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A Deliberate Bit Flipping Coding Scheme for

Data-Dependent Two-Dimensional Channels
Mohsen Bahrami, Student Member, IEEE, and Bane Vasić, Fellow, IEEE

Abstract—In this paper, we present a deliberate bit flipping
(DBF) coding scheme for binary two-dimensional (2-D) channels,
where specific patterns in channel inputs are the significant cause
of errors. The idea is to eliminate a constrained encoder and,
instead, embed a constraint into an error correction codeword
that is arranged into a 2-D array by deliberately flipping the
bits that violate the constraint. The DBF method relies on the
error correction capability of the code being used so that it
should be able to correct both deliberate errors and channel
errors. Therefore, it is crucial to flip minimum number of bits
in order not to overburden the error correction decoder. We
devise a constrained combinatorial formulation for minimizing
the number of flipped bits for a given set of harmful patterns.
The generalized belief propagation algorithm is used to find
an approximate solution for the problem. We evaluate the
performance gain of our proposed approach on a data-dependent
2-D channel, where 2-D isolated-bits patterns are the harmful
patterns for the channel. Furthermore, the performance of the
DBF method is compared with classical 2-D constrained coding
schemes for the 2-D no isolated-bits constraint on a memoryless
binary symmetric channel.

Index Terms—Data dependent channels, constrained coding,
probabilistic inference, graphical models, and generalized belief
propagation (GBP).

I. INTRODUCTION

Recent advances in magnetic recording systems [3], [4],

optical recording devices [5] and flash memory drives [6]

necessitate to study two-dimensional (2-D) coding techniques

for reliable storage/retrieval of user data. Most channels in

such systems introduce errors in messages in response to

certain data patterns, and messages containing these patterns

are more prone to errors than others. For example, in a

single-level cell flash memory channel, inter-cell interference

(ICI) is at its maximum when 101 patterns are programmed

over adjacent cells in either horizontal or vertical directions

[7]–[9]. As another example, in two-dimensional magnetic

recording channels, 2-D isolated-bits patterns [10] are shown

empirically to be the dominant error event, and during the

read-back process inter-symbol interference (ISI) and inter-

track interference (ITI) arise when these patterns are recorded

over the magnetic medium. Shannon in his seminal work [11]

presented two techniques for reliable transmission of messages

over noisy channels, namely error correction coding and con-

strained coding. In the first method, messages are protected via

an error correction code (ECC) from random errors which are
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independent of input data. The theory of ECCs is well studied,

and efficient code construction methods are developed for sim-

ple binary channels, additive white Gaussian noise (AWGN)

channels and partial response channels [12], etc. On the other

hand, constrained coding reduces the likelihood of corruption

by removing problematic patterns before transmission over

data-dependent channels. Prominent examples of constraints

include a family of binary one-dimensional (1-D) and 2-D

(d, k)-run-length-limited (RLL) constraints [13], [14] which

improves resilience to ISI timing recovery and synchronization

for bandwidth limited partial response channels, where d and

k represent the minimum and maximum number of admissible

zeros between two successive ones in any direction of array.

In principle, the ultimate coding approach for such data-

dependent channels is to design a set of sufficiently distinct

error correction codewords that also satisfy channel constraints

[15], [16]. Designing channel codewords satisfying both ECC

and channel constraints is important as it would achieve the

channel capacity [17]. However, in practice this is difficult, and

we rely on sub-optimal methods such as forward concatenation

method (standard concatenation) [18], reverse concatenation

method (modified concatenation) [19], [20], and combinations

of these approaches [21], [22].

As discussed earlier, constrained codes have been used

to overcome effects of harmful patterns in 1-D information

storage systems. In [23], a systematic approach for designing

1-D constrained codes known as the state splitting algorithm

is established. Marcus et al. used the results of the state

splitting algorithm to design an encoder in the form of

a finite state machine and a sliding window decoder with

limited error propagation [24]. The theory of 1-D constrained

coding is mature as well as practical aspects of 1-D code

and decoder design. However, for the 2-D case it remains

a challenge to design efficient, fixed-rate encoding and de-

coding algorithms (due to difficulty of certain problems that

link to 2-D constraints compared to to the 1-D case [25],

[26]). A number of variable-rate encoding methods have

been proposed for 2-D constrained channels, including bit-

stuffing encoders [10], [27]–[29] and tiling based encoders

[30], [31]. Furthermore, various row-by-row coding methods

for specific 2-D constraints were presented in [32], [33]. Vasić

and Pedagani proposed an alternative approach in [34], known

as deliberate bit flipping (DBF), for applying binary 1-D

(0, k)-RLL constraint to error correction codewords (when k
is large e.g., k = 15) to overcome the non-linear effects of 1-

D constrained codes. Using a (0, k)-RLL constraint monitor,

a deliberate bit error is introduced into an error correction

codeword whenever the number of consecutive zeros in the

codeword reaches k. The method only relies on the capability
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of the ECC to correct both the deliberate errors and channel

errors at the receiver. In [35]–[37], the problem of number

of deliberate bit errors for imposing (0, k)-RLL constraint

into low-density parity-check (LDPC) codewords was partially

addressed. Nevertheless, there is no attempt to minimize the

number of bit flips for removing the forbidden configura-

tions by the 1-D (0, k)-RLL constraint from a given binary

codeword. Moreover, the main problem with the DBF method

introduced in [34] still is the number of deliberate bit errors

that may overwhelm the ECC decoder and affect the error-

floor performance (which limits its applications).

Our Contributions: One of the practical motivations to

design a DBF coding scheme for data-dependent channels

is to address the error propagation phenomena existing in

conventional 2-D constrained coding methods. Most of these

constrained coding schemes are non-linear, and their en-

coder/decoder has a memory such that over noisy channels

single channel bit errors may cause a decoder to lose track of

encoded bits and therefore propagate errors indefinitely with-

out recovering. On the other hand, the main problem with the

DBF method is the number of deliberate flips. This problem

becomes also much more difficult for the 2-D case, and it

is a challenge to design efficient algorithms for identifying

harmful configurations in channel input patterns, let alone

the problem of minimizing the number of bit flips which

may overwhelm the error-correction decoder. In this paper,

we reformulate the problem of minimizing the number of bit

flips in the DBF scheme for removing harmful configurations

from 2-D channel input patterns as a constrained combinatorial

optimization problem. Furthermore, we design a Generalized

Belief Propagation (GBP)-guided DBF algorithm for identi-

fying 2-D harmful configurations and removing them with

minimal number of flips. In order to use the GBP algorithm,

we present a probabilistic graphical model for the constrained

combinatorial minimization problem using the factor graph

formulation in [38], [39]. In this framework, patterns which

do not contain harmful configurations are assumed to be

uniformly distributed, and each pattern containing a harmful

configuration has zero probability. In this way, we reformulate

the problem as a 2-D maximum a posteriori (MAP) problem,

and demonstrate that the GBP algorithm can approximately

solve this 2-D MAP problem. In order to study and analyze

the performance of our proposed method, we introduce a

binary 2-D channel with memory which captures the effect

on an information bit from its surrounding patterns, i.e., the

neighboring bits. The channel is characterized by rules defined

by a set of configurations with a specific shape, which we call

the set of harmful configurations. At the channel output, the

probability of error for bits contained in any of the harmful

configurations are larger than for the other bits. We evaluate

the performance of the GBP-guided DBF method over the

introduced channel where the 2-D isolated-bits configurations

are considered as the channel harmful configurations. Further-

more, the performance of the DBF method for 2-D no isolated-

bits (n.i.b.) constraint on a memoryless binary symmetric

channel (BSC) is compared with the row-by-row and bit-

stuffing based 2-D n.i.b. encoders, presented in [10] and [40],

respectively.

