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Abstract 

A retrofit architecture for intelligent turbofan engine control and diagnostics that changes the fan speed 

command to maintain thrust is proposed and its demonstration in a piloted flight simulator is described. The 

objective of the implementation is to increase the level of autonomy of the propulsion system, thereby reducing pilot 

workload in the presence of anomalies and engine degradation due to wear. The main functions of the architecture 

are to diagnose the cause of changes in the engine’s operation, warning the pilot if necessary, and to adjust the outer 

loop control reference signal in response to the changes. This requires that the retrofit control architecture contain 

the capability to determine the changed relationship between fan speed and thrust, and the intelligence to recognize 

the cause of the change in order to correct it or warn the pilot. The proposed retrofit architecture is able to determine 

the fan speed setting through recognition of the degradation level of the engine, and it is able to identify specific 

faults and warn the pilot. In the flight simulator it was demonstrated that when degradation is introduced into an 

engine with standard fan speed control, the pilot needs to take corrective action to maintain heading. Utilizing the 

intelligent retrofit control architecture, the engine thrust is automatically adjusted to its expected value, eliminating 

yaw without pilot intervention.  

Nomenclature 

EGT  exhaust gas temperature 

FADEC  full authority digital engine control 

FOD  foreign object damage 

HM  health management 

HPC  high pressure compressor 

HPT  high pressure turbine 

HUD  heads-up display 

IWP  integrator windup protection 

LPC  low pressure compressor 

LPT  low pressure turbine 

PI  proportional-integral 

PLA  power lever angle 
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I. Introduction 

Turbofan engine performance varies from engine to engine due to manufacturing tolerances, aging, and 

deterioration caused by use. Generally the control system developed for the engine is robust enough to keep it 

operating within acceptable boundaries for several thousand flight cycles. A typical inner-loop control architecture 

uses fuel flow to control fan speed, which is assumed to be highly correlated to engine thrust, the unmeasured 

variable of interest. However, as the engine ages, the relationship between fan speed and thrust changes. If all 

engines on a multi-engine aircraft do not have the same throttle-to-thrust relationship, a thrust imbalance results, 

producing unwanted yaw, which requires pilot intervention to correct. If thrust were directly controlled, this 

situation could be avoided. It is possible to achieve the same result using fan speed control by adjusting the fan 

speed reference signal to accommodate the degraded throttle-to-thrust relationship. 

 The adjustment of fan speed command implies the use of an outer loop control. Knowing how much to adjust it, 

and more importantly why it needs to be adjusted, implies intelligence. An Intelligent Propulsion Control 

architecture is an architecture that increases the level of autonomy of the engine. In this context it means that it 

should at least be able to recognize performance deterioration, diagnose faults, and alter its power setting to recover 

whatever lost thrust is possible within the physical constraints of the system, even with degraded capability (ref. 1). 

Thus an instantiation of such an architecture should be populated with at least some basic diagnostic/health 

management functions along with some model-based reasoning ability about the engines’ degraded performance and 

operability. 

 The remaining portions of this section give an overview of pertinent aspects of the turbine engine industry 

interleaved with descriptions of enhancements that would enable the implementation of an Intelligent Propulsion 

Control architecture, given the current status of that industry. This is followed by a description of the proposed 

architecture in general, plus details of the current implementation. Several examples demonstrating various 

degradation/fault scenarios are presented next. Finally, conclusions are drawn about the effectiveness of the 

implementation of the Intelligent Control architecture. 

A. Turbofan Engine Operation and Degradation 

A commercial turbofan engine gas path consists of both rotating and non-rotating components arranged from 

inlet to exhaust. The first rotating component of a turbofan engine is the fan, which is behind the engine inlet, and in 

a commercial engine provides most of the thrust by accelerating a vast quantity of air in the front of the engine and 

exhausting it directly out the back, bypassing the other components. The first of these remaining components is the 

booster, also known as the low pressure compressor (LPC), which is followed by the high pressure compressor 

(HPC). This opens into the combustor where fuel is injected and burned. The resulting hot gas drives the high 

pressure turbine (HPT) and the low pressure turbine (LPT), which power the fan and compressors. Each of these 

components affects the engine’s performance, and the performance degradation is embodied in component health. 

