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Abstract – Fusion of hard data with soft data is an issue
that has attracted recent attention. An effective fusion strat-
egy requires an analytical framework that can capture the
uncertainty inherent in hard and soft data. For instance,
computational linguistic parsing of text-based data gener-
ates logical propositions that inherently possess significant
semantic ambiguity. An effective fusion framework must ex-
ploit the respective advantages of hard and soft data while
mitigating their particular weaknesses. In this paper, we
describe a Dempster-Shafer theoretic approach to hard and
soft data fusion that relies upon the novel conditional ap-
proach to updating. The conditional approach engenders
a more flexible method that allows for tuning and adapting
update strategies. When computational complexity concerns
are taken into account, it also provides guidance on how ev-
idence could be ordered for updating. This has important
implications in working with models that convert proposi-
tional logic statements from text into Dempster-Shafer theo-
retic form.

Keywords: Evidence fusion, evidence updating, soft infor-
mation, Dempster-Shafer theory, conditional approach.

1 Introduction
Motivation: Suppose various types of sensors are de-

ployed to detect the occurrence of some activity. In a mili-
tary context, this activity could be the transportation of ex-
plosive material, ammunition, etc., from one location to an-
other, along with various other related events such as the det-
onation of bombs/improvised explosive devices (IEDs), am-
bushes, etc., along the route. In a more civilian context, the
activity of interest could involve border control and security,
emergency response, management of traffic and crowds, etc.

The surveillance and the decision making process in such an
environment involves gathering data from a variety of dis-
parate physics-based hard sensors (e.g., visual, IR, satellite
imagery) for identifying different attributes of these events
(e.g., location and loudness of an explosion). The raw signal
stream generated from each such hard sensor would then un-
dergo signal/noise conditioning/processing so that a ‘report’
can be generated and sent to a fusion center for fusion with
other reports for analysis, information mining, knowledge
extraction, object/activity/intent recognition, and the deter-
mination of a course of action (CoA).

While the increased availability of a multitude of stream-
ing/stored sensor and data feeds and databases has made the
tasks of coordinated, persistent, and pervasive surveillance
and decision making easier, it has also been the major con-
tributing factor for the immense burden that intelligence of-
ficers are forced to bear. To ease this burden, increased au-
tomation of the decision making process is warranted. This,
in turn, calls for effective, computationally viable, and an-
alytically tractable models for representation of data and
schemes for evidence fusion.

Challenges: The enormous challenge one faces in
achieving this goal is mainly due to the critical role that soft
sensors, such as COMINT (e.g., intercepted communication
chatter), HUMINT (e.g., domain expert knowledge, infor-
mant statements, results from interrogations), and OSINT
(e.g., information gleaned from mostly unstructured open-
source intelligence, such as, newspapers, radio, databases),
play in the decision making process. How should the more
‘qualitative’ information provided by such soft sensors be
fused with the more ‘quantitative’ information generated
from the hard sensors? This is an issue that has recently
attracted considerable attention from the data and evidence
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fusion community.
Consider for example a time event chart (TEC) generated

from a report corresponding to a hard sensor [1]. A TEC
represents events of interest in chronological order and each
event is associated with its time of occurrence or the time
interval within which the event may have occurred. While
a TEC generated from a hard report would typically possess
narrower time intervals, a TEC generated from a soft report
would typically involve wider time intervals reflecting the
more subjective nature of the evidence. See Fig. 1. Indeed,
an event time interval in a soft TEC might even precede, or
even be ‘disjoint’ with, the event time interval that a hard
TEC provides.

timeTime uncertainty

DS BoE E2 or EDB

A soft DS-TEC 

time

DS BoE E1 or EObj

Time uncertainty

A hard DS-TEC 

(b) (f) (g)(e)(c) (d)(a)

Figure 1: DS-TECs corresponding to hard and soft reports.

Moreover, given that modeling the errors and uncertain-
ties associated with soft information is extremely difficult,
or perhaps even impossible [2], how does one fuse the
temporally sequenced evidence contained in hard and soft
TECs? Being beholden to a-priori assumptions regarding
the underlying distributions and priors, the Bayesian frame-
work is unlikely to be successful in this task. For example,
the Bayesian recipe of relying on data imputation models to
handle missing values may render decisions to be reliable
only as long as the assumptions made to impute the missing
values reflect reality.