(a) (b)

Fig. 1. Two examples of polyominoes: (a) a 2× 2 square and (b) a cross.

Paper Organization: The rest of this paper is organized

as follows. Section II presents the notations and definitions

used throughout the paper. In Section III, the data-dependent

channel model is introduced. In Section IV, the problem of

minimizing the number of flipped bits in the DBF method

is formulated. In Section V, we reformulate the minimization

problem as a 2-D MAP problem, and explain the ideas of

using the GBP algorithm for solving this problem. Numerical

results are presented in Section VI. Section VII concludes the

paper.

II. NOTATIONS AND DEFINITIONS

We denote a discrete random variable with an upper case

letter (e.g., X) and its realization by the lower case letter (e.g.,

x). We denote the probability density function of X with p(x)
and the conditional probability density function of Y given

X by p (y|x). [n1 : k : n2] represents the set of real numbers

{n1, n1 + k, n1 + 2k . . . , n2}, and [n] denotes [1 : 1 : n]. We

denote a random array of size m× n by X = [Xi,j ]i∈[m],j∈[n].

An array of binary symbols with size m× n is denoted by x =
[xi,j ]i∈[m],j∈[n] where xi,j ∈ {0, 1} is the (i, j)th component

of array. Am,n =
{

(i, j) ∈ Z
2 : i ∈ [m] and j ∈ [n]

}

denotes

the index set of an array of size m× n and is the subset of the

2-D lattice Z
2. The Hamming weight of an array x of binary

symbols is determined by wH(x) =
∑

xi,j∈x
✶{xi,j = 1},

where ✶{.} equals one (respectively, zero) when its argument

is true (respectively, false). The XOR operation between two

binary arrays (x and y of size m× n) is done component-wise,

i.e., x⊕y = (zi,j)i∈[m],j∈[n] where zi,j = xi,j ⊕ yi,j , and xi,j
and yi,j are the (i, j)th component of x and y, respectively.

Furthermore, the Hamming distance between x and y is

determined by dH(x,y) = wH(x⊕y). A binary BCH code of

length N with N −K parity bits and minimum distance dmin

is denoted by BCH-[N,K, dmin]. A binary Reed-Muller code

of length N = 2m with N −K = 2m −
∑r

i=0

(

m
i

)

parity bits

and minimum distance dmin = 2m−r is denoted by RM-(r,m).
A polyomino of order k, called also a k-ominoe, is a plane

geometric figure formed by joining k neighboring square

shapes. Among polyominoes are 2× 2 square-shaped poly-

ominoes

Q�(i, j) = {(i, j), (i, j + 1), (i+ 1, j), (i+ 1, j + 1)} , (1)

and cross-shaped polyominoes

Q+(i, j) = {(i, j − 1), (i− 1, j), (i, j), (i, j + 1), (i+ 1, j)} ,
(2)

over the 2-D lattice Z
2, which are shown in Fig. 1.
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An m× n binary pattern is denoted by x = [xi,j ]i∈[m],j∈[n],

where xi,j indicates the value of bit in i-th row and j-th
column. Throughout the paper, white squares denote zero bits

and black squares represent 1. Consider a k-ominoe P and

the set of all 2k binary configurations of that shape XP . We

refer to them as to P-shaped configurations and denote them

by xP . As an example, Fig. 2 shows all binary configurations

of a 2× 2 square-shaped polyomino.

Fig. 2. The set of all binary configurations of a 2× 2 square-shaped
polyomino.

Consider xi,j over an m× n rectangular pattern x, then the

union of all P-shaped polyominoes that intersect with this bit

is denoted by Pi,j . The configuration of Pi,j is denoted by

xPi,j
. For the cases of 2× 2 square-shaped and cross-shaped

polyominoes, we have

P�
i,j =

⋃

(i′,j′)∈Q�(i−1,j−1)

Q�(i′, j′), (3)

and

P+
i,j =

⋃

(i′,j′)∈Q+(i,j)

Q+(i′, j′), (4)

respectively. Fig. 3 shows Pi,j for these polyominoes.

III. CHANNEL MODEL

In this section, we introduce a communication channel

transmitting binary rectangular patterns and producing as an

output a binary pattern. The channel is data-dependent and

characterized by rules defined by a set of binary configurations

of a P-shaped polyomino. We call this set of P-shaped con-

figurations the set of harmful configurations. At the channel

output, the error probability of bits contained in configurations

which belong to the set of harmful configurations is larger than

the other bits. Therefore, the channel has states and its error

statistics depends on input binary patterns. In the following,

we formally present error and state characterizations.

(a) (b)

Fig. 3. Figure demonstrates Pi,j over a rectangle when the polyomino is:
(a) a 2× 2 square and (b) a cross.

Fig. 4. 2-D isolated-bits patterns containing the bit xi,j .

The input and output alphabets X and Y are two sets

of binary rectangular patterns of size m× n. An m× n
binary pattern x = [xi,j ]i∈[m],j∈[n] is chosen randomly and

uniformly from X as an input to the channel. The channel

output, y = [yi,j ]i∈[m],j∈[n] ∈ Y , is also a binary pattern of

size m× n. For xi,j , Pi,j denotes the union of P-shaped

polyominoes that intersect with this bit, and xPi,j
is the

configuration of Pi,j , as defined in Section II. We assume

that the set of all possible configurations for Pi,j , denoted by

XPi,j
, can be partitioned into two disjoint subsets XG

Pi,j
and

XB
Pi,j

, i.e., XPi,j
= XG

Pi,j

⋃

XB
Pi,j

, where XB
Pi,j

is the set of

configurations containing P-shaped configurations which are

harmful for the channel. For example, XB
Pi,j

can be the set of

binary configurations of Pi,j given in Fig. 3(b), which contains

the 2-D isolated-bit patterns. The 2-D isolated-bit patterns are

shown in Fig. 4.

For xi,j contained in a harmful P-shaped configuration, the

channel is in the bad state, and the probability of error is

αb. However, passing though the channel, a bit that does not

belong to a harmful configuration is in error with a probability

of αg , and the channel is in the good state. We assume that

αb ≫ αg , or, in other words, the probability of error for bits

contained in a harmful configuration is much larger than that

of the other bits. The received binary pattern is y = x⊕ eCH,

where eCH = [eCH
i,j ] is the channel error array. Therefore,

eCH
i,j has either Bernoulli(αg) or Bernoulli(αb) distribution,

depending on the pattern xPi,j
. In fact, the channel is a binary

symmetric channel (BSC) with crossover probability αb when

xPi,j
∈ XPB

i,j
and a BSC with crossover probability αg when

xPi,j
6∈ XPB

i,j
, respectively.

