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Iron is the most abundant transition metal within the brain, and is vital for a number

of cellular processes including neurotransmitter synthesis, myelination of neurons, and

mitochondrial function. Redox cycling between ferrous and ferric iron is utilized in biology

for various electron transfer reactions essential to life, yet this same chemistry mediates

deleterious reactions with oxygen that induce oxidative stress. Consequently, there is

a precise and tightly controlled mechanism to regulate iron in the brain. When iron is

dysregulated, both conditions of iron overload and iron deficiencies are harmful to the

brain. This review focuses on how iron metabolism is maintained in the brain, and how an

alteration to iron and iron metabolism adversely affects neurological function.
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INTRODUCTION

Iron is a fundamental requirement for most known life forms,

and is likely to have played an integral role in the earliest devel-

opment of life on this planet (Russell et al., 1993). Organisms

have evolved to harness the unique chemistry of this highly abun-

dant metal, which make it integral to a vast array of chemical

reactions supporting cell division, oxygen transport and mito-

chondrial function. The iron redox couple mediates the transfer

of single electrons through the reversible oxidation/reduction

reactions of Fe2+ and Fe3+. Iron is a d-block transition metal,

and the unoccupied d-orbitals allow ionic iron (II), iron (III),

and iron (IV) species to form ligands with both small and large

biomolecules via oxygen, nitrogen, and sulfur atoms. The biologi-

cal redox potential and electronic spin state, and thereby reactivity
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hydroxydopamine; PD, Parkinson’s disease; RLS, restless legs syndrome; ROS,
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of iron, is determined by the nature of the ligand to which the

species is bound. This configuration, along with the oxidation

state of the iron itself, dictates whether an iron-based biomolecule

is responsible for reactions involving oxygen transport and stor-

age, electron transfer, or oxidation/reduction of other molecules

(Beard, 2001). Reactions involving iron in the body are predom-

inately redox-based, hydrolytic or involve polynuclear complex

formation (Aisen, 2001).

Reliance upon iron for normal physiological function has thus

necessitated a tightly regulated mechanism for ensuring the net

turnover of dietary iron is essentially neutral (Crichton and Ward,

1992). This is especially important for the brain, where some of

the highest concentrations of iron in the body are maintained

(Gerlach et al., 1994). This review will provide an overview of

how brain iron metabolism is regulated, and the consequences of

perturbed iron homeostasis.

IRON UPTAKE, TRANSPORT AND CELLULAR REGULATION

IRON CIRCULATION AND BRAIN UPTAKE

The major iron transporter protein in the body is the 80 kDa gly-

coprotein transferrin (Tf). Each bi-lobar molecule, consisting of

two globular units at the N- and C-terminals has two iron-binding

sites, which form a 4-atom tetradentate ligand via histidine, aspar-

tate, and two tyrosine amino acid residues (Anderson et al., 1987).

Almost all iron exchange and transport within the body is medi-

ated by Tf (Finch and Huebers, 1982), with around 3–4 mg of iron

typically circulating the healthy adult bound to Tf. Two Fe3+ ions

oxidized by a ferroxidase and shunted into the interstitium by fer-

roportin are loaded onto a single Tf unit, and at any one time only

around 30% of all circulating Tf units are occupied (only in cases

of severe iron overload does Tf saturation occur; Aisen, 2001).

Less than 1% of circulating iron is usually non-Tf bound. Non-Tf

Frontiers in Aging Neuroscience www.frontiersin.org July 2013 | Volume 5 | Article 34 | 1

http://www.frontiersin.org/Aging_Neuroscience/
http://www.frontiersin.org/Aging_Neuroscience/editorialboard
http://www.frontiersin.org/Aging_Neuroscience/editorialboard
http://www.frontiersin.org/Aging_Neuroscience/editorialboard
http://www.frontiersin.org/Aging_Neuroscience/about
http://www.frontiersin.org/Aging_Neuroscience/10.3389/fnagi.2013.00034/abstract
http://community.frontiersin.org/people/DominicHare/60208
http://community.frontiersin.org/people/ScottAyton/101170
http://community.frontiersin.org/people/AshleyBush/9578
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=PengLei&UID=75891
mailto:peng.lei@florey.edu.au
http://www.frontiersin.org/Aging_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Aging_Neuroscience/archive


Hare et al. Iron metabolism and neurological diseases

bound iron (NTBI) is handled by a series of low molecular weight

(LMW) ligands including citrate and ascorbate ions, as well as a

possible small contribution from circulating albumin and ferritin

proteins (Breuer et al., 2000) and ATP.

The hydrophobic barricade formed by the blood–brain barrier

(BBB) prevents diffusion of hydrophilic Fe2Tf into the nervous

system, as well as prevent migration of NTBI. Moos et al. (2007)

and Crichton et al. (2011) have recently published comprehensive

pictures of iron trafficking within the brain, including uptake from

the periphery. This step, where Fe2Tf is transported across the

BBB through brain capillary endothelial cells (BCECs). Tf-uptake

into BCECs follows an endocytotic mechanism, where circulat-

ing Tf binds to Tf receptors which then internalize. It is a point

of contention as to whether iron export from the endosome is

mediated by the protein divalent metal transporter-1 (DMT1);

conflicting reports have either identified (Burdo et al., 2001) or

failed to identify (Moos and Morgan, 2004) DMT1 in rodent brain

BCECs. An alternative hypothesis has suggested iron becomes

segregated from Tf after liberation from the metal–protein com-

plex in the endosome and is released independently of DMT1

(Moos et al., 2006). During development, when the BBB is not

fully formed, there is a rapid influx of iron most likely stem-

ming from NTBI; the developing rat brain shows a rapid intake

of iron in line with increased expression of transferrin recep-

tor 1 (TfR1) in BCECs, which in turn becomes the major iron

regulatory mechanism once the BBB is sealed, after which iron

intake slows (Taylor and Morgan, 1990). However, brain iron

import is unlikely solely regulated by BCECs, like many other

metabolic pathways redundancies are likely in place in the case one

pathway breaks down. For instance, obstruction of BCEC TfR1

in mice and rats using intravenously administered monoclonal

antibodies did not completely impede brain iron uptake (Ueda

et al., 1993).

A possible alternative mechanism for the uptake of NTBI may

be associated with the expression of ferroportin in the BBB (Wu

et al., 2004) and circulating ferroxidases (enzymes that catalyze

Fe2+ oxidation to Fe3+) like ceruloplasmin (Cp; Osaki et al., 1966).

It should be noted, however, that expression of ferroportin in

BCECs has been disputed (Moos and Rosengren Nielsen, 2006). It

is also unclear as to whether iron present in the BCEC endosome

is in fact released into the cytosol. Moos et al. (2007) proposed

that the possible lack of DMT1 is suggestive that the endosome

traverses the BCEC cytosol intact (transcytosis) and releases Fe3+

directly into the brain for distribution to cells.