The state of each component’s health involves characteristics that degrade over time: such features as efficiency, 

flow capacity, and seal leakage. These tend to change slowly over many flights, but may change abruptly with the 

occurrence of a sudden fault. A change of as little as several percent to efficiency and flow capacity may represent 

the full permissible degradation of the component. 

B. Trim Adjustments and Automatic Controls 

 Asymmetric thrust during flight has a complex, usually unwanted, effect on both the aircraft attitude and 

direction of flight. This imbalance will initially cause the aircraft to yaw, i.e., the direction of flight will be slightly 

different than the line through the front-to-back axis of the aircraft. This has several consequences. First, the 

difference in the airflow over the upwind and downwind wings will cause the upwind wing to generate more lift and 

rise, causing the aircraft to bank. The yaw will also increase drag, causing the aircraft to slow and, if not corrected, 

begin a gentle descent. Finally, even if the tendency to bank is counteracted, the differential thrust will cause the 

aircraft to slowly change its direction of flight. There are several approaches to addressing this problem, some 

manual and some automatic. When operating in a manual mode, the pilot will first need to determine the cause of 

the unexpected yaw. His actions may include, for example, asking the following three questions: 

 

1. Are both sides of the airplane the same, symmetrical (e.g., are there bombs on one side only)? 

2. Is rudder trim 0 degrees? 

3. Are engines at the same operating condition (rpm, fuel flow, EGT)? 
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 To return to straight and level flight, the pilot will normally first reduce the aircraft yaw to zero by use of rudder 

trim (an incremental offset of the control surface for trimming the plane in flight) or rudder. Alternatively, the pilot 

may adjust each throttle independently to balance the thrust while maintaining airspeed. Then he/she will return the 

aircraft wings to level attitude using aileron and either adjusting power to return to the original airspeed or adjusting 

pitch to maintain level flight at the new airspeed. Normally, all of these control inputs are accomplished more or less 

simultaneously. The drawback to either adjusting trim or using differential power is that each approach is only valid 

at one power setting and airspeed and therefore must be adjusted for changes in flight operating conditions. In cases 

where power is adjusted often within a relatively short period of time (the approach to landing, for example), the 

pilot will likely use rudder input for compensation rather than rudder trim, increasing the workload. 

 There are automatic methods available that can perform a similar task, depending on the airplane, without 

necessarily determining the root cause of the yaw. These autopilot features are designed to relieve pilot workload by 

performing the basic piloting functions. Various autopilot modes are built into the aircraft’s automatic flight control 

system (ref. 2). They control the longitudinal and lateral-directional modes, including pitch attitude hold, altitude 

hold, speed or Mach hold, bank angle hold, and heading hold. These modes achieve their goal by manipulating the 

flight control surfaces. However, a low-speed hold mode called auto-throttle manipulates the throttles to maintain 

velocity; it is used on approach for glide slope intercept. A combination of the preceding autopilot modes would 

generally be able to overcome thrust imbalance-induced yaw. An integrated flight/propulsion approach to 

compensate thrust imbalance is the Thrust Asymmetry Compensation system (ref. 3) that adjusts rudder to balance 

the estimated thrust differential; this is still part of the flight control system, however. 

 It makes no difference whether thrust asymmetry is counteracted by thrust compensation, flight surface trim, or a 

combination, as long as the underlying cause is understood. The main concern is that without a higher level of 

intelligence, the flight control system is merely reacting to a disturbance, and that if the yaw is the result of an 

engine problem that the pilot should be aware of, the autopilot is masking it (ref. 4). This is especially important 

because autopilots have been known to cause confusion that results in pilot error even when nothing is wrong  

(refs. 5 and 6). It is a philosophical question as to where the intelligence should reside, and it is accepted that the 

propulsion system is subordinate to the flight control system, but it must also be recognized that the propulsion 

system is extremely complicated with its own complex control system, while to the flight control it is merely another 

actuator. Thus it stands to reason that as intelligence increases at both the flight and propulsion levels, in the 

hierarchical structure of an Intelligent Control system, information about the engines going to the flight control 

should be basic and simple: engine diagnostics should be performed at the propulsion control level. 