We define an indicator function for the channel

fCH : XPi,j
→ {0, 1} over every xi,j ,

fCH

(

xPi,j

)

= ✶

{

xPi,j
∈ XPB

i,j

}

, (5)

to identify bits which are contained in harmful configurations,

where xi,j belongs to at least one harmful configuration if

fCH

(

xPi,j

)

= 1. Using the above indicator function, we can

determine the channel state for transmission of xi,j as follows

si,j =

{

b, fCH

(

xPi,j

)

= 1,

g, fCH

(

xPi,j

)

= 0,
(6)

where “b” and “g” stand for the bad and the good channel

states, respectively. Let the probability distribution function

of channel be p(y|x). According to the aforementioned error

characterization, the probability distribution function of chan-

nel can be factored into

p(y|x) =
∏

(i,j)

p
(

yi,j |xPi,j

)

, (7)
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Fig. 5. A schematic representation for the channel model is given. Passing
through the channel, xi,j is in error with probability αb if the configuration of

Pi,j , xPi,j
, belongs to the set of harmful patterns XB

Pi,j
, otherwise it inverts

with a probability of αg . It should be noted that the top arm of the figure
can be removed when αg = 0, which reduces the channel into a constrained

2-D channel with the list of forbidden configurations XB
Pi,j

. However, in our

channel removing the harmful patterns does not make the channel noiseless.
Removing all the harmful patterns in the set XB

Pi,j
before transmission

through the channel, makes it a BSC with the cross-over probability αg .

since yi,j only depends on the configuration of Pi,j in the

input pattern x. Fig. 5 gives a schematic illustration for the

channel.

Remark 1: In this paper, we use the concept of polyominoes

to just demonstrate the effect of harmful configurations on its

neighboring bits over a 2-D binary pattern. As two examples,

we consider 4-ominoes and 5-ominoes, as these reflect physi-

cal effects of 2-D ISI and ICI over the plane. For this purpose,

we defined the square and cross shaped polyominoes in (1) and

(2).

Remark 2: The channel is similar to the Gilbert-Elliot

channel [41], as it has two states, where each state acts

as a BSC with a different cross-over probability. However,

the state transitions in our channel model depend on input

patterns. For such channels, calculating the information rate,

let alone the capacity, is much more challenging than for

discrete memoryless channels. Except for very special cases,

there are no simple expressions for information rates available,

and so, one needs to rely on upper and lower bounds and/or

on stochastic techniques for estimating the information rate,

examples are [42]–[44].

Remark 3: The probability that the channel is in the bad

state (or, in the good state) depends on the input probability

distribution. If we assume that input bits are i.i.d., then

there is no Markovian assumption on the channel states. The

probability that the channel is in the bad state for sending xi,j
is

p (si,j = b) = p
(

fCH

(

xPi,j

)

= 1
)

=
|XB

Pi,j
|

|XPi,j
|
, (8)

as the patterns are chosen randomly and uniformly, and in the

good state is p (si,j = g) = 1−p (si,j = b). For different input

probability distributions, this probability can be computed

accordingly. Throughout the paper, we do not consider any

Markovian properties on input bits.

In the following, we present an example of an input binary

pattern to the channel, where the 2-D isolated-bits patterns are

the harmful patterns for the channel, to illustrate the effects

of harmful patterns on input binary patterns passing through

the channel.

Fig. 6. A 7× 7 binary pattern x is transmitted through the channel with the
set of 2-D isolated-bits patterns as the set of harmful patterns. The bits x2,6,
x3,5, x3,6, x3,7, x4,6, x6,7, x7,6 and x7,7 belong to the 2-D isolated-bits
patterns. Passing through the channel, the probability of error for these bits
is αb, and for the rest of them is αg .

Example 1: Fig. 6 shows an example of a 7× 7 input binary

pattern x transmitted over the introduced channel. We assume

that the set of harmful patterns for the channel is the set of

2-D isolated-bits patterns, which are given in Fig. 4. In order

to determine the channel state for all bits over the pattern, we

assume zero entries outside of x, i.e., xi,j = 0, while i < 1,

j < 1, i > 7, or j > 7. There are two isolated-bits patterns

in x, which are xQ+(3,6) and xQ+(7,7). Passing through the

channel, the bits contained in these two harmful configurations

are in error with a probability of αb. These bits x2,6, x3,5, x3,6,

x3,7, x4,6, x6,7, x7,6 and x7,7. For instance, for x2,6,

P2,6 =
⋃

(i′,j′)∈Q+(2,6)

Q+(i′, j′). (9)

Since Q+(3, 6) ⊂ P2,6 and xQ+(3,6) is a 2-D isolated-bits

pattern, we have the fact that xP2,6
contains a 2-D isolated-

bits pattern, and therefore, x2,6 is in the bad state. Similarly,

we can check this for the rest of bits in x.

IV. PROBLEM FORMULATION

The user uniformly and randomly selects a binary

message m out of 2K messages denoted by M =
{m1,m2, . . . ,m2K}, where each message is of length K ∈ N.

The user message m is first encoded by an error correction

encoder with rate R = K
N

. The error correction encoding

function φECC : M → SN
ECC assigns a binary codeword c(m)

of length N to the user data m such that

c(m) = φECC(m), (10)

where SN
ECC = {c(m1), c(m2), . . . , c(m2⌊NR⌋)} is the code-

book (the set of binary codewords of length N ) associated

with the ECC being used. A codeword c ∈ SN
ECC is represented

by N binary symbols, c = (c1, c2, . . . , cN ), and N = m× n.

Each codeword is arranged into an array x of size m× n, such

that x = [xi,j ]i∈[m],j∈[n], and xi,j = c(i−1)m+j . The array

x can be considered as a binary rectangular pattern of size

m× n. We want to send the pattern x over the communication

channel in Section III, with the list of harmful configurations

XB
Pi,j

. Assuming that αb ≫ αg , then bits contained in config-

urations of list XB
Pi,j

are more prone to error than the other

bits. To overcome effects of harmful configurations, we use

a deliberate error insertion approach to remove the harmful
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configurations from the input pattern x before transmission

through the channel. Whenever there is a configuration from

the list XB
Pi,j

in the input pattern x, the color of selected bits

in x are inverted to remove the harmful configurations. We

denote the set of m× n binary patterns which do not contain

the harmful configurations by S. For the 7× 7 pattern x in

Example 1, we can remove the 2-D isolated-bits patterns from

the given 7× 7 binary pattern by inverting the bits x3,6 and

x7,7.

This method of eliminating harmful configurations from

binary patterns with deliberating flipping bits can be viewed

as the mapping φ from the set of m× n binary patterns X to a

set of m× n binary patterns S that do not contain the harmful

configurations. The mapping function φ : X → S assigns an

m× n binary pattern x̂ to the input pattern x so that

x̂ = φ(x). (11)

Let θ : X → {0, 1}m×n be the function selecting bits need to

be flipped for removing the harmful configurations from the

pattern x. Using the function θ, we define eDBF to identify the

positions of these bits,

eDBF = θ(x) = [eDBF
i,j ]i∈[m],j∈[n], (12)

where eDBF
i,j = 1 if the (i, j)-th bit is flipped, otherwise,

eDBF
i,j = 0. Therefore, x⊕eDBF does not contain any P-shaped

harmful configurations from the list XB
Pi,j

. Furthermore, we

have

φ(x) = x⊕ θ(x), (13)

and the number of flipped bits is equal to wH(eDBF). Now, x̂

is transmitted over the channel instead of x, and the m× n
binary pattern y is received. We identify the locations of chan-

nel errors by the array eCH which is x̂⊕y. Then, if the chosen

message is m, since y = x̂⊕ eCH and x̂ = x(m)⊕ eDBF, we

have

y = x⊕ eCH ⊕ eDBF. (14)

Naturally, such an encoder will have a corresponding decoder

(let us denote the decoder by ψ). The decoder ψ assigns

an estimate of m̂ ∈ M to each received pattern y from the

channel such that

ψ : Y → M,

m̂ = ψ(y). (15)

The performance of this deliberate error insertion method is

measured by the probability that the estimate of the message

m̂ is different from the actual message m. Let λm = p(m̂ 6=
m|m) be the probability of error given that the actual message

is m. Then, the average probability of error is given by

p(N)
e = p(m̂ 6= m) =

∑

m∈M

λmp(m)
(a)
=

1

2⌊NR⌋

∑

m

λm,

(16)

where (a) comes from the fact that m is chosen uniformly

from the set M and |M| = 1
2⌊NR⌋ . A rate R is said to

be achievable if, given an ǫ > 0, there exists an Nǫ such

that p
(Nǫ)
e ≤ ǫ. The capacity of the method is defined as the

supremum over all achievable rates.

