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Abstract—We consider optical camera communication (OCC)
between a camera receiver with optical lenses and distributed trans-
mitters. This article investigates the features of an OCC system
when the periods of reception and transmission are slightly differ-
ent from each other. We describe a received light signal model for
the OCC system with on-off keying and regard the received signals
generated from a probability distribution of a Gaussian mixture
model. We obtain the parameters of the probability distributions
by applying a variational Bayesian inference method and utilize
them for channel estimation. In addition, we define cost functions
and minimize them to demodulate the transmitted bit sequences.
The demodulation procedure uses a maximum-likelihood sequence
detection method, which can be implemented by the Viterbi algo-
rithm and estimates a synchronization parameter by minimizing
the cost functions. Our new demodulation method requires neither
synchronization devices nor training sequences for estimating the
parameters. Moreover, the receiver does not need the precise trans-
mission period, which is difficult to know in advance in practical
situations because of the frequency tolerance of the clock generator
in the transmitter. To validate our developed method, we conducted
numerical simulations and compared the results with those from
an oracle estimator that knows the parameters other than the bit
sequence in advance. We also experimented in a real setup situation,
and the results show the efficiency of our developed method.

Index Terms—Optical camera communication, Gaussian
mixture model, clock synchronization, maximum-likelihood
sequence detection method.

I. INTRODUCTION

V
ISIBLE light communication (VLC) is a research area

that has emerged mainly due to the widespread use of
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light-emitting diodes (LEDs). Indoor VLC, which uses room

lights from LEDs as a transmitter, can provide a fast and secure

communications system because of the massive number of LEDs

and controllability of the illumination area [1]–[4]. In addition,

great effort has been made to apply VLC to intelligent traffic sys-

tems (ITSs) for safer driving and more efficient traffic navigation

[5]–[9]. Since both of the above applications will utilize LEDs

that are already available for room and automotive lighting and

traffic lights, installation costs are expected to be low compared

to conventional radiofrequency (RF) wireless communications

systems. Furthermore, as visible light currently has no legal

restrictions involving bandwidth allocation in many countries,

we can freely use VLC in many situations.

One type of VLC is optical camera communication (OCC).

OCC employs a camera as a receiver and gathers data from

distributed devices that have LEDs or displays as transmitters

[10]–[12]. Recent advances in cameras with image sensors (ISs)

have opened up wide possibilities for OCC systems. Thanks to

the receiver’s optical lenses, emitted lights are spatially sepa-

rated on the IS and the massive number of pixels enables the

camera receiver to detect the positions of objects. This enables

the receiver to trace moving transmitters and communicate with

multiple transmitters simultaneously. By taking advantage of

these features, OCC systems have been applied to vehicle-to-

infrastructure and vehicle-to-vehicle communications in ITSs

[5]–[9], positioning systems [13], [14], multichannel acoustic

measurement for beamforming via optical wireless microphones

[15], [16] and simultaneous biosignal observation of audiences

in live concerts [17].

One major issue facing OCC systems is the limited sampling

period, i.e., the reception period of ISs compared to that of

photodetectors. This limitation complicates synchronization be-

tween the receiver camera and transmitters [18]. Undersampled

frequency shift on-off keying [19] and undersampled phase

shift on-off keying [20] are sophisticated methods to overcome

this synchronization issue; however, these methods utilize very

short-time exposure time and thus need sufficiently bright LEDs

as transmitters, which is unfavorable in terms of power consump-

tion. Pablo et al. adopted an infrared interface that broadcasts

the master clock to the transmitters to synchronize the shutter

timing of the camera receiver and the bit transition timing of the

LED transmitters [15]; however, the additional interface is not
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desirable in terms of the fabrication cost and power consumption

of transmitter devices. Ohshima et al. [21] developed an effective

synchronization method for OCC with rolling shutter ISs. Their

method enables very fast communication using a conventional

rolling shutter IS embedded in a smartphone; however, the

simultaneous communication between multiple transmitters is

difficult to implement with this synchronization method because

it assumes that a transmitter is mapped on the wide area of the IS.

Mao et al. [22] proposed a method that can demodulate received

signals in OCC without any synchronization devices even when

the sampling and transmission periods are different. However, to

estimate the background noise and the synchronization parame-

ter, the method needs a training sequence. This additional non-

informational sequence reduces the bit transmission efficiency.

Taking into account these issues, we suggested a method that

requires neither synchronization devices nor training sequences

[23]. However, this simple method does not work well in envi-

ronments with non-negligible background noise.

In this study, we developed a demodulation method for an

OCC system that can estimate the background noise level and

synchronization parameters without any synchronization de-

vices and training sequences. To achieve this, we employed the

variational Bayesian inference method for a Gaussian-mixture

model [24] for the channel estimation of the OCC system.

By applying the inference method to received signals, we can

estimate both the background noise level and the gain coefficient

for demodulation. In addition, as in [23], the developed method

does not require precise knowledge of the bit transition periods

of the transmitters. This aspect is practically important because

it is sometimes difficult to know them in advance because of the

frequency tolerance of the clock generators in the receiver and

transmitters.

This paper is organized as follows. In Section II, we describe

notations, assumptions, and the modeling of the light signal at

the receiver camera in an OCC system. Next, we provide a

parameter estimation and demodulation procedure in Section

III. In Sections IV and V, to confirm the efficiency of our

demodulation method, we show the setups for and the results of

numerical simulations and experiments in a real environment.