Contribution: In this paper, we propose a Dempster-
Shafer (DS) theoretic evidence updating method that ap-
pears to be better suited for fusing hard and soft information.
DS theory overcomes Bayesian probability’s drawback of
a-priori assumptions regarding the underlying distributions
and priors to a large extent [3,4]. To quote [3], “... for appli-
cations with limited a-priori objective knowledge, [DS] evi-
dential reasoning can be superior in the sense that it is better
to be only partially but correctly informed than to be com-
pletely but incorrectly informed.” DS belief theory, when
compared to the probabilistic approach and the possibilistic
fuzzy reasoning method, allows for accommodating a wider
variety of data imperfections [3,4]. For example, DS theory
offers ways to effectively model uncertain implication rules
while preserving the material implications of propositional
logic statements that they represent [5]; probability theory
cannot adequately well capture the evidence of such rules
[6]. Additionally, the DS theoretic belief and plausibility
measures provide significantly richer information regarding
the confidence one may place on the occurrence of an event
[7]. So, with a DS theoretic technique, one can arrive at a
decision with the full understanding of the associated under-
lying uncertainties. Also, DS theory allows for a very easy

transition to, and from, probability theory [8].
With DS theoretic notions being incorporated, we can uti-

lize a TEC to better reflect the available evidence one has in
support of an event. We refer to this as a DS-TEC. So, in
addition to a TEC’s depiction of the time interval associated
with each event, a DS-TEC would indicate the DS mass al-
located to the event. In Fig. 1, E1 and E2 are examples of
hard and soft DS-TECs.

This paper is organized as follows: Section 2 provides a
brief review of essential DS theoretic notions; Section 3 pro-
poses our new conditional approach to updating; Section 4
is a discussion on how the various fusion parameters could
be selected; Section 5 contains an example to illustrate the
proposed methodology for fusion of hard and soft evidence;
and finally, the concluding remarks appear in Section 6.

2 Preliminaries
2.1 Dempster-Shafer (DS) Theory
2.1.1 Basic Notions

In DS theory, the total set of mutually exclusive and exhaus-
tive propositions of interest is referred to as its frame of dis-
cernment (FoD) Θ = {θ1, . . . , θn} [9]. A singleton propo-
sition θi represents the lowest level of discernible informa-
tion. Elements in 2Θ, where 2Θ denotes the power set of Θ,
form all the propositions of interest. We use A to denote all
singletons in Θ that are not included in A.

Definition 1 Consider the FoD Θ and A ⊆ Θ.
(i) The mapping mΘ(�) : 2Θ 7→ [0, 1] is a basic belief

assignment (BBA) or mass assignment if mΘ(∅) = 0 and∑
A⊆ΘmΘ(A) = 1. The BBA is said to be vacuous if the

only proposition receiving a non-zero mass is Θ; the BBA is
said to be Dirichlet if the only propositions receiving non-
zero mass are the singletons and Θ.

(ii) The belief of A is BlΘ(A) =
∑
B⊆AmΘ(B).

(iii) The plausibility of A is PlΘ(A) = 1−BlΘ(A).

DS theory models the notion of ignorance by allowing
the mass assigned to a composite proposition to move into
its constituent singletons. A proposition that possesses non-
zero mass is a focal element. The set of focal elements is
the core FΘ; the triple {Θ,FΘ,mΘ(�)} is the corresponding
body of evidence (BoE). While mΘ(A) measures the sup-
port assigned to proposition A only, the belief represents
the total support that can move into A without any ambi-
guity; PlΘ(A) represents the extent to which one finds A
plausible. When focal elements are constituted of singletons
only, belief functions become probability functions. Then,
the BBA, belief and plausibility all reduce to probability.

2.1.2 Evidence Combination

Definition 2 (Dempster’s Combination Rule (DCR))
The DCR-fused BoE E ≡ E1 ⊕ E2 = {Θ,FΘ,mΘ(�)}
generated from the BoEs Ei = {Θi,FΘi

,mΘi
(�)} with
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Θ ≡ Θi, where i = 1, 2, is

mΘ(A) =
∑

C∩D=A

mΘ1(C)mΘ2(D)/(1−K), ∀A ⊆ Θ,

whenever K =
∑
C∩D=∅mΘ1(C)mΘ2(D) 6= 1.

Note that K ∈ [0, 1]. A higher K value indicates more
conflict between evidence provided by the BoEs; a lower K
value indicates more agreement between the BoEs. Hence,
K is referred to as the conflict between the BoEs being
fused. The DCR’s difficulties in fusing conflicting BoEs are
well documented in the literature. The requirement that the
two FoDs being fused be identical constitutes another draw-
back associated with the DCR.