We assume that the decoder ψ is a bounded-distance de-

coder which should ideally be able to retrieve the binary user

data from the received pattern y for every message m ∈ M.

This bounded-distance decoder can correct the error patterns

with Hamming weights lying within the error correction

capability of the code, i.e., if

dH (x(m),y) ≤
⌊dmin − 1

2

⌋

, (17)

where dmin is the minimum distance of the code, the decoder

should be able to correct the errors. There are two types of

errors in this communication system with the deliberate error

insertion method. The first type is the deliberate errors for

removing harmful configurations from the input pattern. The

second is the channel errors which may have or may not

have overlaps with the deliberate errors. Since appearances

of harmful patterns in the input pattern dominate the channel

errors, we can assume that wH

(

eCH
)

≃ 0 after removing

harmful patterns from the input pattern. Under this assumption,

we have y ≃ x⊕ eDBF and

dH (x,y) ≃ dH
(

x,x⊕ eDBF
)

= wH(eDBF). (18)

Therefore, if wH(eDBF) ≤ ⌊dmin−1
2 ⌋, the decoder can correct

the errors. For this case, the probability of error for retrieving

the message m and the average probability of error are

approximately

λm = p(m̂ 6= m | m) ≃ p

(

wH(eDBF) >
⌊dmin − 1

2

⌋
∣

∣m

)

,

(19)

and

p(N)
e ≃

1

2⌊NR⌋

∑

m

p

(

wH(eDBF) >
⌊dmin − 1

2

⌋∣

∣m

)

, (20)

respectively. In the following remark, we discuss the channel

noiseless assumption after removing harmful configurations.

Remark 4: The theory of constrained coding began with

Claude Shannon’s classical 1948 paper [11], “A Mathemati-

cal Theory of Communications.” In his setting, the channel

“seen” by a constrained encoder/decoder is noiseless. Strictly

speaking, this is not a realistic assumption because constrained

coding is in practice used on noisy channels. In other words,

even if the constraint is satisfied, bits can be in error. The

probability of error is thus data-dependent. This assumption

which is also used here is a generalization of the assumption

made in Shannon’s paper.

Now, the goal is to minimize the average probability of error

in (20). There may be different choices of deliberate errors

eDBF that can remove the harmful configurations from the

input pattern, but some of them may exceed error correction

capability of the code. The first challenge is to not overburden

the decoder with flipping bits more than the number of

errors that the decoder can correct. Ideally, the bit selection

function needs only to search for deliberate error patterns with

Hamming weight lying within the error correction capability

of the code being used. However, there may exist an input
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pattern/patterns where the number of deliberate bit errors

required for removing harmful configurations exceeds the

error correction capability of the code. Therefore, the coding

method in this case might not be capacity achieving, and

the probability of error correspondingly might be non-zero

for those input patterns. The second challenge of using the

deliberate error insertion method is to find the error pattern

which has the minimum Hamming weight among the error

patterns that can remove the harmful configurations, or, equiv-

alently, wH

(

eDBF
)

should be minimized for each message

m ∈ M. Therefore, the roles of the bit selection function

θ are (i) to identify and remove the harmful configurations

XB
Pi,j

from a given input pattern and (ii) to find the error

pattern which can remove the harmful configurations and has

the minimum Hamming weight. It is worth mentioning that

the overall performance of system is a function of dmin of the

code being used and depends on the choice of ECC, not the

DBF method by itself. In the following, we characterize the

role of bit selection function θ.

For the input pattern x, let Ex be the set of all error patterns

that can remove the P-shaped configurations from the input

pattern x, i.e.,

Ex =
{

eDBF|x̂ = x⊕ eDBF ∈ S
}

. (21)

In order to minimize the average probability of error in (20),

we need to find an error pattern e⋆DBF which has the minimum

Hamming weight among the error patterns in Ex, or another

word,

e⋆DBF = arg min
e

DBF∈Ex

{

wH(eDBF)
}

. (22)

This problem can be regarded as a combinatorial optimization

problem in which one needs to find an array eDBF minimizing

wH(eDBF) subject to the constraint that eDBF ∈ Ex.

In the following, we provide examples of BCH-[15, 5, 7]
codewords that are arranged into 3× 5 arrays, as they help

to explain the concepts we have introduced so far. We want

to characterize the above constrained minimization problem

for removing forbidden configurations by 2-D n.i.b. constraint

from the 2-D arrays.

Example 2: We assume that the user messages are

the following binary vectors of length 5, m1 =
(0, 1, 0, 0, 0), m2 = (1, 0, 0, 0, 0), m3 = (0, 1, 1, 1, 1)
and m4 = (0, 1, 1, 0, 1), and are encoded by the triple-

error correcting BCH-[15, 5, 7] code. We have the code-

words c1 = (0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0), c2 =
(1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1), c3 = (0, 1, 1, 1, 1, 0, 1, 0
, 1, 1, 0, 0, 1, 0, 0), and c4 = (0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1
, 0) of length 15 which are then arranged into 3× 5 arrays as

four different patterns. The patterns are shown in Fig. 7, where

the first row of each pattern is equipped with its corresponding

user message. We only consider these four patterns out of

32 possible patterns by BCH-[15, 5, 7] code as they cover all

different flipping scenarios using the deliberate error insertion

method.
We are interested in removing 2-D isolated-bits configura-

tions entirely from the above patterns with minimal number
of bit flips. In other words, the goal is to find the error
pattern eDBF for each input pattern x which has the minimum

Fig. 7. The input patterns for Example 2. We assume zero entries outside of
each input pattern.

Hamming weight and x ⊕ eDBF does not contain any of the
2-D isolated-bits configurations. Therefore, we have

e
⋆
(a) =







0 0 0 0 0

0 0 0 0 0

0 0 0 0 0






, e

⋆
(b) =







0 0 0 0 0

0 0 1 0 0

0 0 0 0 0






,

e
⋆
(c) =







0 0 0 0 0

0 0 0 0 0

0 0 1 0 0






, e

⋆
(d) =







0 0 0 0 0

0 0 0 1 1

0 0 0 0 0






.

In Fig. 7(a), the pattern does not contain any of the 2-

D isolated-bits configurations, therefore there is no need to

flip any bit, and wH(e(a)) = 0. The pattern in Fig. 7(b)

contains only one 2-D isolated-bits pattern, which is xQ+(2,3).

One can remove this 2-D isolated-bits pattern by inverting

the color of any one of the bits in Q+(2, 3), and therefore

wH(e(b)) = 1. For the pattern in Fig. 7(c), there are two

overlapping 2-D isolated-bits patterns, which are xQ+(2,3) and

xQ+(3,3). These two isolated-bits patterns can be removed

simultaneously by flipping either x2,3 or x3,3, and therefore

for this case also wH(e(c)) = 1. In Fig. 7(d), the pattern

contains two non-overlapping 2-D isolated-bits patterns, which

are xQ+(1,5) and xQ+(3,4). One needs to flip at least two bits

over this input pattern, and for this case wH(e(d)) = 2. For the

above systematic BCH-[15, 5, 7] code (where the codewords

are arranged into 3× 5 arrays and the first row is equipped

with the user bits), we identified the minimum number of

bit flips required for removing 2-D isolated bit patterns from

each of the possible BCH-[15, 5, 7] codewords. Assuming the

codewords are chosen randomly and uniformly, in average

it needs to flip 0.6563 bits/pattern to remove the forbidden

configurations by the 2-D n.i.b. constraint from an input

pattern.