In Section VI, we present our conclusions.

Note that Figs 1 to 5 were originally presented in our confer-

ence paper [23]. This work is an expansion of that study.

II. OPTICAL CAMERA COMMUNICATION MODEL WITH

ON-OFF KEYING

Before focusing on the demodulation problem, we describe

the channel model discussed throughout this paper. In gen-

eral, one can model an OCC system with a camera receiver

and LED transmitters as a multiple-input and multiple-output

(MIMO) communications system, where multiple pixels on an

IS of the camera receive lights emitted from the multiple LED

transmitters. However, we can simplify the model by stating

some assumptions. First, we assume that there is a sufficiently

large number of pixels in the IS compared to the number of

transmitters in the field of view of the camera. In such a situation,

the images of the different transmitters fall on different pixels in

Fig. 1. (a) Diagram of an optical camera communication system: the images
of the different transmitters fall on different pixels in the image sensor thanks to
the optical lens of the camera receiver. (b) Enlarged view around the pixels on
which the image of the lth sensor falls. The gray pixels are in the pixel indices
set Ωl.

the IS of the camera receiver when the transmitters are almost

in focus. Second, we assume the camera drives in global shutter

mode. Thus all pixel on the IS are charged for the same time

range. This enables us to deal with the pixels indexed by Ωl

where the image of the l th transmitter falls on as one set

of pixels (see Fig. 1). With these two assumptions, one can

consider each transmitter independently and regard the OCC

system as a collection of single-input and single-output (SISO)

communication systems. This spatial separability allows the

OCC system to accommodate multiple transmitters and this type

of multiplexing is called spatial-division multiplexing [25].

Here we describe a model of one SISO communication system

in the OCC system. Lety(t)be instantaneous light power emitted

from the transmitter at continuous time t and let t0, TRX and

τ be the time offset, sampling period, and exposure time of

the camera, respectively. Then the received signal value s[i]
obtained by summing over a pixel set at discrete time index

i is described as,

s[i] =

∫ t0+TRX(i−1)+τ

t0+TRX(i−1)

h[i]y(t)dt+ d[i] + n[i], (1)

where h[i] represents an attenuation coefficient between the

transmitter and a corresponding pixel set. The d[i] denotes a

background noise level which corresponds to the signal value

when none of the transmitters emit light and n[i] denotes the

noise, including shot noise from ambient light and thermal noise

at the pixel amplifier.

While many sophisticated modulation methods, such as un-

dersampled frequency shift on-off keying [19] and undersam-

pled phase shift on-off keying [20], have been applied to OCC,

here, we assume simple on-off keying (OOK) as a basic example.

In OOK, the instantaneous light power y(t) is represented as,

y(t) =
∑

j

Ax[j]g (t− (j − 1)TTX) , (2)
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Fig. 2. Diagram of a transmitter and a camera receiver time lines. The bit
transition from x[ji] to x[ji + 1] occurs during the exposure interval i at time
TBT.

where A, x[j] ∈ {0, 1} and TTX are the maximum optical

power, the transmitted bit information and the transmission

period, respectively. The function g(t) represents the pulse

amplitude of the transmitter, and hereafter we assume that it

is the rectangular function

g(t) =

{

1, 0 ≤ t < TTX

0, otherwise.
(3)

Combining (2) and (3), we can rewrite (1) as,

s[i] = R[i] (a[i]x[ji] + b[i]x[ji + 1]) + d[i] + n[i], (4)

where R[i] = Ah[i]τ and ji are a gain coefficient and the index

of the first transmitted bit in the ith exposure interval, respec-

tively. The terms a[i] and b[i] are linear combination coefficients

representing a bit transition that possibly occurs during the

camera exposure time as illustrated in Fig. 2. In concrete terms,

let tBT[ji] be the time of the bit transition from x[ji] to x[ji + 1].
If tBT[ji] < t0 + (i− 1)TRX + τ is satisfied, the exposure time

tBT[ji]− (t0 + (i− 1)TRX) is devoted to obtaining the light

signal of the first bit x[ji] and the remaining exposure time

t0 + (i− 1)TRX + τ − tBT[ji] is devoted to obtaining that of

the second bit x[ji + 1]. By normalizing these two exposure

times by τ , we have a[i], b[i] and a[i] + b[i] = 1. The linear

combination coefficients a[i] and b[i] reflect the synchronization

status between the receiver and transmitter.

The quality of demodulation in the OCC system using OOK

depends on the synchronization status. Thus the relationship

between periods and phases of exposure and bit transmission

is important. First of all, as Fig. 3 shows, TRX − τ < TTX

should hold to ensure that the camera receiver samples every

transmission bit x[j]. If the periods and the phases are precisely

locked, namely TTX = TRX and a[i] = 1 hold, the OOK signals

can be easily demodulated by, for example, thresholding the

received signals s[i] sequentially. In our application, however,

the phases are not locked while TTX and TRX are nominally the

same. Thus, a[i] and b[i] gradually vary with time. We call this

synchronization status the plesiochronous mode as in [22].

III. A FLEXIBLE DEMODULATION METHOD FOR

PLESIOCHRONOUS OCC SYSTEM

In this section, we introduce a new demodulation method for

the plesiochronous OCC system. In Section III-A, we provide a

basic strategy to develop the demodulation method. After that,

we describe algorithms to estimate the parameters in Sections

III-B and III-C.