C. Engine Diagnostics 

Turbine engine diagnostics is critically important to safe operation of the aircraft. Although engines are highly 

reliable, certain faults have the potential to disrupt the vehicle’s operation catastrophically. Engines can fail in 

multiple ways, and the ability to detect and isolate the fault should be the first step to accommodation, or remedial 

action by the flight control. A significant challenge for propulsion system diagnostic algorithms is that component 

faults, and actuator and sensor faults or biases tend to manifest themselves in similar ways (refs. 7 and 8), and there 

are too few sensors on an engine to allow positive identification of an anomaly. Diagnostic algorithms that can 

differentiate between the various fault types (refs. 9 and 10) should always be part of an Intelligent Propulsion 

Control architecture because diagnostic systems that can isolate a fault as well as estimate its magnitude may enable 

the continued safe operation of the aircraft temporarily, and potentially prevent in-flight shutdowns of an engine, or 

even the loss of a vehicle (ref. 11). 

D. Propulsion Control 

The development of control laws for a turbine engine is an involved process. Typical aircraft engine control 

systems maintain fan speed or engine pressure ratio to regulate thrust, which is not directly measurable. The 

controllers are generally based on a variant of a Proportional-Integral (PI) scheme, combined with limit logic  

(fig. 1). This limit logic consists of a series of min select and max select blocks, each of which selects a fuel flow 

rate command based on various physical limits, acceleration/deceleration schedules (reference signal for rotor speed 

rate-of-change vs. rotor speed), and the current operating state (speed governor loops). The final command that exits 

the selection logic block is integrated to produce a new total fuel flow. Thus an increment of zero will result in no 

change in fuel flow, and a constant steady fuel flow will occur when steady state error is eliminated. 



NASA/TM—2005-214019 4

The limit logic is quite complex to develop and validate, and extensive simulation testing is required before it is 

ready to be implemented. The logic might be developed in a block diagram language format that can be compiled 

into executable code that runs on a flight-certified Full Authority Digital Engine Control (FADEC). The FADEC 

software implementation must go through a rigorous verification and validation process to meet stringent Federal 

requirements (ref. 12). The time and cost involved in developing and certifying an engine controller make it 

prohibitive to perform significant modifications to existing FADEC code. 

E. Retrofit Architectures 

A retrofit control architecture is one that can be added on top of an existing structure without significant 

modification. It should alter the signals into or out of the existing controller, but the controller itself should remain 

intact. For a complex system that requires certification, it might be easier to add externally than to start from scratch, 

so that, if anything, only the new portion needs additional certification. Several retrofit architectures have been 

proposed for reconfigurable or adaptive flight control (refs. 13 to 16) and propulsion control (refs. 17  

and 18). The development of an Intelligent Control structure for the propulsion system of an airplane is desirable 

because of safety and operability concerns, but because of the complexity of the FADEC, it is an excellent candidate 

to be implemented as a retrofit. 

II. Intelligent Retrofit Architecture 

The proposed retrofit architecture is shown in figure 2. The purpose of the architecture is to automatically 

maintain balanced thrust as the engines deteriorate with use. The system works by adjusting the fan speed setpoint of 

each engine individually so that its net thrust is the same as for a new engine for the demanded PLA, within the 

physical constraints of the system. The architecture is hierarchical with the lowest level performing standard engine 

control, the next level up maintains balanced thrust with an outer loop thrust control, and the top level consists of the 

health management and intelligent thrust demand logic. This whole structure is below the flight/mission level. The 

role of the mission level controller (or intelligent flight controller) is to carry out a mission determined by the 

capabilities of the overall system (engines and airframe) and modify it based on new information about the situation 

and the health of the system. For instance, if the engine is unable to meet the demand in a safe way, this information 

is reported to the intelligent flight controller or mission manager and the set point is adjusted by logic to maintain 

balanced thrust at a safe level. The mission manager will not be considered in this implementation. Figure 2 shows 

the overall architecture in block diagram form. The blocks in yellow represent the engines under standard closed 