On the abluminal side of the BCEC astrocytes abut the cell

membrane, forming part of either “neurovascular” or “gliovascu-

lar” units comprising of neurons, astrocytes, and BCECs (Abbott

et al., 2006). Moos et al. (2007) suggested that astrocyte “end feet”

surround the BCEC with a thin layer of interstitial fluid into which

iron is released from endosomal Fe2Tf–TfR1 complexes on the

luminal membrane of the BCEC. Iron is then either re-complexed

by Tf in the brain interstitium, or bound to LMW ligands released

by the astrocyte. While the affinity of iron to small ligands is con-

siderably smaller than that to Tf, it has been suggested that Tf

saturation in the cerebrospinal fluid (CSF) is much higher than

in the periphery, and that a larger proportion of NTBI circulates

the nervous system (Leitner and Connor, 2012). Astrocytes also

provide a source of Cp to ensure any circulating Fe2+ is quickly

oxidized to Fe3+ to prevent unwanted reactive oxygen species

(ROS) production through Fenton chemistry.

CELLULAR IRON TRAFFICKING IN THE BRAIN

Iron is released from Tf into cells via a particularly elegant mech-

anism. TfR1 is a ubiquitously expressed membrane protein with

a dimeric structure and high affinity to Fe2Tf, but at neutral pH,

has a low affinity for apo-Tf (iron-free) so that the unligated Tf

does not act as a competitive inhibitor of holo-Tf (iron-bound)

uptake (Aisen, 2004). The Fe2Tf forms a complex with the TfR1

receptor, which is then endocytosed. A proton pump mechanism

is initiated to lower the pH within the endosome, which causes

a conformational change to both the Fe2Tf and TfR1 units, in

turn resulting in release of the iron from its chaperoning protein

(Hentze et al., 2004). The newly freed Fe3+ is quickly reduced by

the six-transmembrane epithelial antigen of prostate 1-4 (STEAP

1-4), allowing export from the endosome into the cytosol by

DMT1 (De Domenico et al., 2008). In the acidic endosome, apo-Tf

has a strong affinity for the Tf receptor; this interaction prevents

the degradation of free Tf when the endosome complexes with the

lysosome before exocytosis. During exocytosis the pH returns to

neutral, which causes dissociation of the apo-Tf from the TfR1,

effectively recycling the Tf molecule for further use in iron circula-

tion (Dautry-Varsat et al., 1983). In 1999, a homolog Tf receptor,

TfR2, was identified (Kawabata et al., 1999), which initially showed

expression only in hepatocytes, duodenal crypt cells, and ery-

throcytes. TfR2 has a 30-fold lower affinity to iron-bound Tf, yet

mutations to the TfR2 gene results in hereditary hemochromatosis

(Camaschella et al., 2000). TfR2 shares 45% amino acid identity

with the ubiquitous TfR1 (Kawabata et al., 1999; Fleming et al.,

2000). Interestingly, TfR2 has also been identified in dopamin-

ergic neurons, and has been suggested to play a role in Fe2Tf

translocation to mitochondria (Mastroberardino et al., 2009).

Neurons express both TfR1 and DMT1 (Burdo et al., 2001),

and therefore uptake iron via a receptor-mediated endocytotic

mechanism (Figure 1), though it is likely that a small minor-

ity of iron uptake is sourced from NTBI in vivo. Astrocytes are

devoid of TfR1, and NTBI is most likely their major iron source

(Moos and Morgan, 2004). Oligodendrocytes, which require iron

for myelin synthesis (see below; Connor and Menzies, 1998) also

import iron through a mechanism independent of TfR1. Two

noteworthy hypotheses have been proposed to explain how the

comparatively high need for iron by oligodendrocytes is regulated

without the major iron import mechanism present. Firstly, iron

passes into the cytosol complexed with LMW ligands. Iron is then

incorporated into Tf produced within the oligodendrocyte itself,

where it is either used immediately or sequestered in ferritin for

storage (Moos et al., 2007). Tf is not secreted by the oligodendro-

cyte itself (de Arriba Zerpa et al., 2000), presenting a fairly unique

closed environment of iron regulation in what is predominately

otherwise an intertwined regulatory system.

Once inside the cell, iron can follow multiple pathways depen-

dent on need. Ferritins are responsible for iron storage and play an

integral role in iron homeostasis, and are rarely saturated due to

their large capacity for thousands of individual Fe3+ ions (Theil,

2004). Numerous other cytosolic proteins require iron for a variety
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FIGURE 1 | Neuronal iron uptake and export. Iron is imported into the cell

either as low molecular weight complexes with citrate/ATP, or via transferrin

receptor (TfR1)-mediated endocytosis (1). Export of iron from the endosome

via divalent metal transporter-1 (DMT-1) directly contributes to the labile iron

pool (2), which constitutes the available iron content of the neuron and is

regulated by cellular metal sensing and iron-binding protein expression,

including ferritin, which is the major iron storage protein in neurons (3). Export

of iron from neurons is regulated by intramembrane ferroportin, which is

stabilized via a mechanism involving tau and ceruloplasmin (Cp)/APP (4). Iron

is then recirculated by apo-Tf (5).

of normal functions. Iron is also important to mitochondrial

functions, where it is incorporated into Fe–S clusters and heme

proteins (Hentze et al., 2004). The mechanism for mitochondrial

uptake has not been categorically confirmed, though the two pro-

posed pathways involve either (i) diffusion of NTBI or (ii) direct

translocation of extracellular Fe2Tf via an endosomal pathway

(Horowitz and Greenamyre, 2010). Within the mitochondria, the

frataxin protein (implicated in Friedreich’s ataxia) is suggested

to act as a intramitochondrial iron chaperone (Richardson et al.,

2010).

The only known export pathway in mammalian cells is medi-

ated via ferroportin (Ganz, 2005). Ferroportin allows ferrous iron

to be transported out of the cell (Donovan et al., 2005), and this

process requires a ferroxidase to oxidize the ferrous iron to ferric,

so that Tf can bind the exported iron. In the brain, ferroportin has

been identified in both neurons (Abboud and Haile, 2000) and

astrocytes (Dringen et al., 2007), as have the corresponding fer-

roxidases, the amyloid precursor protein (APP; Duce et al., 2010)

and Cp (Texel et al., 2011).

REGULATION OF IRON-ASSOCIATED PROTEINS

Iron-associated proteins are regulated by iron status, therefore

form a cycle to regulate iron metabolism (Figure 2). In cases of low

cellular iron, two iron regulatory proteins (IRP1/2) are free to bind

directly with iron responsive element (IRE) stem-loop structures

within the mRNA of iron-binding proteins. The 3′ untranslated

portion of, for example, TfR1 mRNA is sensitive to ribonuclease

degradation, thus binding with IRP1/2 protects the mRNA and

promotes TfR1 expression, increasing cellular iron uptake. Con-

versely, binding of IRP1/2 to the 5′ untranslated region (UTR) of,

for example, ferritin mRNA prevents translation, reducing cyto-

plasmic ferritin expression, reducing the iron storage capacity of

the cell, and increasing available iron (Aisen, 2001). When iron

levels in the cell are high, labile iron binds with IRP1/2, preventing

interactions between the regulatory proteins and the IREs in the

mRNA of various iron regulating proteins (see Figure 2), elicit-

ing the reverse cellular response to that observed in cases of iron

deficit. The mechanism of iron-mediated inhibition of IRP/IRE

binding depends on the protein involved: IRP1–Fe undergoes a

conformational change that prevents IRE binding, whereas IRP2–

Fe complexes undergo degradation via the ubiquitin proteasome

pathway (Pantopoulos, 2004). Both IRP1 and IRP2 are present in

the rat (Siddappa et al., 2003) and human brain (Connor et al.,

1992c); IRP1 has been suggested as the primary regulatory protein

in the human brain and is capable of forming a double IRP1/IRE

complex (Hu and Connor, 1996).