A. Strategy to Estimate Parameters

We clarify which parameters of the current signal model

in (4) should be estimated to obtain the bit sequence. Under

the assumption that noise n[i] is generated from a Gaussian

distribution with a zero mean and σ2
n variance, the condi-

tional probability density of the received signal s = (s[i], s[i+
1], . . . , s[i+ lp − 1]), given the transmission bit sequence x =
(x[ji], x[ji + 1], . . . , x[ji+lp−1 + 1]), is described as,

p(s|x) = 1

(
√
2πσn)lp

∏

i∈Ω
exp

[

− 1

2σ2
n

{s[i]− d[i]

− R[i] (a[i]x[ji] + b[i]x[ji + 1])}2
]

, (5)

where Ω denotes a set of indices i, i+ 1, . . . , i+ lp − 1. Given

a received signal s, we estimate the transmitted bit sequence by

finding x that minimizes the cost function

Γ =
∑

i∈Ω
(s[i]− d[i]−R[i] (a[i]x[ji] + b[i]x[ji + 1]))2 . (6)

Maximum-likelihood sequence detection (MLSD) implemented

using the Viterbi algorithm allows us to perform this estimation

[22], [26], [27]. To do this, we should estimate d[i],R[i], a[i] and

b[i] in advance. Note that the order of computational complexity

of the current Viterbi algorithm for solving the MLSD is linear to

the size of Ω. That is because the trellis diagram that the Viterbi

algorithm aims to solve has no loop but just correlations between

two consecutive lattices.

In our application, the channel state between the camera

receiver and the LED transmitters changes gradually. In such

a case, d[i] and R[i] are supposed to be constant for a large

number of consecutive frames, and that allows us to use a large

number of received signals to estimate the coefficients. Taking

advantage of this, we introduce in III-B a method which utilizes

statistical properties of the received signal without explicitly

determining the bit sequence to estimate the channel state. We

call this estimation method long-term processing.

In the plesiochronous mode, coefficients a[i] and b[i] also

change gradually, and we can use several received signals to

estimate them. If the rate of the change is similar to that of the

channel state, we might also estimate a[i] and b[i] by a statistical

method. However, the clock differences between the receiver

and transmitters, which determine the stability of a[i] and b[i],
are not always sufficiently small to employ a statistical method.

To combat this, in III-C, we employ suboptimal per-survivor

processing (PSP) [28] to estimate the coefficients. We refer to

this estimation method as short-term processing.
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Fig. 3. When TRX − τ < TTX holds, all bits are sampled by the receiver at least once. On the other hand, when the inequality is not satisfied, some bits are not
sampled [e.g. bit x[ji] is not sampled in (b)].

Fig. 4. A block diagram of our optical camera communication system.

Fig. 4 shows a block diagram of our OCC system. The

transmitters send bit sequences with OOK modulation and the

receiver extracts the signals from its image sensor. After that, the

receiver synchronizes and demodulates the received signal with

the channel state estimated by the long-term processing. Note

that we only illustrate one of each unit in the receiver; however,

in actual situations, we can introduce multiple units other than

the image sensor to treat multiple transmitters.

B. Estimating Channel State by Variational Bayesian

Inference Method

Here we consider how the receiver can estimate the back-

ground noise level d[i] and the gain coefficient R[i]. If d[i]
and R[i] are constant for frames with a long-term processing

length llong, we can jointly utilize received signals {s[i]}i∈Ωlong

to estimate the coefficients, whereΩlong is a set of consequential

received signal indices and |Ωlong| = llong. When llong is a

sufficiently large, statistical properties of the received signals

could help in the estimation.

Let d and R be values of {d[i]}i∈Ωlong
and {R[i]}i∈Ωlong

.

Then, the values of the received signals are written as

s[i]=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

s00[i] = d+ n[i], if x[ji] = x[ji + 1] = 0

s10[i] = Ra[i] + d+ n[i], if x[ji] = 1, x[ji + 1] = 0

s01[i] = Rb[i] + d+ n[i], if x[ji] = 0, x[ji + 1] = 1

s11[i] = R+ d+ n[i], if x[ji] = x[ji + 1] = 1.

We assumed that noisen[i] is generated by a zero-mean Gaussian

distribution. Thus s00[i]s and s11[i]s follow Gaussian distri-

butions N (d, σ2
n) and N (R+ d, σ2

n). On the other hand, the

distributions of s01[i]s and s10[i]s depend on the properties of

a[i] and b[i]. Let the distribution of s10[i] be a superposition of

the Gaussian distributions of means a[i] and the distribution of

s01[i] be a superposition of the Gaussian distributions of means

b[i]. When the changes in a[i] and thus b[i] for i ∈ Ωlong are

negligibly small, we can assume that s01[i]s and thus s10[i]s for

i ∈ Ωlong are generated from the Gaussian distribution of mean

ā ≃ a[i], i ∈ Ωlong and b̄ ≃ b[i], i ∈ Ωlong. On the other hand,

when the changes in a[i] and b[i] aren’t so small, the distribution

of s10[i]s resembles a continuous uniform distribution between

the maximum value amax = maxi∈Ωlong
a[i] and the minimum

value amin = mini∈Ωlong
a[i] with additional tails on both sides

due to the Gaussian noise. Similarly, the distribution of s01[i]s
resembles a continuous uniform distribution between the max-

imum value bmax = maxi∈Ωlong
b[i] and the minimum value

bmin = mini∈Ωlong
b[i] with additional tails on both sides due to

the Gaussian noise. Although it might be difficult to approximate

the distribution of the signals in the latter case by GMM, in this

paper we assume that the distribution of {s[i]}i∈Ωlong
follows a

linear superposition of Gaussian distributions of meansd,R + d,

Rā+ d and Rb̄+ d. This is because the role of GMM is not

just an approximation of the true generation distribution of the

received signals but also has the capability to cluster them and

this enables us to remove the negative effect of s01s and s10s to

estimate R+ d and d using s11 and s00, respectively.