loop fan speed control. Above each of the yellow blocks hierarchically is a thrust estimator which generates an 

estimate of the thrust the engine is producing for use with the outer loop thrust control (green boxes). The blocks 

along the top in the salmon box represent the structure of an intelligent control framework. They consist of the PLA 

to output (thrust, etc.) mapping, the Health Management (HM) block, and the thrust setpoint logic for the outer loop 

control. The HM block determines the fitness of the engine to carry out the expected mission, and finds a way to 

achieve it if possible, through the thrust setpoint logic. Otherwise it coordinates with the Mission Manager to modify 

the requirements on the engine to an acceptable level. 
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Figure 1.—Typical turbine engine control logic. 
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A. Direct Control Level 

The Direct Control Level (yellow box in fig. 2) contains the standard engine controller. It is usually a Full 

Authority Digital Engine Controller (FADEC) which is designed to maintain fan speed for performance while not 

exceeding operability limits. It consists of an incremental Proportional-Integral (PI) controller for steady state fan 

speed control, as well as acceleration and deceleration schedules and other limit logic. In the current 

implementation, the fan speed control is designed using the Edmunds or KQ technique (refs. 19 and 20), a design 

methodology that selects the controller gains such that the closed loop system matches a target transfer function. 

When the same target transfer function is used to design controllers throughout the flight envelope, the engine 

response to throttle commands is similar at multiple operating points. This has the advantage that the pilot can 

expect consistent performance across the flight trajectory. 

B. Outer Loop Control 

The Outer Loop Control (green box in fig. 2) adjusts the reference signal for the Direct Control. In general, the 

Power Lever Angle (PLA), which is a pilot input, sets the fan speed command that is calibrated to achieve a desired 

thrust. However, with engine degradation or some other change in the throttle-to-thrust relationship, the PLA setting 

will not produce the desired thrust. In order to bring the thrust to the correct level, the fan speed command is 

adjusted by the outer loop controller. The FADEC logic is designed to prevent the engine from operating in an 

unsafe mode, so the incremental fan speed command, which enters the FADEC along with PLA, will not drive the 

engine into an inappropriate operational regime. The change in fan speed command is obtained by driving the error 

in thrust to zero. Since thrust is not measurable in flight, it must be estimated. The thrust estimator implemented here 

Figure 2.—Intelligent retrofit architecture. The hierarchical structure consists of the Inner Loop or Direct Control 

(in the yellow boxes), the Outer Loop Control (in the green boxes), and the Intelligent Control (in the salmon box).
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uses a Kalman filter with an optimal reduced order model of the effect of engine degradation (ref. 21), which has an 

error of generally well under 1 percent of the total net thrust. The inputs to the Kalman filter are corrected fuel flow 

and the seven corrected sensed engine variables. The use of corrected variables as inputs to the linear estimator 

extends its range because the correction factors have the effect of transforming the engine operating condition to a 

standard operating point (ref. 22), the design point in this case. This allows meaningful comparison of engine data at 

different conditions and also different levels of degradation (ref. 23). In a practical sense, it enables the Kalman filter 

to accurately estimate the thrust of a degraded engine at an operating point far from the point where the optimal 

linear estimator was designed. The difference between the estimated and desired thrust is fed through a PI controller 

which adjusts the fan speed command until the thrust error is zero. The outer loop controller is tuned to maintain 

thrust without oscillation or overshoot. The closed outer loop system is assumed to be stable throughout the flight 

envelope because the inner loop transfer function is constant due to the use of the KQ control design methodology, 

even though the engine itself behaves nonlinearly. 