Frontiers in Aging Neuroscience www.frontiersin.org July 2013 | Volume 5 | Article 34 | 3

http://www.frontiersin.org/Aging_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Aging_Neuroscience/archive


Hare et al. Iron metabolism and neurological diseases

FIGURE 2 | Factors influencing cellular iron metabolism. Cellular oxygen

homeostasis regulates iron metabolism in the nucleus via the hypoxia

inducible factors (HIF-1α and -1β). In normoxia conditions, Fe2+ mediates the

hydroxylation of proline residue 546 on HIF-1α by prolyl-4-hydroxylase (PHD),

which enables ubiquitination via binding with the von Hippel–Lindau tumor

suppressor gene product (VHL). Decreased HIF-1α inhibits transcription of

proteins dictating iron uptake and export. In the iron-deficient cell, HIF-1α

instead interacts with CREB binding protein/p300 (CBP/p300) and forms a

heterodimer with HIF-1β, activating transcription of target genes possessing

hypoxia response elements. In the cytosol, the iron replete cell prevents the

binding of iron responsive proteins (IRP) -1 and -2 to the iron responsive

elements (IREs) in the 5′ and 3′ untranslated region (UTR) of mRNA, inhibiting

the transcription of uptake proteins and promoting expression of proteins

involved in iron export. In cases of iron deficiency, IRPs directly interact with

the 5′- and 3′-UTRs, eliciting the reverse effect. TfR, transferrin receptor;

DMT-1, divalent metal transporter-1; APP, amyloid precursor protein.

Iron metabolism is also transcriptionally regulated by the action

of hypoxia inducible factors (HIFs; see Figure 2), which consists

of a cytosolic protein (HIF-1α) and a nuclear HIF-1β subunit

that form a DNA binding heterodimer (Peyssonnaux et al., 2008).

HIF-1α levels are dictated by cellular chemistry, and in normal

conditions HIF-1α is hydroxylated by prolyl hydroxylase, marking

the adduct for ubiquitination and degradation (Ratcliffe et al.,

1999). This reaction requires oxygen, 2-oxoglutarate, ascorbate,

and iron as cofactors. In hypoxic conditions HIF-1α ubiquitina-

tion is inhibited and translocation to the nucleus is increased,

where dimerization with HIF-1β allows binding with cyclic adeno-

sine monophosphate (cAMP) response element-binding protein

Frontiers in Aging Neuroscience www.frontiersin.org July 2013 | Volume 5 | Article 34 | 4

http://www.frontiersin.org/Aging_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Aging_Neuroscience/archive


Hare et al. Iron metabolism and neurological diseases

(CREB), which activates transcription of target genes with hypoxia

response elements (HREs; Semenza, 2000). As iron is necessary

for hydroxylation of HIF-1α, any decrease in cellular iron lev-

els will increase dimerization of HIF-1α and β and downstream

transcription of target genes, which, unsurprisingly, includes those

responsible for Tf (Rolfs et al., 1997), TfR1 (Lok and Ponka, 1999),

and DMT1 (Lis et al., 2005).

With such a sophisticated regulation mechanism for regulating

iron-associated proteins transcription and translation, it is sur-

prising diseases of iron overload and deficiencies exist. Some of

these disorders arise from nutritional deficiency/excess or genetic

mutation in one or more iron-associated proteins. But as will be

described, the disorders of iron metabolism are invariably chronic

disorders, not acute disorders. Possibly because there is complex

regulatory mechanism that can resist, and then compensate for,

short-term changes to iron levels.

IRON FLUX AND DEFICIENCY

Iron deficiency is a major nutrition deficiency most often observed

in the developing world. Even in a developed nation, such as the

USA, approximately 10% of toddlers and women of childbearing

age are iron-deficient (Looker et al., 1997). As described above,

the cellular iron regulatory mechanism is nuanced and robust,

therefore allowing considerable divergence from the homeostatic

norm of iron levels before disease precipitates. Disorders of iron

homeostasis are thus invariably chronic, not acute diseases. This

is especially true of the brain, which has more stable iron levels

compared to the other organs (Youdim et al., 1989).

Peripheral iron deficiency can result in minor to severe symp-

toms. Anemia is an advanced iron deficiency syndrome caused by

a number of factors ranging from dietary deficiency, blood loss,

and metabolic lesions. The most common symptoms arising from

anemia result from reduced oxygen transportation by hemoglobin.

These symptoms include pallor, fatigue, faintness, shortness of

breath, muscle weakness, angina pain, and elevated cardiac out-

put (as compensation for reduced oxygen carrying capacity; Wood

and Elwood, 1966).

While symptoms of anemia can arise over a period of weeks

to months, iron in the brain is more resistant to dietary changes

(Youdim et al., 1989) and indeed the brain may have critical peri-

ods that determine the level of iron in the brain throughout life

(Dallman et al., 1975; Dallman and Spirito, 1977; Ben-Shachar

et al., 1986). The brain accumulates iron during the weaning

period, which establishes an iron“set point”for the brain. Perinatal

pups on a restricted iron diet cannot recover their brain iron levels

when supplemented later in life (Ben-Shachar et al., 1986). It has

been proposed that the brain of a post-weaned mammal is imper-

meable to peripheral iron (Kaur et al., 2007), possibly explaining

why brain iron levels are not easily altered with diet (Ben-Shachar

et al., 1986). However, supplementation of isotopically enriched

iron to mice reveals dietary iron incorporation into the brain at a

similar rate to other organs (Chen et al., 2013). Peripheral iron is

able to enter the brain by patterning with Tf, which can undergo

receptor-mediated transcytosis to pass through the BBB (Fishman

et al., 1987; Bradbury, 1997; Morgan and Moos, 2002). It is likely

that brain iron is in constant flux with peripheral pools of iron.

We speculate that brain iron levels do not tangibly deviate from

the norm despite changes in the diet, because the brain iron lev-

els are strictly governed by the iron homeostatic mechanism, and

where the normal level of iron in the brain for an adult indi-

vidual is likely determined in the critical weaning period of the

mammal. This period can thus shape the iron biochemistry of

the brain throughout the life of an individual, highlighting the

urgency of addressing nutritional deficiency in infants raised in

areas of poverty. Described below, chronic brain iron deficiency

disrupts important process in the brain, altering neurochemistry

that eventually leads to disease.