One can estimate d and R by determining the means of

the Gaussian distributions. To do this, we apply the varia-

tional Bayesian inference algorithm for the Gaussian mixture

model (VB-GMM) [24] to the received signals. In this inference

algorithm, one aims to find approximations for the posterior

distribution p(Z, π, µ,Λ|S) and the model evidence p(S) by

considering the joint distribution p(S,Z, π, µ,Λ), where S =
{s1, s2, . . . , sN}, Z = {z1, z2, . . . , zN}, π = {πk}Kk=1, µ =
{µk}Kk=1, and Λ = {Λk}Kk=1 are the set of observed variables,

the set of latent variables, the mixture coefficients, the set of

means and the set of inverses of variances of the K-component

Gaussian distribution, respectively. All of the variable are in

R
1×1. In our case, the observed variables are the values of

received signals minus their mean. The latent variables have

no physical meaning, but they are used for convenience. The
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mixture coefficients π = {πk}Kk=1 are expected to represent

the ratio of s00s, s01s, s10s and s11s in the received signals.

µ = {µk}Kk=1 and Λ = {Λk}Kk=1 are expected to be means and

inverses of variances of s00s, s01s, s10s and s11s, respectively.

We can decompose the log marginal probability as

ln p(S) = L(q) + KL(q||p), (7)

where we defined

L(q) =
∫

q(Z, π, µ,Λ)

ln

{

p(S,Z, π, µ,Λ)

q(Z, π, µ,Λ)

}

dZdπdµdΛ, (8)

KL(q||p) = −
∫

q(Z, π, µ,Λ)

ln

{

p(Z, π, µ,Λ|S)
q(Z, π, µ,Λ)

}

dZdπdµdΛ, (9)

and q(Z, π, µ,Λ) are inferred probability distributions. Instead

of directly minimizing the KL divergence in (9), we maximize

the lower bound (8) with respect to the restricted family of

distributions q(Z, π, µ,Λ) in a step-by-step manner to obtain es-

timations of parameters π, µ, and Λ. By applying the VB-GMM

algorithm to the received signal {s[i]}i∈Ωlong
, we can estimate

the means d, R+ d, Rā+ d and Rb̄+ d.

To estimate the parameters precisely, we utilize properties

of ā and b̄ and determine the number of components K in the

generative distribution of {s[i]}i∈Ωlong
. There can be three cases:

In one, when the values of ā and b̄ are different, there are four

Gaussian components whose means are d, R+ d, Rā+ d and

Rb̄+ d. In another, when ā and b̄ take nominally the same value

and but not zero, three Gaussian components are enough to

express the generative distribution. In the other, when ā = b̄ = 0
approximately holds, we need only two Gaussian components

to fit the generative distribution. Unfortunately, we do not know

the values of ā and b̄ in advance of the estimation and can not

determine the number of components without any additional

information. o combat this, we evaluate lower bound (8) with ad-

ditional factor L(q∗) + lnK! [24] for K = 2, 3, 4 cases, where

q∗ represents the inference probability estimated by VB-GMM,

and we adopt the number of components that minimizes this

value. Then we obtain the minimum and maximum means as the

estimations of the background noise d̃ and the gain coefficient

R̃, respectively. We summarized the estimation algorithm in

algorithm III.1, where ψ(·) is the digamma function.

Here we explain the computational cost of VB-GMM. As

described in [29], the order of the computational complexity of

an iteration of the VB-GMM is O(lKd2data +KD3
data), where

l, K and Ddata are the number of input data, the number of

the Gaussian components and the dimension of the data vector,

respectively. In the current case, this becomes O(llongK +K)
and thus the number of input data llong is a leading factor.

Furthermore, we should be careful about the number of iter-

ations for convergence of the estimation. When these factors

are considered, a concern might be that the computational time

of the estimation could be somewhat too long for practical

Algorithm III.1: Long-Term Processing: VB-GMM Based

Algorithm for Channel Estimation.