To fuse evidence generated from non-exhaustive FoDs Θ1

and Θ2 (so that Θ1 6= Θ2 and Θ1∩Θ2 6= ∅), one can simply
ignore the differences in the FoDs by having each source
allocate zero mass to propositions that are not within its own
FoD and continue applying DCR. In essence, this approach
assumes that each source can discern Θ1 ∪ Θ2 and ignores
the fact that some propositions are not within its scope of
expertise. The counter-intuitive conclusions this approach
may generate are well documented [10].

In the deconditioning approach, each source would artifi-
cially introduce ambiguities into its evidence so that its own
FoD is ‘deconditioned’ or ‘expanded’ to Θ1 ∪ Θ2. For ex-
ample, consider the plausibilities correction method (PCM)
in [10]: Let ΘC = Θ1 ∩ Θ2. Then the propositions of
(Θ1 ∩ ΘC) are discerned by the first source alone, those of
(Θ2∩ΘC) are discerned by the second source alone, and the
propositions of ΘC are discerned by both. A deconditioning
step is applied to the partial knowledge of sources to ‘re-
fer’ their knowledge to Θ1 ∪ Θ2. In the PCM, combination
is performed via the multiplication of these ‘deconditioned’
plausibilities; it requires that the plausibilities of only sin-
gleton propositions are maintained throughout. Hence, after
combination, it is impossible to obtain a valid BBA and in-
formation for any composite proposition.

2.2 Conditional Approach to Updating
The conditional approach to fusing evidence is based on the
premise that one has to ‘condition’ or ‘update’ the already
available evidence with respect to what both FoDs can dis-
cern [11, 12]. In this sense, it is more appropriate to refer to
it as an evidence update strategy than an evidence combina-
tion strategy. Once the conditioning operation is performed,
each source invokes a strategy to incorporate its originally
cast evidence that does not belong to ΘC . This approach
enables a source to update its own knowledge base, and ex-
change information with other sources for the express pur-
pose of refining its own knowledge, without having to con-
tinually ‘expand’ its FoD.

2.2.1 Conditional Update Strategy
Restricting ourselves to the identical FoD case, let us ex-
plain the conditional update strategy in [11]; its extension to
the more general non-exhaustive FoD case appears in [12].

Consider the two BoEs E1 and E2. We identify them to be
at state k, k ≥ 0, (after all, we are dealing with an up-
date strategy) via Ei[k] = 〈Θi,FΘi

[k],mΘi
(�)[k]〉, where

Θ ≡ Θi, for i = 1, 2. The evidence update strategy in
[11] that updates the evidence in E1[k] with the evidence
available in E2[k] to yield the updated BoE E1[k + 1] =
〈Θ1,FΘ1 [k+ 1],mΘ1(�)[k+ 1]〉 ≡ E1[k]C E2[k], k ≥ 0, is

BlΘ1(B)[k + 1]
= α(A)[k]BlΘ1(B)[k] + β(A)[k]BlΘ2(B|A)[k], (1)

where BlΘ2(A) > 0. The parameters {α(A)[�], β(A)[�]}
are non-negative, functions of the conditioning eventA only,
and satisfy α(A)[�] +β(A)[�] = 1. Similar update equations
exist for the mass and plausibility updates [11].

2.2.2 DS Theoretic Conditionals
In [11, 12], the conditional operation in (1) is implemented
using the Fagin-Halpern (FH) DS theoretic conditionals.

Definition 3 [13] For E = {Θ,FΘ,mΘ(�)}, A,B ⊆ Θ
with BlΘ(A) > 0, the conditional belief of B given A is

BlΘ(B|A) = BlΘ(A ∩B)/[BlΘ(A ∩B) + PlΘ(A ∩B)].

The conditional plausibility PlΘ(B|A) is given by a coun-
terpart equation.

The conditioning event A identifies the event of ‘occur-
rence’ leading to the change of ‘status’ that warrants an up-
date. Although different notions of DS theoretic conditional
notions are available and used in the literature, regarding the
FH conditionals and its use in the update strategy in (1), we
make the following observations:
• Because BlΘ(B|A) = BlΘ(A ∩ B|A), while evaluat-

ing the evidence we have in support of B when our view is
restricted to onlyA, the FH conditionals consider only those
propositions that both A and B have in common.
• The FH conditionals provide a more appropriate proba-

