Yd(μ+1)
)∣
∣

}

≤ khδ (from Eqn. (35) and (38) and [48, Theorems 5.1 and 5.2]), (39)

which gives us the required result

max
0≤j≤N

∣
∣Y(tj) – Yj

∣
∣ ≤ khδ .
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Figure 3 Plots of model classes at distinct fractional-order values λ for time delay τ = 4

The proposed error bound specifies the convergence of the method. �

5 Graphical simulations
After finishing all theoretical evolutions, we now perform the practical work. In this part
of the analysis, we simulate the role of time-delay along with all given parameter values at
different fractional orders λ. To perform the practical interpretations, we code the above
algorithm by using Mathematica software. The parameter values we use in these practical
simulations are given in Table 1. Figure 1 shows the dynamics of the model classes at dif-
ferent Caputo operator values of orders λ = 1, 0.95, 0.90, 0.85. In this group, Fig. 1a justifies
the behavior of plenty of susceptible plants x(t), Fig. 1b shows the nature of plenty of in-
fected plants y(t), and Fig. 1c shows the dynamics of infected vector v(t) with respect to the
time variable t. In Figs. 1d, 1e, 1f, compatible dynamics of x(t) versus y(t), x(t) versus v(t),
and y(t) versus v(t) are exemplified, respectively. We observed that for the given time rage,
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Figure 4 Plots of model classes at distinct fractional-order values λ for time delay τ = 6

the oscillations occur in the population of susceptible, infected plants, and in the infected
vectors, but when the derivative order reduces, then the oscillations also decrease, which
justifies the boundedness of fractional-order solutions. Also, the 2D figures represent the
compatible structures of the model classes, which clarify that when the infected vectors
reduce, then the infectious plants definitely decrease. In this case, we fixed the time-delay
parameter τ = 0, which means that there is no delay in the model. Here we come to consid-
ering some delay in the model. First, we take the time-delay τ = 2 and exemplify the group
of Fig. 2. In this group, Fig. 2a defines the behavior of plenty of susceptible plants x(t),
Fig. 2b shows the nature of plenty of infected plants y(t), and Fig. 2c shows the dynamics
of infected vector v(t) with respect to the time variable t. In Figs. 2d, 2e, and 2f, the com-
patible dynamics of x(t) versus y(t), x(t) versus v(t), and y(t) versus v(t) are exemplified,
respectively. Here we observed that the dynamics of the oscillations is probably same for
τ = 0 and τ = 2, but the infectious plant population is slightly higher at τ = 2. For observing
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Figure 5 3D Plots of model classes at distinct fractional-order values λ and time delays τ

the role of time-delay more clearly, we plotted the figures at two more different values of τ .
In Figs. 3 and 4, we gave the graphical interpretations of model classes at τ = 4 and τ = 6,
respectively. Here the dynamical changes in the model can be easily observed at various
fractional-order values. In Fig. 5, we plotted the 3-D graphics of given classes compatible
to each other at different fractional-order values. In Figs. 5a, 5b, 5c, and 5d, 3-D trajecto-
ries at time delays τ = 0, τ = 2, τ = 4, and τ = 6 are exemplified, respectively, for different
fractional-order Caputo derivatives. From these 3-D plots we see that when the time-delay
increases, the flatness in the phases increases. In all above simulations, the infection rate
of plant � was fixed at � = 0.4. Here we simulate some graphs at different values of in-
fection rate to explore the role of parameter � on the classes of the model. In this matter,
Fig. 6 is devoted to the structure of the proposed model at � = 0.2, 0.5. In Figs. 6a, 6b, and
6c, the behavior of x(t), y(t), and v(t) at infection rate � = 0.2 is exemplified, respectively.
In Figs. 6d, 6e, and 6f, the nature of x(t), y(t), and v(t) at infection rate � = 0.5 is demon-
strated, respectively. In these simulations, the time-delay parameter is fixed at τ = 3. These
simulations show that oscillations occur in each case and at every value of fractional order.
As compared to the basic classical model exemplified in [40], the given fractional model
is more effective and reliable in the graphical interpretation point of view. Also, biologi-
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Figure 6 Plots of model classes at distinct fractional-order values λ for time delay τ = 3 and � = 0.2, 0.5

cally, the fractional-order model showed a very deep dynamics of the mentioned disease
in plants (the way of spreading, population of infectious plants, and amount of infected
vectors). Here the trajectories give us enough extension to simulate the model structure
at various cases. Also, the given algorithm is reliable to expand for the large time interval
[0, T]. The idea of using equal dimensions on both sides of the proposed fractional model
(5) makes this study more accurate as compared to the studies where researchers do not
follow the same dimensionality when generalizing the integer-order models to fractional
sense.

6 Conclusions
In the given research analysis, we have simulated a mathematical structural model involv-
ing the infection rate of Beddington–DeAngelis functional response type and analyzed
the structure of vector-borne plant epidemic. The solution existence techniques for time-



Kumar et al. Advances in Continuous and Discrete Models         (2022) 2022:11 Page 20 of 22

delay fractional models are totally different from the general nonclassical models. So we
have proved that for the given delay mathematical model, a unique global solution exists
with some specific restrictions in which the Lipschitz condition is only necessary for the
nondelay variable. The Adams–Bashforth–Moulton P-C algorithm has been used to find
the solution of the given plant disease model. We have given a brief graphical interpreta-
tion of the proposed solution. A number of novel results are demonstrated from the given
graphical observations. In 3-D plots, we observed how the flatness in the graphics does
change when the fractional order varies. We have also checked the role of time delay on
the proposed plant disease dynamics and the effects of infection rate on the population of
susceptible and infectious classes. In future, this paper can be further expanded to derive
the optimal control strategies for such vector-borne plant disease. Also, any specific plant
disease can be studied by different data fittings. Some other fractional derivatives can be
used to simulate the given model dynamics.
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