Require:{s[i]}i∈Ωlong
, α0, β0, m0 and W0

1: Set N = |Ωlong| and s = {s[i]}i∈Ωlong
− ΣN

i=1s[i]/N,
2: for K = 2, . . . , 4 do

3: Set initial values α = {αk}k=K
k=1 , β = {βk}k=K

k=1 ,

m = {mk}k=K
k=1 and W = {Wk}k=K

k=1

4: while convergence criteria is not satisfied do

5: for k = 1, . . . ,K do

6: ln Λ̃k = ψ(νk/2) + ln 2 + ln |Wk|
7: ln π̃k = ψ(αk)− ψ(α̂)
8: for n = 1, 2, ..., N do

9: rnk = π̃kΛ̃
−1/2
k

× exp{−1/2βk − νkWk/2(s[n]−mk)}
10: end for

11: for n = 1, 2, . . . , N do

12: rnk = rnk∑
N

m=1 rmk

13: end for

14: end for

15: for k = 1, . . . ,K do

16: Nk =
∑N

n=1 rnk
17: s̄k = 1

Nk

∑N
n=1 rnks[n]

18: Sk = 1
Nk

∑N
n=1 rnk(s[n]− ŝk)

2

19: αk = α0 +Nk

20: βk = β0 +Nk

21: mk = (β0m0 +Nks̄)/βk

22: W−1
k = W−1

0 +NK + β0Nk

β0+Nk

(s̄k −m0)
2

23: νk = ν0 +Nk

24: end for

25: Estimate the parameters with

26: Sort the index k as µk be in descending order

27: end while

28: Evaluate the lower bound

29: Store the estimations as µ̂k(K) = mk for every k
30: Store the lower bound with additional factor

L(q∗) + lnK!
31: end for

32: Determine K̂ corresponding to the minimum of the

stored lower bound with additional factor

33: Output the estimations as d̃ = µ̂1(K̂) and

R̃ = µ̂K̂(K̂)− µ̂1(K̂)

applications. In Section V, we review the computational time

of the whole estimation process to dispel this concern.

C. Estimating the Synchronization Parameter

and Bit Sequence

Here we consider how the receiver can estimate synchro-

nization parameter a[i], b[i] and the bit sequence x[i]’s. To do

this, we firstly formulate a cost function to be minimized for

the estimation, especially when TRX < TTX holds. Since we

assume that the relational difference between the periods is

small, we can expect that a[i] and b[i] = 1− a[i] vary gradually

as Fig. 5 shows. Let Ωshort be a range of time indices in which
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Fig. 5. When TRX < TTX holds, a[i] as well as ac continue to increase. On
the other hand, when TRX > TTX holds, b[i] as well as ac continue to increase.
In these figures, one can find that ac and the bit transmission index are reset in
the exposure interval indexed i+ 2.

the variation is infinitesimally small and ac be the average value

of {a[i]}i∈Ωshort
. Then we obtain the cost function as,

Γ+(x, ac)

=
∑

i∈Ωshort

[

s[i]−
{

R̃ (acx[ji] + (1− ac)x[ji + 1])+d̃
}]2

,

(10)

where 0 ≤ ac < 1 denotes the fraction of the exposure time

spent to obtain the light signal of the first bit and R̃ and d̃
are estimated values of R and d, respectively. When ac = 0
holds, the sampling timing is nominally synchronous with the

bit transmission timing in the range Ωshort, while they are not

in the synchronization state when ac > 0.

It is not easy to exactly minimize the cost function to estimate

the above parameters. Therefore, we suboptimally minimize it

in a stepwise manner instead. First, we estimate x by the MLSD

method with tentative parameter ac. After that, ac is estimated in

the PSP manner Thus, we solvedΓ+/dac = 0using the tentative

bit sequence x̂ and obtain,

ac =

∑

i∈Ωshort
(x̂[ji + 1]− x̂[ji])(x̂[ji + 1]− (s[i]− d̃)/R̃)

∑

i∈Ωshort
(x̂[ji + 1]− x̂[ji])2

.

(11)

In practice, we initially use 0 as the tentative ac or try various

candidate values and choose one that minimizes (10) as in [22].

Algorithm III.2: Short-Term Processing: Synchronization

and Demodulation

Require:R̃, d̃, s = {s[i]}i∈Ωshort
, ath, and the number of

iterations to minimize the cost function Niter

1: Set âc be the current estimate ac
2: for n = 1, . . . , Niter do

3: if TTX > TRX then

4: x̂ = arg min
x
Γ+(x, âc, s, R̃, d̃)

5: âc = arg minac
Γ+(x̂, ac, s, R̃, d̃)

6: else

7: x̂ = arg min
x
Γ−(x, âc, s, R̃, d̃)

8: âc = arg minac
Γ−(x̂, ac, s, R̃, d̃)

9: end if

10: end for

11: if âc > ath then

12: âc = 0
13: Reset index

14: end if

Usually, we iteratively apply the above procedure to improve the

estimation quality.

When TRX ≥ TTX holds, we consider the following cost

function:

Γ−(x, ac) =

∑

i∈Ωshort

[

s[i]−
{

R̃ ((1− ac)x[ji] + acx[ji + 1]) + d̃
}]2

,

(12)

In this case, b[i] and thus ac gradually increases in the range

of 0 to 1, as Fig. 5 shows. As in the TRX < TTX case, we can

estimate the parameters by,

ac =

∑

i∈Ωshort
(x̂[ji]− x̂[ji + 1])(x̂[ji]− (s[i]− d̃)/R̃)
∑

i∈Ωshort
(x̂[ji + 1]− x̂[ji])2

,

(13)

and the transmitted bit sequence x by individually minimizing

the cost function for each of them.

Thanks to the small relational difference between the two

periods, one can expect that ji+1 = ji + 1 holds in most cases;

however, the fraction ac continues to increase and sometimes

reaches one, and the equation does not hold. In such a case,

we have to reset as ac = 0 and substitute the index ji ← ji − 1
in the TRX < TTX case and ji ← ji + 1 in the opposite case

(see Fig. 5) to maintain bit synchronization. In practice, one

cannot expectac to be exactly one; hence, we introduce threshold

ath and execute the above reset procedure when the estimated

fraction ac exceeds it.