bilistic interpretation and a more natural and fluid transition
to Bayesian notions [11,13]. Indeed, it is the FH conditional
belief and plausibility that correspond precisely to the inner
and outer measures of a nonmeasurable event (for which a
probability has not been assigned) [14]. See [11] for a de-
tailed interpretation.
• With the FH conditionals, (1) has an interesting prob-

abilistic interpretation in the limiting case when the focal
elements are singletons only [11].
• The conditional update strategy in (1) is more robust

than the DCR [12] in the sense that the sensitivity of the
fused BoE’s masses are less affected by perturbations in the
masses of the BoEs being fused.
• The conditional update strategy in (1) forms the ba-

sis of evidence filtering, a novel technique that exploits DS
notions and digital filtering techniques for detecting multi-
modal faint signatures possibly buried in clutter [15]. Its use
in evidence filtering clearly demonstrates the effectiveness
of the conditional update strategy in (1) when dealing with
temporally sequenced data.
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3 A Conditional Approach for Fusing
Hard and Soft Temporal Data

With these attractive properties, conditional updating ap-
pears to be ideally suited for integrating the temporally se-
quenced information contained in hard and soft DS-TECs.

3.1 Conditional Update Equation (CUE)
To update one DS-TEC with the evidence received from an-
other DS-TEC however requires an update strategy that can
handle new evidence received in the form of a general BoE.
However, the strategy in (1) is applicable only to the case
when a source is being updated with the ‘occurrence’ of one
propositionA, i.e., the incoming evidence has only one focal
element! We therefore propose the following generalization:

Definition 4 (Conditional Update Equation (CUE)) For
the BoEs Ei[k] with Θ ≡ Θ1 = Θ2, the conditional update
equation (CUE) that updates E1[k] with the evidence in
E2[k] is E1[k + 1] ≡ E1[k]C E2[k], ∀k ≥ 0, where

BlΘ1(B)[k + 1]

= α[k]BlΘ1(B)[k] +
∑
A⊆Θ2

β(A)[k]BlΘ2(B|A)[k].

The CUE parameters {α[�], β(A)[�]} are non-negative and
satisfy α[�] +

∑
A⊆Θ2

β(A)[�] = 1, where β(A)[�] =
0, ∀A 6∈ FΘ2 [�], i.e., α[�] +

∑
A∈FΘ2 [�] β(A)[�] = 1.

Remarks:
1. Note that, BlΘ1(∅)[�] = 0 and BlΘ1(Θ1)[�] = 1.
2. BlΘ1(B)[k] (computed in E1[k]) accounts for the ev-

idence that E1 already has for B ⊆ Θ1; BlΘ2(B|A)[k]
(computed in E2[k]) accounts for the evidence provided by
A ∈ FΘ2 in E2.

3. The corresponding mass update equation is

mΘ1(B)[k + 1]

= α[k]mΘ1(B)[k] +
∑
A⊆Θ2

β(A)[k]mΘ2(B|A)[k]. (2)

Noting that mΘ2(B|A) = 0 if A ∩ B 6= 0 [11], we get the
mass update of Θ1 as

mΘ1(Θ1)[k + 1]
= α[k]mΘ1(Θ1)[k] + β(Θ2)[k]mΘ2(Θ2)[k]. (3)

3.2 Some Properties of the CUE
3.2.1 Basic Properties
The following can be easily established.

Claim 1 Let EΘ denote the vacuous BoE.
(i) EΘ C EΘ = EΘ for arbitrary CUE parameters; E1 C

E1 = E1 when β(A)[�] = 0, ∀A ⊂ Θ2.
(ii) For E1[1] = E1 C EΘ, E1 6= EΘ, mΘ1(Θ1)[1] >

mΘ1(Θ1) and, if α < 1, mΘ1(B)[1] < mΘ1(B), ∀B ∈
FΘ1 \Θ1.

(iii) For E1[1] = EΘ C E2, E2 6= EΘ, mΘ1(B)[1] ≥
mΘ1(B), ∀B ⊂ Θ1, and, if α < 1, mΘ1(Θ1)[1] <
mΘ1(Θ1) = 1.

A result that may provide guidance on how to select the
CUE parameters is

Claim 2
(i) Updated mass of a given proposition increases, i.e.,

mΘ1(B)[k + 1] > mΘ1(B)[k], B ⊆ Θ1, iff∑
A⊆Θ2

β(A)[k]mΘ2(B|A)[k] > mΘ1(B)[k]
∑
A⊆Θ2

β(A)[k].

(ii) Updated mass of the completely ambiguous proposi-
tion decreases, i.e., mΘ1(Θ1)[k + 1] < mΘ1(Θ1)[k], iff

β(Θ2)[k]mΘ2(Θ2)[k] < mΘ1(Θ1)[k]
∑
A⊆Θ2

β(A)[k].