In the following, we provide remarks on the difficulty of the

constrained minimization problem in the DBF method, and the

difference of this method with conventional constrained coding

methods.

Remark 5: Finding the error pattern which removes a given

set of 2-D configurations from a 2-D pattern and has the

minimum Hamming weight via an exhaustive search among

all admissible error patterns can be computationally prohibitive

for large patterns. The above deliberate error insertion method

can be regarded as a procedure for finding the minimum

number of inversion operations required for converting a

binary pattern to another binary pattern which does not contain

any of channel forbidden configurations. This problem can

be considered as a sub-class of Levenshtine distance problem

[45], which is known as a hard combinatorial problem.

Remark 6: It is worth mentioning that problems related to

2-D constrained coding are in general difficult, as mainly it
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is hard to enumerate the patterns satisfying a 2-D constraint

and having a uniform distribution, or, achieving the Shannon’s

noiseless channel capacity of the constraint. Let’s denote

this set of uniformly distributed patterns which satisfy the

constraint by S. The capacity of 2-D constraint is given by

C2-D = lim
m,n→∞

1

m× n
log2 Z(m,n), (23)

where Z(m,n) is the number of admissible m× n binary

patterns, i.e.,

Z(m,n) =
∣

∣

∣
S ∩ {0, 1}

m×n
∣

∣

∣
. (24)

The probability distribution achieving the 2-D noiseless chan-

nel capacity (or the maximum entropy of constraint) is

p(x̂) =

{

1
|S| , x̂ ∈ S,

0, other.
(25)

Therefore, the patterns in the set S are equiprobable. In our

method, instead of enumerating the patterns in S (the way of

conventional constrained coding methods), for a given input

pattern x (which may or may not be in S), we try to find an

x̂ ∈ S which minimizes wH(x⊕ x̂).

In the following section, we reformulate this minimization

problem with a probabilistic graphical formulation to cater the

possibility of using message passing algorithms for finding

approximate solutions.

V. A PROBABILISTIC GRAPHICAL FORMULTION FOR

MINIMZING BIT FLIPS

In this section, we devise a probabilistic graphical for-

mulation for the problem of minimizing the number of bit

flips in the DBF method. The probabilistic graphical model

of the problem defines a uniform distribution over S where

each pattern containing any of harmful configurations has

zero probability. In this framework, the Hamming distance

metric is replaced with a binomial expression, and for a

given input pattern x, the constrained minimization problem

becomes a 2-D maximum a posteriori problem. We use GBP,

as a MAP inference method, to find approximate solution for

marginal probabilities with minimizing the Bethe free energy

(using the region based approximation method), and therefore

an approximate solution for the problem of minimizing the

number of flipped bits in the DBF scheme.

For a given binary pattern x ∈ X , the problem is to find

an assignment, x̂ ∈ S, that has the minimum Hamming dis-

tance with x, or, equivalently, minimizes wH(x̂ ⊕ x). Since

wH(x⊕ x) = 0, if the pattern x ∈ S, the optimal answer is x

itself, i.e., there is no need to flip bits in x. For the case x 6∈ S,

we need to calculate the Hamming distance between each

x̂ ∈ S and x, which can be intractable for a large pattern. As

it can be verified for xi,j locally over a finite neighborhood of

bits Pi,j whether the bit is contained in a harmful pattern of the

set XB
Pi,j

, we define a local distortion function D for each xi,j
over Pi,j to compute the Hamming distance between different

x̂ ∈ S and the given input x locally as follows. For every

xi,j ∈ Am,n, the function D : {0, 1}
|Pi,j | × {0, 1}

|Pi,j | → N

is defined over xPi,j
as follows

D
(

x̂Pi,j
,xPi,j

)

=

{

wH

(

x̂Pi,j
⊕ xPi,j

)

, x̂Pi,j
6∈ XB

Pi,j
,

∞, x̂Pi,j
∈ XB

Pi,j
,

(26)

where wH

(

x̂Pi,j
⊕ xPi,j

)

is the Hamming distance between

x̂Pi,j
and xPi,j

, and the patterns belonging to the set of

harmful patterns are specified by ∞. We should note that

there can be different configurations of x̂Pi,j
6∈ XB

Pi,j
which

have the same Hamming distance with xi,j . One may use the

outputs of D for the bits xi,j ∈ Am,n to find x⋆ ∈ S which has

the minimum Hamming distance with x. This process can be

intractable for large patterns as it needs to compute the output

of D for every bit xi,j ∈ Am,n, which has 2|Pi,j | different

configurations, and take exponentially large memory just to

store. In the following, we present a probabilistic formulation

using a graphical model to find approximate solution for this

problem using the GBP algorithm.

In order to present a probabilistic formulation for the dis-

tortion indicator function defined in (26), we use the binomial

expression to translate the Hamming distance metric into the

probability domain. We assume that the color of each bit

contained in a harmful configuration is inverted with the

probability 0 < λ ≤ 1. For every bit xi,j ∈ Am,n, we define

a function Dp : {0, 1}
Pi,j × {0, 1}

Pi,j → R
[0,1] over the bits

indexed by Pi,j ,

Dp(xPi,j
, x̂Pi,j

) =
{

λwH(ePi,j
)(1− λ)|Pi,j |−wH(ePi,j

), x̂Pi,j
6∈ XB

Pi,j
,

0, x̂Pi,j
∈ XB

Pi,j
,

(27)

where ePi,j
= x̂Pi,j

⊕ xPi,j
and |Pi,j | indicates the number of

bits in Pi,j . This function is called as the local probabilistic

distortion function. For each bit xi,j ∈ Am,n, the distortion

now is defined as the probability of having a distorted pattern

xPi,j
which has the Hamming distance wH(x̂Pi,j

⊕xPi,j
) with

x̂Pi,j
6∈ XB

Pi,j
. When x̂Pi,j

∈ XB
Pi,j

, this probability is zero,

as we are looking for patterns which do not belong to the

set of harmful patterns. For a given input pattern x and a set

of forbidden patterns XB
Pi,j

, we are now interested in finding

x̂ ∈ S maximizing p (x̂|x), which is equivalent to finding x̂

that minimizes wH (x̂⊕ x). In another word, we want to find

x̂ = argmax
x̂∈S

{p(x̂|x)} . (28)

The a-posteriori probability p (x̂|x) for a fixed λ is

max
x̂∈S

p (x̂|x) = max
x̂∈S

p (x|x̂) p (x̂)

p (x)

(a)
∝ max

x̂∈S

p (x|x̂)

(b)
= max

x̂∈S

∏

(i,j)∈Am,n

p
(

xi,j |x̂Pi,j

)

,

(c)
= max

x̂∈S

∏

(i,j)∈Am,n

λ
✶{x̂Pi,j

∈XB
Pi,j

}
(1− λ)

1−✶{x̂Pi,j
∈XB

Pi,j
}
,

(29)
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where (a) comes from this fact that the a-priori probability of

choosing each pattern x̂ ∈ S is equiprobable, (b) is established

as for each xi,j we can determine locally over Pi,j that the

bit is contained in a harmful pattern, and (c) is obtained

based on the definition of the local probabilistic distortion

function, given in (27). The probability p
(

xi,j

∣

∣x̂Pi,j

)

indicates

that the bit xi,j is flipped depending on the realization of its

neighboring bits xPi,j
, whether belongs to the set of harmful

configurations or not. Therefore, we have

p (x̂|x) =

1

Z(x)

∏

(i,j)∈Am,n

λ
✶{x̂Pi,j

∈XB
Pi,j

}
(1− λ)

1−✶{x̂Pi,j
∈XB

Pi,j
}
,

(30)

where the normalization constant Z(x), so called the partition

function, is given by

Z(x) =
∑

x̂∈{0,1}m×n

∏

(i,j)∈Am,n

λ
✶{x̂Pi,j

∈XB
Pi,j

}
(1− λ)

1−✶{x̂Pi,j
∈XB

Pi,j
}
.