We summarize the above procedure in algorithm III.2. Note

that we do not know whether TRX is larger or smaller than TTX

in advance. In addition, when ac is 0, Γ+ and Γ− are equal.

Therefore, we need to execute the algorithm in both the TRX <
TTX and in the opposite case for a sufficiently large number of

frames Ndet in which there might be frames with nonzero ac.

After that, we choose one in which the sum of the values of the

minimized cost functions is smaller.
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TABLE I
PARAMTERS USED FOR THE NUMERICAL SIMULATION

IV. EXPERIMENTAL SETUPS

We conducted numerical simulations and experiments in a

real environment. In both setups, the receiver does not know

the gain coefficients, background noise magnitudes, or accurate

transmission clock in advance. Our purpose is to verify success-

ful estimation of the unknown parameters by our method and

the method’s demodulation performance in such a situation.

A. Numerical Simulations

In numerical simulations, we investigated the performance of

our demodulation method under different signal-to-noise ratios

(SNRs) and parameters. The camera receiver sampling period

is TRX, and the exposure time is half of the sampling period.

The transmitter sends pseudorandom bit sequences in periods

of 0.9995TRX, 0.9999TRX, 1.0001TRX, and 1.0005TRX; thus,

the relative differences in the clock generators are −500, −100,

+100, and +500 ppm. These relative differences are within the

frequency tolerance of conventional crystal oscillator units [30].

The frame size for estimating the linear combination coefficients

and the bit sequence, i.e., the size of the set Ωshort is 60 which

includes 20 additional overlapping samples. The frame size for

the channel estimation, i.e, the size of the set Ωlong is 800. We

set the threshold ath to 0.9, the number of frames to estimate

whether TTX > TRX or not Ndet = 1000, and the number of

iterations to minimize the cost functions (10) or (12) Niter = 2.

The R and d relatively vary with the ratio generated by zero-

mean and σc = 10−6 variance Gaussian distributions. The noise

is generated by a Gaussian distribution with zero-mean and σ2
n

variance, and the SNRs of the received signals range from 16 to

20 dB, where the SNR is defined as,

SNR =
R2

2σ2
n

. (14)

The number of the bit sequences is 1 Mbits per simulation, and

we performed 1000 simulations for each condition. Note that

only TRX and τ = 0.5TRX are known in advance. In addition, to

confirm the potential demodulation performance for each condi-

tion, we also employed an oracle estimator. The oracle estimator

knows the exact values of the gain factor R, the background

noise level d, and the percentage coefficient ac and estimates

the bit sequences by the MLSD method with the parameters. In

our problem, one can get the global minimum solution by the

MLSD method because there does not exist any correlation,

except that the two consecutive grids on the trellis diagram

should be solved. Therefore, the estimated bit sequences are

expected to be the most accurate compared to those obtained by

any other demodulation methods. The parameters used in the

numerical simulations are summarized in Table I.

To confirm the robustness of our method against the parameter

settings for demodulation, we also conducted numerical simu-

lations with various processing lengths. We employed the short-

term processing length lshort = 30, 40, 60, 100, 180, 340, 660,

and 1300 which include 20 additional overlapping samples to

estimate the bit sequences and ac. Because the relative clock

difference should affect the demodulation performance with

differences of short-term processing lengths, we conducted

the simulations for +100 and +500 ppm cases. We also per-

formed numerical simulations for long-term processing lengths

llong = 100, 200, 400, 800, 1600, 3200, 6400, and 12800. In the

simulations for long-term processing lengths, we employed the

ratio of variation ofR andd asσc = 10−4, 10−6, 10−8 to confirm

the relationship between the channel state variation and the

long-term processing length. We set SNR = 16, the number of

trials to be 100 for each condition and other parameters except

for those mentioned here to be the same as in Table I.

Since our method uses iterative convergence technique, the

computation time required for achieving sufficient accuracy

is unknown and may differ with different SNR. We therefore

conducted test to show that our method can process data in a

practical period od time with satisfactory accuracy. The iteration

for the VB-GMM was limited to 100 in one condition and 10,000

in the other. The other parameter settings were the same as

in Table I. We performed the experiment 100 times for each

condition.

B. Real Environment Experiment

We experimented to validate our demodulation method in

practical situations. As Fig. 6, we conducted tests with a high-

speed camera as a receiver and a single LED as a transmitter

at various distance conditions. The LED transmitter transmitted

pseudo-random bit sequences with OOK modulation at about

10 kilobits per second (kbps). The high-speed camera receiver

drove at 10000 frames per second with exposure time0.5 × 10−4

second and sent each captured image to a field-programmable

gate array (FPGA) for further processing. The FPGA extracted

values of pixels on which the image of the LED transmitter falls

as in Fig. 1 and saved the sum of the values in its local stor-

age. After that, we applied our demodulation method to obtain

the transmitted bit sequences and evaluated their bit error rate

(BER). For comparative purposes, we employed a conventional

demodulation method [23] that cannot estimate the background



SHIRAKI et al.: DEMODULATION METHOD USING A GAUSSIAN MIXTURE MODEL FOR UNSYNCHRONOUS OPTICAL CAMERA COMMUNICATION 1749

Fig. 6. Photograph of the experimental setup. The signal from the LED
transmitter is observed with a high-speed camera receiver. The observed signals
are pre-processed by an FPGA and sent to the PC for storage.