3.2.2 Focal Elements
Note that, the CUE may generate focal elements other than
those in FΘ1 [k] ∪ FΘ2 [k] because mΘ2(B) = 0 does not
guarantee mΘ2(B|A) = 0 (see [11] for details). Therefore,
B ∈ FΘ1 [k + 1] implies that B ∈ FΘ1 [k] or B ⊆ A for
some A ∈ FΘ2 [k] for which β(A)[k] 6= 0.

3.2.3 Mutual Updating
With no additional external evidence sources, CUE can be
used to mutually constrain the interpretation of two sources
by recursively updating each BoE from the evidence of the
other. If each BoE converges to a limiting BoE, it would in-
dicate an ‘agreement’ between the two BoEs as to the extent
to which each can benefit from the other.

To study this, let {α[k], β(�)[k]} and {γ[k], δ(�)[k]} be the
CUE parameters corresponding to E1[k+1] = E1[k]CE2[k]
and E2[k+1] = E1[k]BE2[k], respectively. Then, the masses
of E1[k+1] and E2[k+1] can be expressed via the following
matrix recursions:

m(B)[k + 1] = Γ[k] m(B)[k] + Φ(B)[k], ∀B ⊂ Θ;
m(Θ)[k + 1] = Γ[k] m(Θ)[k], (4)

where

m(B)[�] =
[
mΘ1(B)[�]
mΘ2(B)[�]

]
; m(Θ)[�] =

[
mΘ1(Θ)[�]
mΘ2(Θ)[�]

]
;

Γ[�] =
[

α[�] β(Θ2)[�]
δ(Θ1)[�] γ[�]

]
;

Φ(B)[�] =


∑
A⊂Θ2

β(A)[�]mΘ2(B|A)[�]∑
A⊂Θ1

δ(A)[�]mΘ1(B|A)[�]

 . (5)

Note that the CUE parameters are non-negative and satisfy

α[�] +
∑
A⊆Θ2

β(A)[�] = γ[�] +
∑
A⊆Θ1

δ(A)[�] = 1, (6)
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where β(A)[�] = 0, ∀A 6∈ FΘ2 [�], and δ(A)[�] = 0, ∀A 6∈
FΘ1 [�]. The next result indicates that with mutual updating,
each BoE can indeed reduce its ignorance.

Lemma 3 (General BoEs) Consider the CUE-based mu-
tual updates E1[k + 1] = E1[k] C E2[k] and E2[k + 1] =
E1[k]B E2[k], for k ≥ 0, in (4). If α[k] +β(Θ2)[k] ≤ ρ < 1
and γ[k] + δ(Θ1)[k] ≤ ρ < 1, for all k ≥ 0, the mass for
the completely ambiguous proposition vanishes in the limit,
i.e., m∗Θ1

(Θ1) = m∗Θ2
(Θ2) = 0.

Proof: Obvious because ‖Γ[k]‖∞ ≤ ρ < 1, ∀k.
Dirichlet BoEs: In this case, (6) reduces to

1 = α[�] +
∑
B∈Θ2

β(B)[�] + β(Θ2)[�]

= γ[�] +
∑
B∈Θ1

δ(B)[�] + δ(Θ1)[�]. (7)

Accordingly, the matrix Φ(B)[�] in (4) reduces to

Φ(B)[k] =
[
β(B)[�]
δ(B)[�]

]
, ∀B ∈ Θ. (8)

Lemma 4 (Dirichlet BoEs) Consider the CUE-based mu-
tual updates E1[k + 1] = E1[k] C E2[k] and E2[k + 1] =
E1[k]B E2[k], for k ≥ 0, with Ei[0], i = 1, 2, being Dirich-
let. Then the following are true:

(i) Ei[�], i = 1, 2, are Dirichlet.
(ii) If all the CUE parameters are time-invariant, the lim-

iting BoEs E∗i , i = 1, 2, exist and are purely probabilistic;
the limiting masses of the singletons are

m∗(B) ≡
[
m∗Θ1

(Θ1)
m∗Θ2

(Θ2)

]
=

1
M

[
1− γ β(Θ2)
δ(Θ1) 1− α

] [
β(B)
δ(B)

]
,

where M ≡ (1− α)(1− γ)− β(Θ2) δ(Θ1).