NEUROCHEMICAL EFFECT OF IRON DEFICIENCY

NEUROTRANSMITTER SIGNALING

Iron affects synthesis and signaling of the neurotransmitters

dopamine, noradrenalin, adrenaline and 5-hydroxytryptamine,

which are involved in emotion, attention, reward, movement, and

various other functions. These neurotransmitters are synthesized

by a number of iron-dependent enzymes including phenylalanine

hydroxylase (Gottschall et al., 1982), tyrosine hydroxylase (Ramsey

et al., 1996), and tryptophan hydroxylase (Kuhn et al., 1980). Brain

iron deficiency (BID), however, rarely causes reduced expression

or activity of these enzymes (Youdim et al., 1989). The conser-

vation of iron in these enzymes under BID possibly reflects the

importance of these enzymes to brain function.

In addition to neurotransmitter synthesis, iron impacts several

other steps in neurotransmitter signaling, which are more vulner-

able to changes in iron levels. Reduced neuronal uptake of the

catecholaminergic neurotransmitters has been observed in several

BID models (Burhans et al., 2005; Beard et al., 2006b; Bianco et al.,

2008), and the extracellular concentration of neurotransmitters

are elevated in BID rats (Beard et al., 1994). Dopaminergic signal-

ing is further perturbed in iron deficiency by attenuating affinity

and expression of D2 neurotransmitters (Youdim et al., 1989).

ENERGY PRODUCTION

The brain has a high energy demand, accounting for 20% of

basal oxygen consumption (Halliwell, 2006) and thus requires

high iron levels to generate ATP by the electron transport chain

in the mitochondria. Various mitochondrial enzymes utilize iron

as a cofactor including the mitochondrial ferredoxins (Redfearn

and King, 1964), cytochromes (Slater, 1949), and aconitase (Dick-

man and Cloutier, 1950). Iron deficiency changes mitochondria

morphology (Jarvis and Jacobs, 1974), impairs function (Masini

et al.,1994), and damages mitochondrial DNA (Walter et al.,2002).

Reduced mitochondrial efficiency possibly explains why iron defi-

ciency results in elevation of oxidative stress markers (Knutson

et al., 2000; Jeong et al., 2011; Wan et al., 2012a), despite loss of

pro-oxidant iron.

MYELINATION

Myelin is the fatty“white matter”that insulates axons and preserves

their signaling. Accordingly, under basal conditions, oligoden-

drocytes exhibit high levels of iron comparative to other brain

cells (Benkovic and Connor, 1993; Connor et al., 1995). Iron

treatment to cultured glial restricted precursor cells increases

their differentiation into GalC1 oligodendrocytes, while treat-

ment to cultured O2A oligodendrocytes progenitors increases their
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proliferation without altering differentiation (Morath and Mayer-

Proschel, 2001). Iron, therefore, has marked, but distinct effects

on the temporal sequence of oligodendrocyte development. In

a rat model, BID restricts both glia precursor cell proliferation

and differentiation into oligodendrocytes (Morath et al., 2002)

and decreases components of myelin: myelin basic protein, myelin

proteolipid protein, galactolipids, phospholipids, and cholesterol

(Yu et al., 1986; Ortiz et al., 2004). Lack of myelination causes

slower neuronal conduction, evidenced by retardation of reflexes.

In humans, iron deficiency is associated with abnormal reflexes in

infants (Armony-Sivan et al., 2004) and in iron-deficient children,

deficits in auditory brain stem potentials and visual evoked poten-

tials have been observed (Roncagliolo et al., 1998; Algarin et al.,

2003).

NEUROLOGICAL DISORDERS ASSOCIATED WITH IRON

DEFICIENCY

FAILURE TO THRIVE

It is now widely recognized that BID in early life is associated with

developmental delays in various brain faculties. Iron deficiency,

characterized by anemia, has been associated with poorer fine and

gross motor skills, visual-motor integration, language and global

IQ, accompanying higher scores in anxiety and depression, social

and attention problems (Palti et al., 1985; Lozoff et al., 1991; Hur-

tado et al., 1999) with some symptoms persisting 10 years after

treatment for anemia (Lozoff et al., 2000). While the association

between iron and various markers of developmental delay are

unequivocal, the causal relationship is complicated by confound-

ing socioeconomic variables that often accompany iron deficiency

including generally poor nutrition, lack of stimulation in the

home, lack of maternal warmth, poor maternal education, mater-

nal depression, more absent fathers, parasitic infection, and low

birth weight (Grantham-McGregor and Ani, 2001).

The importance of iron to neurodevelopment is thus unclear

from observational human studies, which has necessitated study

of iron-deficient experimental animal models. Agreeing with

complementary human studies, BID in rats causes delayed behav-

ioral milestones (Beard et al., 2006a), including impaired memory

(Yehuda et al., 1986; Wachs et al., 2005) and motor function (Hunt

et al., 1994). Symptoms resulting from dietary iron restriction in

the first 21 days of the life of the rat are not recoverable even after

6 weeks of iron supplementation (Ben-Shachar et al., 1986). Com-

bining the human and animal evidences strongly supports a critical

role for iron in neurodevelopment, and since the symptoms are not

readily correctable after the critical period, these also highlight the

importance of monitoring and early dietary intervention.

ATTENTION DEFICIT HYPERACTIVITY DISORDER

Attention deficit hyperactivity disorder (ADHD) is a developmen-

tal disorder manifesting in symptoms of inattention, hyperactivity,

and impulsiveness. ADHD is highly heritable, and several candi-

date disease-causing genes are involved in dopamine neurotrans-

mission (DAT1, DRD4, DRD5; Elia and Devoto, 2007). Since iron

interacts with multiple steps in dopamine neurotransmission, it

is possible that BID might precipitate ADHD in idiopathic cases.

While several studies showed reduced ferritin in children affected

by ADHD (Konofal et al., 2004; Oner et al., 2008; Cortese et al.,

2009; Juneja et al., 2010; Menegassi et al., 2010), the largest study

(194 children), reported unaltered serum ferritin levels between

ADHD patients and controls (Donfrancesco et al., 2012). As pre-

viously mentioned, iron status in children often co varies with

multiple parameters of socioeconomic status, which might con-

found these studies. Further peripheral markers of iron do not

often reflect the status of brain iron; therefore peripheral iron is

not likely altered in ADHD. However, a recent study of 36 individu-

als reported reduced brain iron in the thalamic region as measured

by magnetic resonance imaging (MRI) in ADHD patients (Cortese

et al., 2012) suggesting a role for BID in the pathogenesis of this

disease.

Could iron supplementation therefore be used as a treatment

for ADHD? A case study reported a 3 year-old presenting with low

serum ferritin (13 ng mL−1) accompanying ADHD who was sup-

plemented with ferrous sulfate (80 mg day−1) and 8 months later

was observed to exhibit various behavioral improvements (Kono-

fal et al., 2005). This prompted a 12-week clinical trial of iron

supplementation in ADHD, which recorded improvements in the

ADHD rating scale for the treatment group (Konofal et al., 2008).

These studies warrant further investigation into iron as a potential

therapeutic, however, as discussed above, iron supplementation

after a critical period is not effective in reversing cognitive symp-

toms of early BID in rats (Ben-Shachar et al., 1986), which might

limit the use of this approach in ADHD.