(31)

In order to compute the a-posteriori probability p (x̂|x)
with the factorization given in (30), we need to calculate the

partition function given in the equation (31). Providing either

exact or approximate solutions for the partition function in

general is a NP-hard problem [46]. In [39] and [47], it is

shown that the region-based approximation (RBA) method

provides an approximate solution for the partition function by

minimizing the region-based free energy (as an approximation

to the variational free energy). In Appendix A, we first define

a factor graph representation for the problem (maximizing

p (x̂|x) in (30) for a given input pattern x subject to the

constraint that x̂ ∈ S) and then formulate the RBA scheme

for finding an approximate solution for this constrained max-

imization problem.

The following remarks discuss the optimality of the GBP-

guided DBF method and the theoretical guarantee on the

existence of solutions for the maximization problem given in

(28).

Remark 7: For a given input pattern x, we should note

that the zero probability in (27) ensures that an approximate

solution x̂ does not contain any harmful configurations, i.e.,

x̂ ∈ S. However, due to the fact that the RBA method only pro-

vides an approximate solution for (28), the solution might not

necessarily be the optimal pattern which minimizes wH(x̂⊕x).

Remark 8: The problem of minimizing the number of bit

flips in the DBF method can be considered as an instance of

a constraint satisfaction problem (CSP). Statistical physicists

consider different geometries of the solution space for a given

CSP based on the density of constraint, which is defined as the

ratio of the number of constraints to the number of variables.

This density of constraint identifies satisfiability thresholds for

the solution space of CSPs [48]–[52]. For the minimization

problem in the DBF method for removing channel harmful

configurations from an input pattern of a specific size, if the

density of constraint lies in the satisfiable regions, then we

can assume that there exist optimal solution/solutions for the

problem.

VI. NUMERICAL RESULTS

In this section, we present numerical analyses of the GBP-

based DBF method for removing harmful patterns. Without

loss of generality, we focus on the 2-D isolated-bits config-

urations in all our experiments. We first present the analysis

on statistics of the number of flipped bits for removing 2-D

isolated-bits patterns from random 2-D patterns. Furthermore,

we study the convergence of the GBP algorithm as a function

of the number of GBP iterations for different values of λ, the

probability of flipping a bit in xPi,j
for (i, j) ∈ Am,n which is

defined in (27). To illustrate the usefulness of DBF method, we

investigate its performance over the data-dependent channel in

Section III under different scenarios in terms of the probability

of uncorrectable bit errors, where the harmful configurations

for the channel are the 2-D isolated-bits patterns. Finally, we

compare the performance of the DBF method on a memoryless

BSC with the row-by-row and bit-stuffing constrained coding

schemes for the 2-D n.i.b. constraint, presented in [40] and

[10] respectively.

Remark 9: It should be noted that the parent-to-child

message passing steps ( [39]) in the GBP algorithm with

considering all the regions for removing 2-D isolated-bits

configurations operates with reasonable speed and memory

requirements on binary patterns with maximum size of 32×32.

Thus in practice, the system would process these 32 × 32
(or smaller) arrays in a sequential way. As long as the

scalability of method is concerned, the GBP algorithm can be

implemented in a parallel fashion to work on multiple 32×32
binary patterns simultaneously.

A. Statistics of The Number of Bit Flips for Removing 2-D

Isolated-Bits Patterns

The performance of the DBF method relies on the error

correction capability of the code being used, and of course

the number of deliberate bit errors. Therefore, it is necessary

to find how many bits in average are flipped within a code-

word, and how this number compares to the error correction

capability of the code. We have extracted the statistics of the

number of bit flips for removing 2-D isolated-bits patterns

from random 2-D patterns by the DBF method. In Fig. 8,

we present an approximation of the occurrence probability of

bit flipping, p(wH(eDBF)), as a function of the number of

flipped bits, wH(eDBF). The statistics of number of flipped

bits is obtained by using DBF for removing 2-D isolated-bits

patterns from a sample set of 8000 random binary patterns of

size 32× 32. Throughout all the simulations, we assume zero

entries outside of random patterns. The average number of

flipped bits is obtained by taking the average over all observed

numbers of flipped bits, which is wH(e) = 12.84. Therefore,

approximately, it needs in average 12.84 bit flips in a random

32× 32 pattern to remove the 2-D isolated-bits patterns. We

extend the same analysis for random input patterns of size

8× 8 and obtained the average number flipped bits of 1.46
bits/pattern for removing the 2-D isolated bit patterns entirely

from the input patterns.
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Fig. 8. An approximation of the occurrence probability of bit flipping for
removing the forbidden patterns by the 2-D n.i.b. constraint from random
32× 32 arrays are given over 8000 trials. For this experiment, λ = 0.1 in
(28).
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Fig. 9. BCH codes of length 1024 with different code rates are used to correct
the deliberate errors introduced in random 32× 32 patterns for removing 2-D
isolated-bits patterns. Using the flipping probabilities in Fig. 8 and (32), the
UBER is calculated for BCH codes of length 1024 with different rates (and
consequently dmin).

As long as the number of deliberate bit errors lies within

the error correcting capability of an ECC, the codeword is

guaranteed to be corrected. Using the occurrence probability

of bit flipping, we can obtain the uncorrectable bit error rate

(UBER) for an ECC used to correct these deliberate errors on

a noiseless channel as follows

UBER =







∑

wH(eDBF)>⌊
dmin−1

2
⌋

wH(eDBF)p
(

wH(eDBF)
)






/N,

(32)

where dmin is the minimum distance of code, N = m× n is

the size of the pattern (length of the code), and R is the rate

of the ECC. Using BCH codes of length 1024 for correcting

deliberate errors introduced in random 32× 32 binary patterns

for removing the 2-D isolated-bits configurations, the UBER is

given as a function of dmin in Fig. 9. This figure shows UBER

corresponding to different code rates (and consequently dmin)
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Fig. 10. The average number of flipped bits for removing 2-
D isolated-bits patterns from a random 32× 32 array for different
λ ∈ {0.04, 0.1, 0.18, 0.22, 0.26} over 1000 trials versus the number of GBP
iterations.

supported by the BCH code of length 1024.

The choice of λ in the probabilistic formulation of problem,

(28), depends on the constraint and the underlying method

for solving the minimization problem. Note that λ is not a

critical parameter in the DBF method. However, it should be

chosen to be in the convergence region of GBP. As an example,

we present the convergence of the GBP algorithm for finding

the optimal error pattern to remove 2-D isolated-bits patterns

from random 32× 32 binary arrays for different values of λ.

Fig. 10 shows the average number of flipped bits as a function

of the number of iterations for different values of λ. It can

be seen that convergence behaviors of the GBP algorithm for

λ ∈ {0.04, 0.1, 0.18} are very similar, and it is only the matter

of choosing a λ that lies within the convergence region of the

GBP algorithm. Throughout all our experiments in this paper

λ = 0.1, and the number of iterations for the GBP algorithm

is 50 for 2-D isolated-bits patterns.