Proof:
(i) This follows from the observations in Section 3.2.2.
(ii) Apply z-transform to the update equations and solve

for mΘi
(B)[�], i = 1, 2. The Final Value Theorem then

yields the results being claimed.
Remark: The expressions in item (ii) above can be used to

arrive at expressions for the limiting masses in the ‘extreme’
cases. For example, lim

β(B)→0
m∗Θ1

(B) = β(Θ2) δ(B)/M ;

lim
β(B)→1−α

m∗Θ1
(B) = 1; etc.

3.2.4 Repeated Updating
Suppose E1 is repeatedly conditioned by the same BoE E2,
i.e., E1[k + 1] = E1[k] C E2, k ≥ 0. With E2 showing
little or no change (e.g., a faulty/compromised sensor), does
E1 continue to update itself? Applying the CUE repeatedly,
and assuming α[�] = α < 1, β(A)[�] = β(A), and a static
E2, we get the limiting value of BlΘ1(B)[k] as

Bl∗Θ1
(B) =

∑
A∈FΘ2

[β(A)/(1− α)]BlΘ2(B|A). (9)

So, the information that E1 had would eventually be com-
pletely eroded in favor of information that is fully deter-
mined by E2, an undesirable situation if E2 is not reliable.

4 Tuning and Adapting Strategies
4.1 Selection of Parameters
4.1.1 Selection of α[�]

A higher α[�] can capture the inflexibility of available ev-
idence towards changes, perhaps because of its perception
of the low reliability of the incoming evidence and/or high
inertia of the available evidence (e.g., when it is reluctant
to change knowledge that has been already gathered from a
vast collection of reliable evidence). A lower α[�] can cap-
ture flexibility towards changes, perceived reliability of in-
coming evidence, or towards the initial phase of evidence
collection when the BoE has little or no credible knowledge
base to begin with. Another strategy is to give each ‘piece’
of already gathered evidence and the incoming new evidence
equal ‘importance’. These notions give rise to

Definition 5 (Inertia-Based Selection) With reference to
the CUE, (i) infinite inertia-based updating refers to α[k] =
1; (ii) zero inertia-based updating refers to α[k] = 0;
(iii) proportional inertia-based updating refers to α[k] =
N/(N + 1), where N is the number of ‘pieces’ of evidence
on which the available evidence is based upon.

4.1.2 Selection of β(A)[�]

Here, we immediately see two choices.

Definition 6 The choice of β(�)[�] yields two CUE versions.
(i) Receptive updating: Here, β(A)[�] =

KΘ2mΘ2(A)[�], ∀A ∈ FΘ2 [�], where KΘ2 is a constant.
(ii) Cautious updating: Here, β(A)[�] =

KΘ1mΘ1(A)[�], ∀A ∈ FΘ2 [�] ∩ FΘ1 [�] and β(A)[�] =
0, ∀A ∈ FΘ2 [�] \ FΘ1 [�], where KΘ1 is a constant.

Remarks:
1. Receptive updating ‘weighs’ the incoming evidence ac-

cording to the support each focal element receives from E2.
This has an interesting Bayesian interpretation: it reduces to
a weighted average of the probability mass functions corre-
sponding to E1 and E2.

2. Cautious updating ‘weighs’ the incoming evidence ac-
cording to the support each focal elements receives from E1.
So the focal elements of the updated BoE are restricted to be
within FΘ1 .

3. One can show that, with Dirichlet BoEs, both receptive
and cautious updating strategies ensure convergence with
mutual updating (even when the CUE parameters are time
varying).

5 Incorporating Soft Evidence
5.1 An Example
5.1.1 Setup

Consider a surveillance/monitoring scenario where ‘objects’
crossing a security zone perimeter are to be classified.
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Hard Evidence: Various hard sensors can be used
to classify objects as they approach and cross the se-
curity zone perimeter. For instance, using the facili-
ties available at the MObile SEnsor Systems (MOSES)
Laboratory at the University of Notre Dame, we
have actually utilized a scheme where the modalities
ACC = Acoustic, PIR = Passive IR, RSSI =
Received Signal Strength Indicator, and V IB =
V ibration are used for this purpose. A simple threshold
identifies each sensor signal as either 1 = High (activated)
or 0 = Low (not activated), and activation of each modal-
ity is used to classify the objects into the three classes in
ΘObj = {P = Person, V = V ehicle, O = Other} ac-
cording to an appropriate mapping. To illustrate the CUE-
based evidence update scheme, let us consider the following
BoE to reflect the confidence we place on the object being a
person when both the PIR and ACC sensor modalities are
activated:

EObj : mObj(P ) = 0.8; mObj(ΘObj) = 0.2. (10)

Each person (P ) or vehicle (V ) may belong to friendly
forces or an enemy/terrorist group, thus generating the sub-
categories {PF , PE} and {VF , VE}; O could account for an
object, such as an animal (e.g., a rabbit, dog), that cannot be
further sub-classified.