TABLE II
PARAMTERS AND EQUIPMENT USED FOR THE REAL ENVIRONMENT

EXPERIMENT

noise level. The distance between the transmitter and receiver in

the experiment was set from 5 m to 20 m in 2.5 m increments.

In order to show the effectiveness of our demodulation method

in a more practical situation, we also conducted experiments in

which the lens f-value was varied from 0.8 to 4 to change the

effective luminance of the transmitter. The parameter settings

for the demodulation and equipment used in the experiment are

shown in Table II. The processing lengths and other parameter

settings for demodulation were the same as in the numerical

simulations of performance versus SNR.

V. RESULTS AND DISCUSSIONS

A. Numerical Experiment

Fig. 7 shows BERs versus SNR of our demodulation method

and the oracle estimator. As the SNR increases, the bit sequences

demodulated by both methods become more accurate. BERs

resulted for the oracle estimator are lower than those for our

method as expected, but they are almost on the same order. Fig. 8

shows BERs versus relational clock differences for our demod-

ulation method and the oracle estimator for SNR = 16. A large

relational clock difference decreases the estimation accuracy of

our method. This is because it makes the parameter estimation of

ac difficult. On the other hand, BERs of the oracle estimator are

not sensitive to changes in clock difference. This is simply that

it knows the exact values of the parameters. Note that, whether

the sampling period TRX is longer than the transmission period

TTX or not, the BERs stay in the low range, although signals

in the TRX > TTX cases resemble undersampling situation and

should be more difficult to demodulate than that in the opposite

case.

Fig. 9(a) shows BERs of our demodulation method for various

short-term processing lengths. The BERs of demodulated bit

sequences do not dramatically vary with short-term processing

length for lshort = 20, 40, and 80 in both +100 and +500 ppm

cases. When the short-term processing length is too short, esti-

mating the synchronization parameter is supposed to be difficult.

In estimating ac based on (11) or (13), the bit sequence should

contain 0 and 1 in a well-balanced ratio because a biased bit

sequence degrades the estimation accuracy. Unfortunately, in the

lshort = 10 case, the bit sequence for the estimation is likely to

be such a biased one, and the estimated parameter has large error.

This error fails to reset the synchronization parameter to zero and

thus the bit index synchronization corrupts. In +500 case, the

BERs become nearly 0.5 when the short-term processing length

exceeds 160. In these situations, the large change in the true

synchronization parameters in the long-term processing lengths

decreases their estimation accuracy. This also fails the reset of

the synchronization parameter.

The BERs of demodulated bit sequences are stable for long-

term processing lengths except for extreme cases as Fig. 9(b)

shows. When llong is too small, the statistical approach algorithm

III.1 could fail because of a lack of samples for estimating the

parameters. The estimation accuracy could also decrease when

llong is too long compared to the channel state variation cases.

This is because the variations of R[i] and d[i] in such a large

number of frames are large and thus the estimations R̃ and d̃ are

not accurate enough to estimate the synchronization parameter

and demodulate the bit sequences. When the channel state

variation is large, as in the σs = 10−4 case, our demodulation

method does not work well for the above reasons.

Fig. 10 shows the experimental computation time of our de-

modulation method. We applied the VB-GMM with the number

of iterations limited to 100 and with that limited to 10,000 for

the same input signal. The left and right axes represent the BER

and computation time, respectively. The orange line indicates the

upper limit of the computation time allowed for a 10 kbps signal.

The limit of 10,000 iterations is meant to prevent the program

from ever ending, so the VB-GMM algorithm is expected to

converge in this condition. When we execute the VB-GMM

until the algorithm converges, it is not able to process in real

time in some situations. On the other hand, this problem can be

avoided by limiting the number of iterations to 100. These two

BER results are almost identical. Therefore, we can say that our

method is practically feasible for transmissions of about 10 kbps.
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Fig. 7. BER v.s. SNR in dB of our method and the oracle estimator are shown for each relative clock difference. The relative clock differences are −500, −100,
+100 and +500 ppm.

Fig. 8. BER performance of our method and the oracle estimator under
different relational clock differences. We set SNR to be 16.

To show that VB-GMM accurately estimates the distribution

of received signals, we plot the probability density functions

of estimated results and the received signals in the Fig. 11

as examples. As described in Section III-B, the purpose of

VB-GMM estimation is to identify the gain coefficient and

the background noise. Thus, it is not necessary to accurately

estimate the distribution of received signals classified as s01
and s10. The figure shows that VB-GMM correctly clusters

s01 and s10 and effectively identifies the gain coefficient and

the background noise from the estimated distributions of s11
and s00.

B. Real Environment Experiment

Fig. 12 shows the results of the real environment experiment.

Note that the plot in Fig. 12 is in a logarithmic scale, and the

results plotted on 10−7 mean BERs = 0. Our method demodu-

lated the bit sequence without any error within a 15 m distance

and with low BERs in the 17.5 m and 20 m conditions. The

conventional method [23] also demodulated the bit sequences

accurately in up to 10 m conditions, while its performance

degraded significantly at distances of more than 15 m. In such

long-distance conditions, the gain coefficient becomes substan-

tially low, so the effect of the background noise is not negligible

for the demodulation. Fig. 13 shows the computational times

of our method for the real-setup experiment. Within 20 m,

our method can demodulate the received signals in a real-time

manner.