B. Performance Evaluation of The GBP-Guided DBF Method

In this section, we investigate the usefulness of DBF method

for data-dependent 2-D channels, where specific patterns in

channel inputs are the main cause of errors. We consider the

introduced channel in Section III with the 2-D isolated-bits

patterns as the harmful patterns for channel. For different

values of αb and αg , we compare the average probability of

error with and without incorporating the DBF method.

The user message m of length K is encoded via an

ECC with rate R = K
N

, and the codeword c(m) of length

N = m× n is arranged into a 2-D array x(m) of size m× n.

Prior to transmission over the channel, the 2-D isolated-

bits patterns are removed from the input pattern by flipping

minimum number of bits. The transmitted pattern over the

channel is now x(m)⊕ eDBF, and the received pattern is

x(m)⊕ eDBF ⊕ eCH. The transmitted pattern and channel out-

put without DBF are x(m) and x(m)⊕ êCH, respectively.

Note that the channel is data-dependent, and therefore chan-

nel errors with and without incorporating DBF method are

different. Using the bounded-distance decoder that can correct
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Fig. 11. The average probability of error with and without incor-
porating for the cases (a) αg = 0 and αb ∈ [0.1 : 0.1 : 1], and (b)
αg ∈ [0.001 : 0.001 : 0.01] and αb = 100× αg is presented. The BCH-
[1024, 728, 62], RM-(4, 10) and RM-(5, 10) codes are being used. The
BER comparison results are obtained using the equations (33) and (34),
and executing the GBP-guided DBF algorithm over at least 50,000 random
instances of user messages.

error patterns with Hamming weights lying within the error

correction capability of the code, the average probability of

error with and without incorporating the DBF method is

simplified to

p(DBF)
e =

1

2⌊NR⌋

∑

m

p

(

wH(eDBF ⊕ eCH) >
⌊dmin − 1

2

⌋
∣

∣m

)

,

(33)

and

p(w/o DBF)
e =

1

2⌊NR⌋

∑

m

p

(

wH(êCH) >
⌊dmin − 1

2

⌋
∣

∣m

)

,

(34)

respectively, where dmin is the minimum distance of the ECC.

In Fig. 11(a), we assume that channel errors solely come

from appearances of 2-D isolated-bits configurations in input

patterns, and αg = 0. Under this assumption, removing the

2-D isolated-bits configurations from channel input patterns

prior to transmission makes the channel noiseless. However

without incorporating the DBF method, the bits contained

in a 2-D isolated-bits configuration invert with a probabil-

ity of αb. Therefore, the average probability of error with

incorporating the DBF method for different values of αg is

constant. Fig. 11(a) shows the BER results with and without

incorporating DBF for different values of αb, when the BCH-

[1024, 728, 62], RM-(4, 10) and RM-(5, 10) codes are used. It

can be seen that for 0.3 ≤ αb ≤ 1 we obtain approximately

four orders of magnitude gain in the average BER with

the GBP-guided DBF method using the BCH-[1024, 728, 62]
code. However, this gain is lower for smaller αb’s as the

number of deliberate bit errors introduced for removing 2-

D isolated-bits configurations dominates the random chan-

nel bit errors. Fig. 11(b) shows the BER results with and

without incorporating the GBP-guided DBF method, when

αg ∈ [0.001 : 0.001 : 0.01] and αb = 100× αg . This figure

shows a reasonable gain in the BER performance with incor-

porating the GBP-guided DBF method, and using the BCH-

[1024, 728, 62] code.

C. Comparison Results on BSC

In this section, we compare the proposed scheme of impos-

ing the 2-D n.i.b. constraint by deliberate errors against the

row-by-row and the bit-stuffing coding schemes on a BSC.

This can be interpreted as the case that 2-D isolated-bits

configurations are the problematic patterns for the channel, and

they must be removed before transmission, but removing these

patterns does not make the channel noiseless. In our channel

model, it is the case that αb = 1 and αg 6= 0. In the following,

we first review the row-by-row and bit-stuffing methods for 2-

D n.i.b. constraint and then present the comparison results.

Row-by-Row Coding Scheme for 2-D n.i.b. Constraint [40]:

The encoder is a finite-state machine with 4 states, which

maps each 3 information bits into a 2× 2 binary pattern. For

encoding information bits into an m× n array, strips of size

2× n are constructed using the encoded 2× 2 binary patterns.

Then, these strips are arranged in such a way to satisfy the

2-D n.i.b. constraint over the m× n array. The decoder is

sliding-block decoder, where the decoding window size of the

encoder is 3 bits.

Bit-Stuffing Scheme for 2-D n.i.b. Constraint [10]: The bit-

stuffing method for mapping binary random sequences into a

2-D rectangular array satisfying the 2-D n.i.b. constraint is a

variable rate coding scheme. First, the boundaries of the 2-D

arrays are initialized with some fixed probability distribution.

The encoding process has two steps. The encoder first gener-

ates two sequences with different statistics, Bernoulli(1/2) and

Bernoulli(1/3), from the sequence of information bits using

a probability transformer. Then, it encodes the unbiased and

biased sequences into a 2-D array by inserting additional bits

in such a way to ensure that the constraint is satisfied. At the

decoder, the two sequences are recovered by doing the reverse

process of inserting additional bits, and the binary sequence

is recovered using an inverse probability transformer.

Raw BER Comparison Results: We compare the perfor-

mance of the DBF method for imposing 2-D n.i.b. constraint

into 2-D arrays of size 32× 32 with the bit-stuffing and row-

by-row constrained coding methods in terms of BER. It should

be noted that the probability transformer in the bit-stuffing

method is implemented in a one-to-one manner. Hence we
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Fig. 12. Figure shows the BER comparison results of the DBF, bit-stuffing
and row-by-row coding methods on the BSC with the cross-over probability
(α). The effect of error propagation can be observed in the BER curve of
bit-stuffing which shows that this method is vulnerable to channel errors. The
coding rate of DBF with BCH-[1024, 923, 22] code is close to the bit-stuffing
method, and the rate of DBF with BCH-[1024, 768, 54] is close to the rate
of row-by-row coding method.

can apply the reverse transformation to recover the original

information bits. Fig. 12 shows the BER comparison results

of the DBF, row-by-row and bit-stuffing methods over the

BSC with the cross-over probability (α). It can be seen that

the effect of error propagation in the row-by-row method is

less severe than bit-stuffing as the row-by-row method uses a

sliding-block decoder with error propagation window of 3 bits

and the effective rate of 0.75. The average rate of bit-stuffing

method for imposing 2-D n.i.b. constraint on a 32× 32 array

is ≃ 0.91. The bit-stuffing achieves a fairly high encoding

rate for the 2-D n.i.b. constraint, but it suffers from the error

propagation over noisy channels. The redundancy for imposing

the constraint is now used in our scheme to strengthen the

ECC (BCH code), resulting in a gain over the other schemes.

For this purpose, we use the BCH-[1024, 923, 22] along with

the DBF method for comparison with bit-stuffing method,

and the DBF with BCH-[1024, 768, 54] for comparison with

the row-by-row coding method. We should note that we did

not employ any forms of error correction in the row-by-

row and bit-stuffing methods. Nevertheless, all the methods

(including the DBF method with the BCH code) are designed

to have the same overall coding rate. As another comparison,

we used a column-weight 4 quasi cyclic LDPC code over

two-dimensional magnetic recording channels for removing

harmful patterns in our earlier work [1], where an order

of magnitude gain in the frame-error-rate was obtained for

Voronoi based 2-D magnetic recording channels with low

magnetic grain densities.