RESTLESS LEGS SYNDROME

Restless legs syndrome (RLS) is a neurological disorder charac-

terized by uncomfortable or odd sensations in the body (often

legs) that prompt an incessant urge to move (Earley, 2003). The

prevalence of RLS is estimated to be between 5 and 10% of

the population (Lavigne and Montplaisir, 1994; Rothdach et al.,

2000; Ulfberg et al., 2001). The disorder is associated with reduced

dopamine uptake and reduced D2 receptor density (Staedt et al.,

1995; Turjanski et al., 1999; Michaud et al., 2002), and is often

treated with dopamine-based therapies (Hening et al., 1999; Allen

et al., 2001). This neurochemical profile is consistent with BID

(Youdim et al., 1989) of the nigrostriatal pathway. Indeed low fer-

ritin and high Tf levels have been reported in CSF of RLS patients,

while serum indices of iron metabolism were not altered (Earley

et al., 2000; Clardy et al., 2006). Direct measurements of iron by

post-mortem histological staining (Connor et al., 2003) and MRI

(Allen et al., 2001; Earley et al., 2006) reveal decreased levels in the

substantia nigra (SN) of affected patients.

NEURODEGENERATION

What are the lifetime consequences of BID? This remains an under-

explored subject in brain iron research, which has historically

focused on BID in neurodevelopment, and iron accumulation

in neurodegeneration. Accordingly, to our knowledge, there has

been no report of BID in a neurodegenerative disorder. Recently, a

genetic mouse model of motor neuron iron deficiency (IRP2−/−)

exhibited reduced mitochondrial activity, hypomyelination, and

neurodegeneration (Jeong et al., 2011), raising the possibility of

BID-induced neurodegenerative disorders. Patients with the neu-

rodegenerative disorder, dementia with Lewy bodies (DLB), have

a threefold higher incidence of self-reported history of ADHD
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symptoms. However, the status of iron in ADHD patients is only

beginning to emerge, and the status of iron in DLB is also not

known, so it is premature to mechanistically connect the two

diseases via iron. Low iron levels impair mitochondrial func-

tion (Masini et al., 1994), and increase oxidative stress markers

(Knutson et al., 2000), possibly by limiting the function of the iron-

dependent antioxidant, catalase (Wan et al., 2012a). Longer-term

studies of rodent models of BID will illuminate the neuroanatom-

ical and neurobiochemical changes that result from low iron

bioavailability.

IRON ACCUMULATION IN THE BRAIN

The sophisticated mechanisms that manage iron in the brain high-

light the need for tightly controlled iron regulation, in order to

exploit its utility in cellular operations, while preventing its dele-

terious capacity. Functional loss of IRPs by genetic mutations

induces brain iron deposition, which is sufficient to cause neurode-

generation in diseases like aceruloplasminemia (Miyajima et al.,

1987; Hochstrasser et al., 2004) and neuroferritinopathy (Feyt

et al., 2001; Chinnery et al., 2007). This demonstrates the potential

for iron elevation to participate in neuronal loss of more common

neurodegenerative diseases [e.g., Alzheimer’s (AD) and Parkin-

son’s disease (PD)] where brain iron elevation features in both

diseases.

BRAIN IRON ACCUMULATION WITH AGING

Aging is an important risk factor for neurodegenerative diseases.

Multiple failures of the iron regulatory system in disease could be

contributed to by the aging process (Bartzokis et al., 1997; Martin

et al., 1998; Pfefferbaum et al., 2009; Penke et al., 2012; Daugherty

and Raz, 2013). Age-related iron retention can serve as predictors

of behavioral deficits, such as cognitive decline (Penke et al., 2012)

and motor impairment (Cass et al., 2007; Kastman et al., 2012),

highlighting the possibility of its involvement in age-associated

decline.

Brain iron elevation with age could be contributed to by

changes in various proteins that comprise the iron regulation

machinery. Ferritin is elevated during the aging process in both

gray and white matter of occipital cortex (Connor et al., 1992b)

and the SN (Zecca et al., 2004), but is unchanged in motor cortex

and superior temporal gyrus (Connor et al., 1992b). Tf expression

was found to be decreased in white matter of superior temporal

gyrus, but elevated in white matter of occipital cortex (Connor

et al., 1992b). Cp was found to be elevated in gray matter with

aging, without changes in white matter (Connor et al., 1993), while

another report observed that Cp was unchanged in SN (Zecca

et al., 2004). In rat brains, iron and ferritin were found to increase

with age, while Tf levels remain unchanged (Roskams and Con-

nor, 1994). The mechanism of age-related iron accumulation is

only beginning to be elucidated. The selective vulnerability of iron

accumulation during aging could also explain why iron elevation

is a feature of various neurodegenerative diseases.

ALZHEIMER’S DISEASE

Alzheimer’s disease is the most prevalent neurodegenerative

disease characterized clinically by progressive dementia, and

pathologically by the presence of Aβ-containing plaques, and

tau-containing neurofibrillary tangles in affected brain areas. Ele-

vated iron is also a feature of AD-effected post-mortem brains

(Zhu et al., 2009; Duce et al., 2010; Smith et al., 2010; Qin et al.,

2011; Antharam et al., 2012; Loef and Walach, 2012). Iron accumu-

lation occurs in AD cortex and hippocampus, but not cerebellum

(Andrasi et al., 1995; Duce et al., 2010; Antharam et al., 2012), con-

sistent with the pathological profile of neurodegeneration in AD.

In addition, iron is accumulated in both plaques and tangles (Con-

nor et al., 1992a; Smith et al., 1997; Meadowcroft et al., 2009), and

is estimated to be three times that of the normal neuropil level in

plaques (Lovell et al., 1998). The iron content in hippocampus of

patients with AD was reported to correlate with the mini-mental

state examination (MMSE) and the disease duration (Ding et al.,

2009; Zhu et al., 2009), suggesting that iron can play a significant

role in the disease progression.

Several genes of iron regulatory proteins are risk factors for

sporadic AD, including Tf and human hemochromatosis protein

(HFE). In a genome-wide association study (GWAS) study, Tf

variant C2 positively correlates with AD risk with an OR of 1.21

(Bertram and Tanzi, 2008), which is supported by a number of

independent studies (Van Landeghem et al., 1998; Schjeide et al.,

2009; Kauwe et al., 2010) but was not confirmed in a recent large-

scale GWAS study (Hollingworth et al., 2011). In addition, HFE

mutations (H63D and C82Y) are risk factors for AD independently

(Sampietro et al., 2001; Blazquez et al., 2007), and synergistically

with APOE gene (Kauwe et al., 2010; Giambattistelli et al., 2011;

Lehmann et al., 2012). Both of the genes are also shown to mod-

ulate iron content, and are implicated in the risk of cognitive

impairment in normal aging (Bartzokis et al., 2011).