To check if our demodulation method is working effectively,

we show a part of the received signal and the results of de-

modulation for the 5 and 20 m cases in Fig. 14. Because of the
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Fig. 9. BERs performance of our method are shown for various processing lengths.

Fig. 10. Computational time of our demodulation method in various situations. We also plot the BERs of them. The relative clock differences are −500, −100,
+100 and +500 ppm.

relatively low background noise level of the received signal at 5

m, both the present method and our previous one in [23] is able

to estimate the coefficients. However, due to the relatively large

background noise at 20 m, the conventional method which lacks

an accurate estimation methods to accurately estimate back-

ground noise levels, cannot demodulate the received signal. The

present demodulation method was able to perform demodulation

stably in all cases. Note that the normalized received signals
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Fig. 11. Histograms of the received signals normalized as the probability density functions and the estimated probability density function by VB-GMM are
shown. Relative clock differences are +100 and +500 ppm.

Fig. 12. BER performance of our method under different communication
distances in the real environmental experiment.

Fig. 13. Computational times of our method at different communication
distances in the real-environment experiment.

snormalized[i]s are obtained by

snormalized[i] =
s[i]− d̃

R̃
(15)

and the estimated background noise levels in the conventional

method are obtained by taking the minimum value of the re-

ceived signals in the current long-processing frame. Fig. 15

shows the probability density functions of the received signals

and those estimated by the VB-GMM method. The algorithm

estimated the distributions of the received signal even when the

distance was long and thus the relative noise level was high.

Fig. 16 shows the received signals and coefficients estimated

by our method when the f-value of lens is varied. It can be

seen that our demodulation method stably performs the channel

estimation and synchronization even though the demodulation

becomes more difficult due to the luminance change by con-

tinuously changing the f-value. This implies that it is possible

to demodulate signals received from a transmitter that varies in

distance from the receiver.

C. Short Discussion

The above results validate that our method successfully de-

modulates received signals under practical situations. Thus,

even if only the sampling period and the exposure time are

known in advance, our method can estimate the gain coefficient,

background noise level, and the synchronization parameter with

enough accuracy to demodulate the bit sequences. Moreover, our

demodulation method is sufficiently robust against parameter

settings. For a wide range of short-term processing lengths, it

can estimate synchronization parameters and bit sequences with

almost the same accuracy when the relative clock difference

between a receiver and a transmitter is within ordinary frequency

tolerance of conventional crystal oscillator units. Except for the

extreme cases, the channel-state estimation by VB-GMM works

accurately for some ranges of long-term processing lengths. In

the real-environmental experience, our demodulation method

showed its superiority to the conventional method especially

when the communication distance is long. In such situations, the

estimation of background-noise becomes important for demod-

ulation because the gain coefficient is effectively low compared

to the noise.
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Fig. 14. Received signals and estimated gain coefficients and background noise level. We also plot normalized received signals and the estimated fraction
coefficients ac. We applied two methods: the one in our previous work in [23] and the method in the present work.

Fig. 15. Histograms of the received signals normalized as the probability density functions and the estimated probability density function by VB-GMM are
shown. The distances are 5 m and 20 m in the real-environment experiment.



1754 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 39, NO. 6, MARCH 15, 2021

Fig. 16. Received signals and estimated gain coefficients and background noise levels. We also plot normalized received signals and the estimated fraction
coefficients ac.

VI. CONCLUSION

OCC systems with distributed transmitter nodes are expected

to be used in sensor networks for acoustic measurement, biosig-

nal monitoring and other applications. The sensors in these

networks should be fabricated as simply as possible to suppress

costs and power consumption. For this purpose, in this paper, we

considered an OCC system without any synchronization devices

in the transmitters. In such a case, the periods of the sampling at

the receiver and the bit transmission generally may differ from

each other and the received light signal sometimes becomes a lin-

ear combination of two adjacent transmitted bits. To demodulate

the bit sequence from the light signals, we introduced a received

signal model and a cost function that should be minimized.

To estimate unknown channel states, we employ the VB-GMM

method to infer the generative probability of the received signals.

The demodulation procedure also uses a maximum-likelihood

sequence detection method, which can be implemented by the

Viterbi algorithm, in combination with suboptimal per-survivor

processing to estimate the bit sequence and the synchronization

parameter by minimizing the cost function. Our new method

can demodulate the signal even when the receiver is not given

the precise transmission period, which the conventional method

must know in advance. To confirm the efficiency of our method,

we conducted numerical simulations and compared the results

with those obtained by an oracle estimator that knows parameters

other than the bit sequence in advance. The accuracies of bit

sequences demodulated by our method are almost on the same

order as those estimated by the oracle estimator. We also tested

with the demodulation method in a practical environment and

showed its superiority over the conventional method, which

cannot estimate the channel state precisely when background

noise is relatively large.

The results of this study suggest directions for further re-

searches are needed in the future. While we assumed SISO in

this study, we expect that our demodulation method could find a

wider range of applications when we remodel the channel mode

by MIMO, for which one should consider spatial correlations. In

addition, although our demodulation method can be performed

in a real-time manner at about 10 kbps, we shall aim to develop

simpler methods for faster communication.
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