Soft Evidence: Hard sensor information cannot be used
to further refine the objects {P, V } into their sub-categories;
soft information would be essential for this purpose. For ex-
ample, the prevailing threat level TL in the proximity of
the security zone may provide evidence on how we may
view, and further refine, each perimeter crossing. To assess
the prevailing TL, we may search databases for information
containing insurgency attacks in the region. We can limit the
search to a given time period via purely standard methods
using temporal indices, keyword search, etc. All applicable
sentences (e.g., sentences that might have potentially rele-
vant information because they contain the right keywords
and they had been indexed for the right time frame, etc.)
can be parsed using a method for automatically translating
natural language (NL) expressions into a logical form (us-
ing formal logics in conjunction with categorical grammar
and lambda calculus); details of an appropriate translation
algorithm is in [16]. This results in (lambda-free) logical
expressions that can be used to assign DS theoretic masses.

Specifically, suppose that we are interested in determin-
ing the overall threat level TL based on information from
the database. Database information can be thought of as im-
plications of the form φ →τ ψ, where φ is a proposition
in the database, ψ is the corresponding assertion about the
threat level (e.g., TL = high) and τ ≥ 0 is the certainty of
the rule (i.e., the degree to which we are confident that this
implication holds). Such implication rules can potentially
serve as the means to ‘strengthen’ or ‘refine’ the evidence in
EObj . For example, suppose the information extracted from
the database implies a high threat level with τ = 0.6. De-
fined on the FoD ΘDB = {E = Enemy, F = Friend},

this can correspond to the BoE

EDB : mDB(E) = 0.6; mDB(ΘDB) = 0.4. (11)

In addition to using database information, we can also
use soft information obtained from interviewing suspects.
For example, an unknown person caught within a secure
perimeter might claim that they are on an authorized mis-
sion (e.g., belonging to a repair team that arrived to fix
the plumbing). From questioning the person about their
reason to be on the base, we might be able to deter-
mine whether s/he is indeed an authorized person or not,
and use the same method as above to determine the FoD
ΘInt = {AM(H)low, AM(H)med, AM(H)high} for an
“authorized mission” AM for a human H . As with the
database case, we can assign a mass function for assigning
masses to the propositions in ΘInt based on the assessment
of the interviewer (i.e., the degree to which the interviewer
believes that the mission of person H is authorized).

FoD Consolidation and DS-TEC Generation: The
CUE in Definition 4 requires identical FoDs. So we employ
the strategy of ‘extending’ the hard and soft BoEs in (10) and
(11) to the ‘cross-product’ FoD Θ = {PF , PE , VF , VE , O}.
The BoEs thus generated from EObj and EDB (assuming that
EDB’s ‘expertise’ does not contain O) appear in Table 1 as
ÊObj [0] and ÊDB [0], respectively. The hard and soft DS-
TECs corresponding to ÊObj [0] and ÊDB [0] would look very
similar to those in Fig. 1: the hard DS-TEC of ÊObj [0] would
have a much narrower ‘activated’ time interval; the time in-
terval of the soft DS-TEC of ÊDB [0] would be much wider
reflecting the prevailing threat level.

5.1.2 Fusion
One significant advantage of the CUE is that it is easily
adaptable to fusion of temporally sequenced, spatially dis-
tributed, multi-modal data. Indeed, in the work being con-
ducted at the MOSES Laboratory with purely hard sensor
data, we have experimented with a conditional update strat-
egy that uses evidence generated from temporally sequenced
data from the sensor nodes that are located next to the node
being updated.