Iron accumulation can promote aggregation of both Aβ and

tau, the key proteins involved in plaque and tangle formation,

respectively. Three histidine residues of Aβ were suggested as the

binding amino acids of iron, and this complex is redox-active

(Nakamura et al., 2007; Bousejra-ElGarah et al., 2011). Recently

it was found that iron delayed the amyloid fibril formation but

enhanced the toxicity in vitro, suggesting the iron-bound Aβ

oligomer could serve as a toxic species (Mantyh et al., 1993; Schu-

bert and Chevion, 1995; Liu et al., 2011). These observations are

relevant to disease since iron is concentrated in plaques (Mead-

owcroft et al., 2009; Gallagher et al., 2012), and increased iron

content is prior to plaque formation in an animal model of AD

(Leskovjan et al., 2011). Aβ–iron complex can induce ROS via

Fenton chemistry (Rottkamp et al., 2001; Rival et al., 2009), and

activate B-cell lymphoma 2 (Bcl-2) apoptosis pathway (Kuperstein

and Yavin, 2003). Chelation of iron can prevent Aβ aggregation,

and reverse the consequent memory loss in animal models of AD

(Huang et al., 2004; Guo et al., 2013b).

Iron and tangles co-localized in AD (Smith et al., 1997) and

tangles can bind iron in a redox-dependent manner, acting as

a source for ROS within the neurons (Smith et al., 1997; Sayre

et al., 2000). This process can also be removed by iron chelation

(Shin et al., 2003). Fe(III), but not Fe(II), can induce tau aggre-

gation in vitro, which again can be reversed by reducing Fe(III)

to Fe(II) (Yamamoto et al., 2002) or iron chelators (Amit et al.,

2008). Fe(II) can induce tau hyperphosphorylation (Lovell et al.,

2004; Chan and Shea, 2006), via activation of extracellular signal-

regulated kinase 1/2 (Erk1/2) pathway or the mitogen-activated
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protein kinase (MAPK) pathway (Muñoz et al., 2006; Huang et al.,

2007). Chelation therapies such as deferoxamine can inhibit iron-

induced tau hyperphosphorylation in vivo (Guo et al., 2013a), and

prevention of iron uptake can also inhibit this event by deacti-

vating glycogen synthase kinase 3 (GSK-3) and cyclin-dependent

kinase 5 (Cdk-5; Xie et al., 2012), two key tau kinases (Lei et al.,

2011).

Understanding the cause of iron accumulation in AD might

lead to new therapeutic opportunities. Multiple components of

the iron regulatory system are altered in AD including IRP2 (Smith

et al., 1998), ferritin (Connor et al., 1992a), and Tf (Loeffler et al.,

1995). Of particular interest is APP, which is involved in Aβ pro-

duction and iron homeostasis. APP expression is unchanged in

AD cortex but its ferroxidase activity was reported to be decreased

(Duce et al., 2010). This could prevent ferroportin-mediated iron

export and Tf loading, which would lead to iron retention within

neurons. APP-mediated iron export is also impacted by AD-

associated tau protein (Lei et al., 2012). Soluble tau levels are

reduced in AD brains compared to control brains (Ksiezak-Reding

et al., 1988; Shin et al., 1992; Khatoon et al., 1994; Zhukareva et al.,

2001, 2003; van Eersel et al., 2009); which might result from tau

deposition into insoluble aggregates during the disease progress

(Khatoon et al., 1994). Loss of functional tau could further per-

turb APP-mediated iron export by restricting the presentation of

APP at the surface.

PARKINSON’S DISEASE

Parkinson’s disease is the most prevalent movement disorder,

caused by loss of dopaminergic neurons in the SN pars compacta.

The brain of PD patients, and especially the SN, is decorated by

Lewy body inclusions that are enriched with the α-synuclein pro-

tein. As early as 1924, iron deposition in the SN of PD patients

was described (Lhermitte et al., 1924). Iron elevation within this

nucleus has been consistently reported using multiple techniques

such as inductively coupled plasma-mass spectrometry (ICPMS;

Dexter et al., 1989; Lei et al., 2012), atomic absorption spec-

troscopy (Ayton et al., 2012b), X-ray fluorescence (Popescu et al.,

2009), and MRI (Bartzokis et al., 1999).

Iron deposits have been found in Lewy Bodies in PD cases

(Castellani et al., 2000), suggesting that α-synuclein may inter-

act with iron at the biochemical level. Indeed, iron binds to

α-synuclein (Bharathi and Rao, 2008; Peng et al., 2010), accelerates

α-synuclein aggregation (Golts et al., 2002; Kostka et al., 2008),

and causes toxic hydroxyl radical production in vitro (Turnbull

et al., 2001). Treating iron to cells initiates α-synuclein aggre-

gation (Ostrerova-Golts et al., 2000; Gault et al., 2010; Li et al.,

2011), and the resultant oligomer promoted α-amino-3-hydroxy-

5-methyl-4-isoxazolepropionic acid (AMPA)-receptor-mediated

excitotoxicity (Huls et al., 2011). Iron administration to cells that

overexpress a disease-related mutant form of α-synuclein, A53T,

enhanced cytotoxicity of the protein via increasing the autophagic

activity (Ostrerova-Golts et al., 2000; Chew et al., 2011), which

could explain how iron causes toxicity in PD.

Iron content in SN is a risk factor and may serve as a biomarker

of PD. Mutations in a number of iron-related proteins have been

shown to associate with the risk of PD, including Tf (Borie et al.,

2002), IRP2 (Deplazes et al., 2004), ferritin (Foglieni et al., 2007),

and DMT1 (He et al., 2011). It has been debated whether iron

accumulation in SN is a secondary effect of cell death in PD. How-

ever, recent developments in MRI and transcranial sonography

(TCS) makes it possible to examine brain iron content in living

patients. It has been shown using MRI that iron accumulates at

the early stage of PD before the symptom onset (Bartzokis et al.,

1999; Martin et al., 2008), and healthy individuals with increased

SN iron content determined by TCS had 17 times higher risk of

developing PD (Berg et al., 2011). The SN iron elevation in PD

patients, shown by MRI, correlates with the disease susceptibility

(Baudrexel et al., 2010), severity (Atasoy et al., 2004; Wallis et al.,

2008) and duration of the disease (Kosta et al., 2006; Zhang et al.,

2010). The early rise in iron, measured by TCS and MRI supports

a role for iron in the pathogenicity of PD.

Iron accumulation is alone sufficient to cause parkinsonian

neurodegeneration. Direct iron injection to rat brains can cause

SN neuron loss (Ben-Shachar and Youdim, 1991), and feeding

neonatal mice with iron can trigger later life parkinsonism and

nigral degeneration (Kaur et al., 2007). Diseases primarily charac-

terized by brain iron accumulation, including aceruloplasminemia

(Miyajima et al., 1987; Hochstrasser et al., 2004; McNeill et al.,

2008), neuroferritinopathy (Crompton et al., 2002; Chinnery et al.,

2007), and iron accumulation (NBIA) (Schneider et al., 2012),

often cause symptoms of PD. The observations from these dis-

eases which are caused by rare loss-of-function mutations of IRPs

indicate that a similar iron accumulation observed in idiopathic

PD likely participates in the degenerative processes. Aceruloplas-

minemia can be recapitulated in mice that lack the Cp gene, and

this can be rescued with iron chelation (Patel et al., 2002; Ayton

et al., 2012b).