C. Intelligent Control  

The Intelligent Control Level (salmon box in fig. 2) contains the parts of the control structure that evaluate the 

safety, performance, and capabilities of the engines. Unlike the lower levels for which each engine had a copy, there 

is only a single copy of this level; it monitors the propulsion system of the aircraft. It takes input from both engines 

(control signals, sensed variables, thrust estimate, etc.) to determine each engine’s current health and fitness for the 

mission. It also generates the outer loop thrust command that both engines follow. In this implementation, the outer 

loop thrust command is a Kalman filter-based estimate of the thrust of a nominal engine at the current operating 

condition. The reasoning behind the use of the nominal engine model’s thrust estimate as the command is that it 

should minimize the impact of estimation error since the estimators are identical. The Outer Loop Control level is 

shown without integrator windup protection (IWP) on the PI controller because the Intelligent Control should be 

able to determine if a thrust command is appropriate based on the condition of the engine and knowledge of its 

operational limits. In practice, IWP and even an on/off switch for the incremental fan speed command would 

probably be implemented as a safety precaution. Ideally, activity at the Intelligent Control Level will be limited to 

assessment and consent, but as the engines age and degrade, or when an anomaly occurs, the health management 

algorithms determine the appropriate action, which generally has to do with the fan speed setting. If the Intelligent 

Control determines that the condition of an engine is such that corrective action is beyond the scope of the 

propulsion control (for instance, a problem that might compromise the mission) it communicates this information to 

the Mission Manager. What the Intelligent Control does not do is adapt the inner loop control; since this is a retrofit 

architecture it is specifically designed to adjust the signal going into the FADEC, not the FADEC itself. It is clear 

that there is nothing about the architecture that fundamentally prevents it from adapting the inner loop control if 

desired; the implementation would only require an extra connection directly to the Engine Control block (ref. 24). 

III. Examples 

 The demonstration vehicle is a modified large transport aircraft with two, wing-mounted commercial-type high 

bypass engines. The airframe and engine models are full envelope, nonlinear, high fidelity simulations that were 

interfaced to produce a realistic integrated system that can be flown in a flight simulator. The original airframe had 

four mid-sized engines, which are replaced by two large, high power engines for these examples. The two engines 

are widely spaced to exacerbate the thrust imbalance-induced yaw. Each engine uses the hierarchical intelligent 

control architecture shown in figure 2, with the inner-loop engine control maintaining fan speed. 

 The flight simulator was developed for preliminary piloted evaluation of control designs. It has a fixed-base, 

rudimentary cockpit with four pilot inputs: throttle, pitch stick, lateral stick, and rudder pedals (fig. 3). In the limited 

simulator setup, the single throttle sets the fan speed command for both engines; the pilot cannot demand power 

from each engine individually. Two inputs can be generated through stick movement: pitch stick by forward and 

back movement, lateral stick by side to side movement. The final pilot input comes from the rudder pedals. There 

are no trim inputs and no autopilot modes available. Thus the pilot is forced to counter any thrust imbalance by 

manually adjusting and holding the vehicle’s control surfaces. This makes the task somewhat more complicated than 

when trim and autopilot are available, but the objective here is to demonstrate an alternative that specifically 

addresses propulsion system issues without obscuring the problem by using a flight control solution. 

 Three scenarios were run to evaluate the system’s performance in real time, two steady state and one transient; 

only the transient scenario was piloted. The scenarios were limited to cases where fan speed adjustment is all that is 

required. All scenarios started at the same initial operating point (defined by altitude, Mach number, and throttle 

position), where the plane is basically trimmed resulting in essentially straight and level flight. In each case, the 
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simulation ran with both engines nominal for the first 10 seconds, then a linearly increasing degradation was 

introduced into the left engine over a span of 90 seconds. The intent was for the degradation to enter slowly enough 

that the engine would not go through a significant transient, mimicking true aging behavior, but quickly enough that 

the system’s response to a fault could be evaluated. Three cases were run for each scenario: 1) baseline, both engines 

nominal, 2) one engine degraded, outer loop control off, and 3) one engine degraded, outer loop control on. 

A. Degradation to Front of Engine 

 In this unpiloted example, the fan and compressors were degraded, perhaps indicating micro-FOD (foreign 

object damage) or erosion due to particle ingestion (ref. 25). Particular flight variables of interest for the nominal 

case and for the degradation scenario with the intelligent hierarchical outer loop control off and with the intelligent 

hierarchical outer loop control on are shown in figure 4. The corresponding normalized engine variables are shown 

in figure 5. When the left engine is degraded, the plane rolls and pitches slightly and starts to turn slowly but 

noticeably to the left without pilot intervention. Additionally, Mach number drops and altitude decreases. These 