VII. CONCLUSIONS AND FUTURE WORK

To summarize, we proposed a coding scheme for data-

dependent 2-D channels which is based on a deliberate bit

flipping method. Deliberate errors are introduced into an error

correction codeword which is arranged into a 2-D array to

remove harmful patterns before transmission. The technique

relies on the error correction capability of the code being

used, and the number of deliberate errors should be small

enough not to overburden the error correction decoder. In

this paper, we have focused on minimizing the number of

deliberate errors in the DBF scheme for removing a set

of given configurations from input patterns. We devised a

probabilistic graphical model for the minimization problem

by reformulating it as a 2-D MAP problem. We used the GBP

algorithm to find an approximate solution for the 2-D MAP

formulation of the problem. Statistics of the number of bit flips

for removing 2-D isolated-bits patterns are extracted, and we

showed that how these numbers are comparable with the error

correction capability of BCH codes being used. Furthermore,

we investigated the suitability of DBF method for imposing

2-D constraint over a BSC against classical constrained coding

methods which suffer from error propagation.

As a future work, the DBF method can be reformulated for

2-D semiconstrained coding. In some applications, we rather

prefer not to remove entirely the harmful configurations, and

we only want to limit the number of occurrences of specific

configurations in a 2-D pattern. As in the case when the

number of bit flips for imposing strong constraints is large and

may overwhelm the ECC decoder, there is a need to allow

some of the harmful configurations patterns to appear, yet

not very often. For this purpose, the function Dp in (27) can

be reformulated as a probability transformer function, which

maps random binary patterns to binary patterns satisfying a

desired empirical distribution for appearances of harmful con-

figurations. The GBP algorithm still can be used to minimize

the number of flipped bits for this mapping.

APPENDIX A

(THE REGION BASED APPROXIMATION METHOD AND

GBP)

In this appendix, we present factor graph and region graph

representations for the constrained maximization problem

given in (28). Furthermore, we explain the RBA method using

GBP [39] to find an approximate solution for the problem.

For the maximization problem in (28), we showed in (29)

that the a-posteriori probability p (x̂|x) is proportional to

p (x̂|x) ∝
∏

(i,j)∈Am,n

λ
✶{x̂Pi,j

∈XB
Pi,j

}
(1− λ)

1−✶{x̂Pi,j
∈XB

Pi,j
}
.

(35)

We consider a multiplicative factor graph [38], i.e., a factor

graph where the global function is a product of local functions.

We consider a bipartite graph G = (X,F,E) with two sets of

nodes X and F, and a set of edges E connecting only different

node types. The set X consists of N random variables which

present the N bits over the m× n input pattern x, where

N = m× n. Therefore, X = {Xi,j : (i, j) ∈ Am,n}, and Xi,j

takes value 0 or 1. The set F = {fi,j : (i, j) ∈ Am,n}, and the

factor node fi,j represents the local probabilistic distortion

function Dp(xPi,j
, x̂Pi,j

) which is defined in (27). The factor

node fi,j ∈ F is connected to the variable node Xi,j ∈ X if

the local function associated with the factor node fi,j involves

Xi,j . This graphical model serves as a basis for the RBA

scheme to solve our constrained maximization problem given

in (28).



12

(a)

(b)

Fig. 13. (a) Factors fi,j (·) of a 2× 2 pattern are shown. (b) The region
graph corresponding to the factor graph is given.

The free energy FH is defined by − lnZ (log partition func-

tion) in statistical mechanics. Using the properties of Kullback-

Liebler divergence [53], we can obtain an approximation for

the free energy by minimizing the variational free energy

with respect to a trial probability distribution b(x̂) for the a-

posteriori probability distribution p (x̂|x). The trial probability

distribution b (x̂) should be normalized and 0 ≤ b (x̂) ≤ 1 for

all x̂. We can also consider b (x̂) as the belief of the a-posterior

probability of x̂. The variational free energy corresponding to

b (x̂) is defined by

F (b (x̂)) = U (b (x̂))−H (b (x̂)) , (36)

where for our problem

U (b (x̂)) =

−

∑

(i,j)∈Am,n

∑

x̂Pi,j

b
(

x̂Pi,j

)

λ
1{x̂Pi,j

∈XB
Pi,j

}
(1− λ)

1−1{x̂Pi,j
∈XB

Pi,j
}
,

H (b (x̂)) = −

∑

x̂

b (x̂) ln b (x̂) , (37)

are the average energy and entropy, respectively, and b
(

x̂Pi,j

)

is the corresponding belief of bits x̂Pi,j
. The variational free

energy can be estimated using the RBA scheme [39], [47]. In

order to use the RBA method, we need to construct a valid

region graph in such a way that each variable/factor node

contains at least in one region. A region graph consists of

clusters of variable and factor nodes, and can be constructed

from a factor graph. A region graph initially is formed by

clustering every factor node and its neighboring variables

nodes into a region, which is called an ancestor region, so

that every ancestor region consists of one factor node and its

neighboring variable nodes. Then, the cluster variation method

[39] is applied to establish the remaining of the region graph.

The remaining regions are formed by taking the intersection

of the basic regions and their intersections – as shown in

Fig. 13(b). For the region R, we denote the set of variable

nodes in the region R by XR and the state of these variables

by xR. Let b (xR) and p (xR) be the belief and the probability

of xR. Furthermore, we denote the collection of all the regions

in the region graph by R.

According to [39], the variational free energy can be esti-

mated using the RBA method such that

F̂ (b (x̂)) = UR (b (x̂))−HR (b (x̂)) , (38)

where UR and HR are respectively the region average energy
and region entropy and given by

UR (b (x̂)) =

−

∑

i,j∈Am,n

∑

x̂Pi,j

b
(

x̂Pi,j

)

λ
1{x̂Pi,j

∈XB
Pi,j

}
(1− λ)

1−1{x̂Pi,j
∈XB

Pi,j
}
,

HR (b (x̂)) =
∑

R∈R

cR
∑

x̂R

b (x̂R) ln b (x̂R) , (39)

where x̂R are the variables belonging to the region R ∈ R
and cR is the counting number of the region R given by cR =
1 −

∑

p∈AR
cp where AR is the set of ancestors of region

R identified by AR = {R′ ∈ R|R ⊂ R′}. The a-posteriori

probability p (x̂|x) can be now estimated by minimizing (38)

subject to the edge constraints given by
∑

x̂U∈x̂P\R

b(x̂U ) = b(x̂R) ∀p ∈ PR, ∀R ∈ R, (40)

where x̂P\R denotes the set of variables in the parent region

P , but not in R. Furthermore, the normalization constraints

are
∑

x̂R
b (x̂R) = 1, ∀R ∈ R. The edge constraints ensure

that the belief of a region can be obtained from its parent

regions. The message and belief update equations in the GBP

algorithm for finding an approximate solution for the problem

of minimizing the number of flipped bits in DBF method

can be obtained from solving the constrained minimization

problem of F̂ , given in (38), using the Lagrange multipliers.

In the considered formulation of the GBP algorithm (parent-

to-child algorithm [39]) for minimizing the number of flipped

bits, the size of the regions is dictated by |Pi,j |. The compu-

tational complexity associated with each edge in the in this

implementation is O
(

2|Pi,j |
)

– the proof of this analysis for

the general parent-to-child GBP algorithm can be found in

[54, Lemma 1]. Since the number of beliefs for each region

depends on its size, it is practically not feasible to use this

formulation of the algorithm when |Pi,j | is large.
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