Modulation of iron shows beneficial effects on PD ani-

mal models. PD toxin model, 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP) or 6-hydroxydopamine (6-OHDA)

cause SN iron accumulation in mice, coincident with neuronal loss

(Hare et al., 2013). These PD models can be rescued by iron chela-

tion (Kaur et al., 2003; Mandel et al., 2004; Youdim et al., 2004a,b).

Iron-mediated toxicity in these models can also be ameliorated by

genetic or pharmacologically restoring ferritin (Kaur et al., 2003)

and Cp (Ayton et al., 2012b).

Why does iron accumulate in PD? This could be contributed

by a number of iron-related proteins that are changed in PD. Fer-

ritin levels have been found to be decreased in post-mortem PD

brains (Dexter et al., 1990; Werner et al., 2008); loss of iron stor-

age capacity potentially makes free iron species more available for

toxic interactions. Iron accumulation in PD might be caused by

increased neuronal iron import. DMT1 is elevated in SN of PD

patients (Salazar et al., 2008), which could promote iron import,

but the levels of TfR1, which is required for DMT1-mediated iron

import are unchanged when corrected for neuronal loss (Mash

et al., 1991; Morris et al., 1994; Faucheux et al., 1997). Alterna-

tively, iron accumulation in PD could also be attributed to reduced

iron export. Cp levels in PD brains were unaltered, however, the

activity is selectively reduced in SN, which could bottleneck iron

export (Ayton et al., 2012b). Tau protein is also implicated in PD

(Lei et al., 2010), and selective reduction of tau found in SN of PD

patients may also contribute to iron accumulation by preventing

APP-mediated iron export (Lei et al., 2012).
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OTHER NEUROLOGICAL DISORDERS

Iron accumulation has been observed in affected brain regions

of various diseases including progressive supranuclear palsy (Cof-

fey et al., 1989; Dexter et al., 1991; Boelmans et al., 2012), Pick’s

disease (Ehmann et al., 1984), Huntington’s disease (Dexter et al.,

1991; Bartzokis et al., 2007; Jurgens et al., 2010; Rosas et al., 2012),

prion disorders (Singh et al., 2009a, 2012), amyotrophic lateral

sclerosis (Oba et al., 1993; Santillo et al., 2009; Langkammer et al.,

2010), and multiple system atrophy with striatonigral degenera-

tion (Dexter et al., 1991; Vymazal et al., 1999; von Lewinski et al.,

2007; Wang et al., 2012). The iron accumulation in diseases such as

prion disorders and Huntington’s disease may result from ferritin

accumulation (Simmons et al., 2007; Singh et al., 2012), but the

cause or implications of iron elevation for these diseases is unclear

at this stage.

Friedreich’s ataxia is a disorder of iron metabolism more

extensively studied. This autosomal recessive degenerative dis-

ease results from mutations in the mitochondrial protein frataxin

(Campuzano et al., 1996; Carvajal et al., 1996). Friedreich’s ataxia

is characterized by degeneration of large sensory neurons and

cardiomyopathy (Gordon, 2000), but brain atrophy and iron accu-

mulation are also features of the disease (Synofzik et al., 2011).

Recent studies suggested that the function of frataxin is related

to the maintenance of iron homeostasis, acting as iron-storage

protein in mitochondrial similar to ferritin, and also an intrami-

tochondrial iron chaperone. It is also suggested to be involved in

heme and iron sulfur cluster biogenesis. The frataxin mutant is

unstable and severe reduction of the protein results in intramito-

chondrial iron accumulation and cytosolic iron deficiency in mice

and humans, and is suggested to contribute to the pathogene-

sis of the disease (Gordon, 2000; Puccio et al., 2001; Richardson

et al., 2010). Interestingly, a high iron diet limits some of the phe-

notypes in mouse models such as cardiac hypertrophy (Whitnall

et al., 2012).

Like iron, copper also participates in neurodegenerative path-

ways. Copper is able to cause the aggregation of alpha synuclein

(Bharathi and Rao, 2008), and copper is a co-factor of dopamine

beta-hydroxylase, which is involved in dopamine synthesis (Ash

et al., 1984). Copper is decreased in PD SN (Dexter et al., 1991;

Ayton et al., 2012b) which might be a reason why the copper-

dependent Cp protein is dysfunctional in the disease. Peripheral

Cp is also depleted in Wilson’s disease, which is primarily a disor-

der of copper homeostasis, caused by a genetic mutation to ATP7b

(Bull et al., 1993). Copper accumulates in liver and brain, along

with iron (Shiono et al., 2001; Litwin et al., 2013). Why does iron

also accumulate as a result of the disease? Possibly reduced Cp lev-

els in plasma reduce iron export in liver and brain, resulting in iron

accumulation. Whatever the mechanism, Wilson’s disease often

presents as early-onset PD, possibly mediated by the elevation of

copper and iron (Machado et al., 2006).

TOXICITY MECHANISMS OF IRON OVERLOAD IN DISEASES

Iron can induce neurotoxicity by its ability to promote the

formation of ROS, a source of oxidative stress. Elevated iron

is potentially neurotoxic, indeed the direct injection of iron

into the rat brain causes neurodegeneration (Ben-Shachar and

Youdim, 1991), possibly via an oxidative stress pathway which

initiates several apoptotic signaling pathways (Ke and Ming Qian,

2003).

Recently, a type of RAS-related cell death pathway was shown to

be linked with intracellular iron levels, termed ferroptosis (Dixon

et al., 2012), which could be potentially responsible for cell death

seen in iron overload diseases. This type of cell death pathway

shared no markers of apoptosis (e.g., caspase activation, mito-

chondrial cytochrome c release), but could be prevented by iron

chelation or iron uptake inhibition (Yagoda et al., 2007; Yang and

Stockwell, 2008). This pathway is not induced by Fenton chem-

istry; rather it is related with iron-dependent enzymatic activities

(Dixon et al., 2012). Indeed, inappropriate intracellular iron accu-

mulation potentially damages a number of proteins such as

Ca2+-ATPase (Kaplan et al., 1997; Moreau et al., 1998), glutamate

transporter (Gnana-Prakasam et al., 2009; Yu et al., 2009; Mitchell

et al., 2011), Na+/K+-ATPase (Kaplan et al., 1997; Strugatsky et al.,

2003), and N-methyl-D-aspartate (NMDA) receptor (Nakamichi

et al., 2002; Munoz et al., 2011), as well as oxidizes lipid such as

cholesterol (Kraml et al., 2005; Graham et al., 2010; Shinkyo and

Guengerich, 2011), ceramides (Yurkova et al., 2005), and sphin-

gomyelin (Jenkins and Kramer, 1988; Isaac et al., 2006); all of

which were proposed to ultimately cause synaptic dysfunction and

neuronal cell death (Mattson, 2004).