adverse responses are all eliminated when outer loop control is on. The engine variables without outer loop control 

illustrate that the thrust estimate tracks thrust well and fan speed is maintained. With the intelligent hierarchical 

outer loop control turned on, the fan speed command is adjusted in the degraded engine to bring the thrust to the 

desired level. This keeps the plane flying straight as if both engines were nominal. In this case the Mach number and 

altitude are close to their steady state values, and heading remains constant. EGT is slightly higher than with outer 

loop control off. In all three cases, the thrust estimate is close enough to the true value that it is hard to distinguish 

between them in figure 5. The largest difference is in the degraded case with outer loop control off as the engine 

operating point moves away from the estimator design point. 

 Figure 6 shows the instrumentation display of the airplane with the left engine degraded, outer loop control off. 

Fan speed is the same for both engines, but fuel flow, EGT, and core speed are all higher for the degraded engine. 

 Figure 7 shows the out-the-window view and Heads-up display (HUD) for the same case as the shown in  

figure 6. The heading (which started at 270º) and roll deviations are obvious. 

Figure 3.—The flight simulator used to evaluate the Intelligent Control architecture. 
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B. Degradation to Engine Hot Section 

In this unpiloted example, the turbines 

were degraded, which is a symptom of 

having flown through volcanic ash (ref. 26). 

This type of degradation has the opposite 

effect of the previous case. In this case thrust 

increases along with fuel flow and EGT. 

Thus the altitude and Mach number increased 

and the plane turned to the right once the 

turbines were degraded. Particular flight 

variables of interest for the nominal case and 

for the degradation scenario with the 

intelligent hierarchical outer loop control off 

and with the intelligent hierarchical outer 

loop control on are shown in figure 8. The 

corresponding normalized engine variables 

are shown in figure 9. The thrust estimate 

converged slightly more slowly than in the 

previous example, but settled very close to 

the true value. Again, with outer loop control 

on, the airframe responses matched those for the nominal case. The fuel flow and EGT both decreased with outer 

loop control on, providing the double benefit of fuel savings and component life savings as compared to the case 

where outer loop control is off. This is an important result because in engines with fan speed control, thrust tends to 

increase with overall degradation (ref. 27). 

Figure 6.—Heads down instrumentation display showing variables for the two engines. 

Figure 7.—Cockpit view with heads up display. 
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Figure 8.—Selected flight variables for the case with degradation in the hot section of the engine.
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the hot section of the engine. OLC stands for outer loop control in the legend. 



NASA/TM—2005-214019 13

C. Transient Flight 

In this example, a pilot flew the simulator over a defined five-segment profile given in table 1. Throughout the 

flight he attempted to maintain heading and indicated airspeed. 

The pilot flew three cases: both engines nominal, one engine degraded with outer loop control off, and one 

engine degraded with outer loop control on. As before, the fan and compressors were degraded over 90 seconds 

beginning after 10 seconds. This type of degradation reduces thrust for a given fan speed. The pilot had not practiced 

much in the simulator and did not know the type of degradation nor when nor how it was injected. Particular flight 

variables of interest for the nominal case and for the degradation scenario with the intelligent hierarchical outer loop 

control off and with the intelligent hierarchical outer loop control on are shown in figure 10. The corresponding 

normalized engine variables are shown in figure 11. Figure 10 illustrates that the pilot was able to fly the plane 

approximately equally well in all three cases, however there was more variation in roll in the degraded case with 

outer loop control off. The pilot inputs in figure 12 indicate that the effort required by the pilot to fly the profile was 

about the same for the nominal case and the degraded case with outer loop control on. In the degraded case with 

outer loop control off, however, the pilot moved the stick side to side and used the rudder pedals constantly, 

indicating a considerable increase in workload. The pilot confirmed that with outer loop control on, the workload 

was significantly less and said he did not have to worry about heading. In the degraded case with outer loop control 

off, the pilot said the plane was hard to fly but he could not say why; he said it was much easier to fly with outer 

loop control on. He anticipated that if he had rudder trim available (the flight simulator does not have that feature) 

the difference between cases would not have been as significant. The pilot did say that the disparity between the 

engines (speeds and EGT) with outer loop control on is noticeable, and he would be uneasy about that if he did not 

know that the outer loop control was causing it, i.e., it would need to be mentioned in the flight manual.  

D. Discussion 

 In the first two straight and level flight examples no pilot was present but the deviation from steady state implies 

that pilot intervention is required to maintain trim. The first and last segments of the profile in the final example 

correspond to the first example, demonstrating what is actually involved for the pilot to maintain heading and 

airspeed. The third example showed a clear and obvious difference in the amount of effort required to maintain 

flight path with outer loop control on, which was confirmed by the pilot. Thus the examples demonstrate that in each 

case, with outer loop control on pilot workload is reduced, even if the additional workload consists of adjusting 

rudder trim, as for straight and level flight. In all of these examples, an autopilot could probably have maintained 

heading and airspeed, but it could also mask any real problem with the engine that the pilot should be aware of. The 

significant benefit of the Intelligent Hierarchical Control architecture, which is not explicitly illustrated in these 

examples, is that an engine anomaly, which is the cause of the performance change, can be detected and isolated, as 

well as being merely accommodated as an autopilot does. 

 A problem encountered with the relatively fast injection of degradation, which resulted in a sudden yawing 

moment, is the onset of Dutch roll: churning oscillations in yaw and pitch. This was mitigated somewhat by ramping 

in the degradation over 90 seconds. Dutch roll is a common phenomenon that should be handled by an autopilot 

mode; it is not a shortcoming of the Intelligent Control architecture implementation. 

 The process of degradation is gradual and in general the outer loop compensation will not be noticeable. Because 

in the examples the degradation was injected fairly rapidly, almost like an abrupt fault, it demonstrates that the 

architecture is general enough to accommodate faults as well as degradation. 

TABLE 1.—FLIGHT PROFILE FOR EXAMPLE. 

Segment 1 2 3 4 5 

Fan Speed  86% 90% 88% 82% 86% 

Indicated Airspeed 290 knots 290 knots 290 knots 290 knots 290 knots 

Heading 270º 270º 270º 270º 270º 

Altitude 32,000 feet Climb 33,000 feet descend 32,000 feet 

Duration 3 minutes - 3 minutes - 3 minutes 
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Figure 10.—Selected flight variables for transient flight with degradation in the front part of the engine. 
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in the front part of the engine. OLC stands for outer loop control in the legend. 

 



NASA/TM—2005-214019 16

 

0 100 200 300 400 500 600 700 800
−1

−0.5

0

0.5

1
P

it
c
h

 S
ti
c
k

0 100 200 300 400 500 600 700 800
−1.5

−1

−0.5

0

0.5

1

1.5

L
a

te
ra

l 
S

ti
c
k

0 100 200 300 400 500 600 700 800
−0.4

−0.2

0

0.2

0.4

0.6

P
e

d
a

l

nominal
outer loop off
outer loop on

0 100 200 300 400 500 600 700 800
50

55

60

65

P
L

A

Time, sec

Figure 12.—Pilot inputs from a transient flight with degradation in the front part of the engine. 



NASA/TM—2005-214019 17

IV. Conclusions 

The intelligent retrofit turbine engine control and diagnostics architecture implementation worked well in all 

cases evaluated and was shown to perform the duties that a pilot would otherwise need to do in compensating for the 

thrust imbalance, thus reducing workload. Such a system could be particularly useful on an instrument approach 

where heading is extremely important and the pilot is busy. When fully populated with diagnostic and Health 

Management algorithms as well as logic about the fan speed adjustments due to anomalies (this is the codification of 

pilot knowledge from training and flight manuals), such a system should be able to react to unusual situations within 

the operational limits of the engine. The incremental control commands added by the system enter the FADEC and 

as such are still subject to the controller’s limit logic, preventing any undesigned-for operation of the engine. The 

independent adjustment of the fan speed settings is a new paradigm for pilots, who are trained to notice differences 

between engines and adjust the throttles separately until the fan speeds match. Of course this action in itself 

increases workload. The architecture greatly increases the autonomy of the propulsion system, and thus enables the 

concept of an Intelligent Flight Control/Mission Manager. 
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