It is therefore not surprising that iron elevation observed in

a number of neurodegenerative diseases, such as AD and PD, is

proposed to be a key mediator in cell loss of these diseases (Ayton

et al., 2012a; Lei et al., 2012). In neurodegenerative diseases, iron

is also found to partner with disease-related proteins, such as β-

amyloid, tau, prion, and α-synuclein, which form soluble and

insoluble aggregates and activate cell death pathways (Chiti and

Dobson, 2006). The presence of iron accelerates the aggregation

process in vitro (Schubert and Chevion, 1995; Ostrerova-Golts

et al., 2000; Rottkamp et al., 2001; Yamamoto et al., 2002; Khan

et al., 2006), and aggravates the oxidative stress induced by the

protein in vivo (Huls et al., 2011; Li et al., 2011; Wan et al., 2011).

Recently it has emerged that these disease-related proteins also

participate in iron metabolism. The mRNA of APP has an IRE in

its 5′-UTR (Rogers et al., 2002, 2008), and was found to facilitate

iron export in vitro and in vivo (Duce et al., 2010). Suppression

of APP expression in mice resulted in age-dependent iron accu-

mulation (Duce et al., 2010), and overexpression of wild type

APP resulted in iron reduction in SH-SY5Y neuroblastoma cells

(Wan et al., 2012b). Interestingly, overexpression of a disease-

related mutant form of APP, the Swedish mutant, in SH-SY5Y

cells and Caenorhabditis elegans causes significant iron retention

accompanied with elevated ROS (Wan et al., 2011). It was pro-

posed by the authors that the observed iron change is due to the

increased amount of Aβ (Wan et al., 2011), however, it can be alter-

natively explained by loss-of-APP function. Aβ oligomers were

shown to decrease NTBI uptake, however, the disease relevance was

unclear (SanMartin et al., 2012). Recently, tau protein was found

to mediate APP trafficking, and reduction of tau blocked iron

export, leading to intracellular iron accumulation (Lei et al., 2012).

Tau knockout mice exhibited age-dependent neurodegeneration,

which could be pharmacologically prevented by iron chelation

therapy (Lei et al., 2012), supporting a function of tau in iron

metabolism.

Frontiers in Aging Neuroscience www.frontiersin.org July 2013 | Volume 5 | Article 34 | 9

http://www.frontiersin.org/Aging_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Aging_Neuroscience/archive


Hare et al. Iron metabolism and neurological diseases

Other disease related proteins have been investigated less for

their association with iron metabolism, but the emerging data

could point to a role for these proteins in iron homeostasis. α-

synuclein exhibits an IRE in its 5′-UTR mRNA (Friedlich et al.,

2007), and is reported to be ferrireductase of unknown biologi-

cal function (Davies et al., 2011). Recently, prion protein was also

suggested to act as a functional ferrireductase, to modulate cellu-

lar iron uptake (Singh et al., 2009c, 2013). Loss of prion protein

caused iron deficiency in mice, which can be reversed by expression

of wild type prion protein (Singh et al., 2009b). In addition, hunt-

ingtin protein, involved in Huntington’s disease, was also reported

as an iron-responsive protein (Hilditch-Maguire et al., 2000). In

huntingtin-deficient zebrafish, iron starvation was identified dur-

ing development, and these zebrafish had decreased hemoglobin

production (Lumsden et al., 2007).

THERAPEUTICS BASED ON IRON MODULATION

Since iron involves the pathogenesis of neurodegenerative disor-

ders, chelation of iron therefore could be a therapeutic strategy.

Currently, iron chelation is utilized in practice for transfusional

iron overload and hemochromatosis (Nick, 2007). Treatment

for this type of diseases requires selective iron chelators with

high affinity, to facilitate bulk excretion of iron from the body

(Positano et al., 2009; Meloni et al., 2010; Murphy and Oudit,

2010; Pietrangelo, 2010). Deferoxamine (Propper et al., 1976),

deferiprone (Kontoghiorghes et al., 1987a,b) and deferasirox (Piga

et al., 2006; Shashaty et al., 2006) have been tested for these dis-

eases. However, neurodegenerative diseases that feature regional

iron accumulation require therapeutic agents to cross blood–brain

barrier, and target specific brain regions in preference to the rest

of the body.

Several brain permeable iron chelators have been explored in

pre-clinical models of AD and PD (Kontoghiorghes et al., 1987a;

Ben-Shachar et al., 1992; Kaur et al., 2003; Youdim et al., 2004a;

Liang et al., 2008; Gogoi et al., 2011) although none of these

compounds have entered clinical trials so far. One pilot trial of

deferiprone was reported to be beneficial for NBIA (Abbruzzese

et al., 2011). The mechanisms for neuroprotection effects of iron

chelators have been linked with suppression of apoptotic path-

way (Youdim et al., 2005; Avramovich-Tirosh et al., 2007; Zhu

et al., 2007; Amit et al., 2008; Gal et al., 2010), promoting sur-

vival pathways (Avramovich-Tirosh et al., 2010; Reznichenko et al.,

2010), restoration of protein degradation (Zhu et al., 2007), and

stabilization of mitochondrial function (Youdim et al., 2005).

Clioquinol is a moderate affinity iron chelator that has under-

gone extensive pre-clinical testing for neurodegenerative disorders,

and a clinical trial (Cherny et al., 2001; Kaur et al., 2003; Ritchie

et al., 2003; Lei et al., 2012). The therapeutic effects of clioquinol

have often been attributed to its ionophore activity, which redis-

tributes copper and zinc into the cell (Cherny et al., 2001; Nitzan

et al., 2003; Adlard et al., 2008; Li et al., 2010; Crouch et al., 2011;

Park et al., 2011). However, its ability to chelate iron is also likely

involved in its neuroprotective properties. Iron binds to clio-

quinol (Tamura et al., 1973; Kidani et al., 1974; Ohtsuka et al.,

1982), and several beneficial effects of clioquinol have reported

to be iron-dependent (Felkai et al., 1999; Atamna and Frey, 2004;

Choi et al., 2006; Rival et al., 2009). Treatment with clioquinol pre-

vents the elevation of SN iron levels in MPTP-treated mice, which

confers neuroprotection (Kaur et al., 2003). Similar treatment

also prevented age-related nigra degeneration in tau knockout

mice (Lei et al., 2012), highlighting a potential use of clioquinol

as an iron-binding agent. These results suggest that clioquinol

participates in iron redistribution, but more data is needed to

confirm.

CONCLUSION

The tightly regulated nature of iron in the human brain protects

against diseases associated with excess or deficiency. Disease man-

ifests when these systems deteriorate or are overwhelmed. Iron

deficiency is prevalent, particularly in underdeveloped societies,

and causes long-term consequences to brain health. There is there-

fore urgent need to address nutritional deficiency in pregnancy and

in infancy to prevent these long-term consequences. Iron elevation

in the brain is a feature of several major neurodegenerative disor-

ders. While the cause of this is unknown, it is noteworthy that a

variety of neurodegenerative disease-associated proteins involved

in iron metabolism through various mechanisms, supporting the

hypothesis that iron and disease-related proteins participate in a

toxic cycle. The involvement of iron in neurodegenerative diseases

needs further elucidation, but iron overload in these disorders rep-

resents an attractive pharmacological target for disease modifying

therapies.
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