How should we utilize the CUE to fuse the evidence in
hard and soft DS-TECs when they may not fully agree on
the time of occurrence of an event? The most natural strat-
egy would be to first ‘partition’ the time axis so that, within
each partition, the DS-TECs agree as to the occurrence (or
non-occurrence) of an event, and then to carry out fusion
within each partition. For example, the hard DS-TEC E1
and the soft DS-TEC E2 in Fig. 1 can be fused within the
partitions (a)-(g) to get the update E1 C E2. Applying the
DCR within each partition may lead to difficulties because
the BoEs being encountered can be significantly, or even
completely, conflicting especially within non-overlapping
time intervals. The DCR’s difficulties in fusing conflicting
BoEs are of course well documented. The CUE does not en-
counter this problem because of the conditioning operation
it first invokes.
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Table 1: Fusion Results for Several Cases. Note: P = (PF , PE), E = (PE , VE), O = (PF , PE , VF , VE).
Propo- Hard Soft Hard C Soft Hard B Soft Mutual DCR
sition ÊObj [0] ÊDB [0] Obj-g Obj-1 Obj-2 DB-g DB-1 DB-2 M-1 M-2
PE 0.48
P 0.8 0.8α 0.53 0.27 δ(P ) + 0.8 δ(Θ) 0.30 0.67 0.40 0.69 0.32
E 0.6 β(E) + 0.6β(O) 0.27 0.66 0.6 γ 0.40 0.20 0.60 0.31 0.12
O 0.4 0.4β(O) 0.07 0 0.4 γ 0.27 0.13 0.08
Θ 0.2 0.2α 0.13 0.07 0.2 δ(Θ) 0.03 0

Table 2: CUE Parameters in Table 1.
Case α β(E) β(O) γ δ(P ) δ(Θ)
Obj-g α+β(E)+β(O)=1 γ+δ(P )+δ(Θ)=1
Obj-1 2/3 1/6 1/6
Obj-2 1/3 2/3 0
DB-g α+β(E)+β(O)=1 γ+δ(P )+δ(Θ)=1
DB-1 2/3 1/6 1/6
DB-2 1/3 2/3 0
M-1 Receptive updating with α = 1/3, γ = 2/3
M-2 Cautious updating with α = 2/3, γ = 1/3

To illustrate the newly proposed CUE-based evidence up-
dating mechanism, we update each DS-TEC from the evi-
dence available during the time partition where ÊObj is acti-
vated. The fusion results for several cases appear in Table 1;
the CUE parameters selected are in Table 2. (a) Hard C
Soft refers to ÊObj [1] = ÊObj [0]C ÊDB [0]. (b) HardB Soft
refers to ÊDB [1] = ÊObj [0] B ÊDB [0]. (c) Mutual refers to
the mutual updates ÊObj [k + 1] = ÊObj [k] C ÊDB [k] and
ÊDB [k + 1] = ÊObj [k]B ÊDB [k] as k →∞. Since ÊObj [0]
and ÊDB [0] have no common focal elements, only recep-
tive updating was implemented. For M-1, Fig. 2 shows the
focal elements of ÊObj [k], k = 0, 10. (d) DCR refers to
ÊObj [0]⊕ ÊDB [0] in Definition 2.
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Figure 2: Converging focal elements of ÊObj [k] for M-1.

Remarks:
1. CUE-based schemes can easily adapt to ‘highlight’ var-

ious propositions of interest. For instance, to emphasize E,
ÊObj in Obj-2 selects β(O) = 0; to emphasize P , ÊDB in
DB-2 selects δ(Θ) = 0.

2. With mutual receptive updating, both sources converge
to the same BoE. With α = 1/3, ÊObj in M-1 is more recep-
tive to the evidence of ÊDB and therefore the limiting BoE
has more support for E. The opposite is true in M-2.

3. While the DCR is not too amenable to handle se-
quenced data, the conditional approach can easily be mod-
ified to handle temporally sequenced data [15]. Moreover,
note how the DCR tends to allocate significantly higher sup-
port for PE . This is true even if the DCR scheme is imple-
mented with BoE ‘discounting’ [9]. Usually, soft evidence
serves its purpose best when, in light of the prevailing am-
bient conditions (e.g., threat level), it is used to ‘highlight’
certain propositions that the hard evidence supports. In this
sense, CUE-based schemes appear to be better suited for the
current purpose.

5.2 Evidence Ordering: Some Remarks
The ‘direction’ of updating (i.e., Hard C Soft or Hard B
Soft) would often depend on the types of evidence avail-
able, how they are generated, how they are made available
and how they are to be utilized. Hard C Soft fusion would
be useful when soft evidence received from intelligence/pre-
mission briefings, real-time intelligence updates, etc., war-
rants the strengthening or refining of hard evidence being re-
ceived. On the other hand, HardB Soft fusion would be use-
ful when a high-level intelligence center may want to exploit
real-time physical sensor readings being received to change
the tone of intelligence briefings and statements regarding
the threat situation.

Computational complexity concerns can also dictate the
direction of updating. This is especially true with a CUE-
based strategy because of the high computational burden
DS theoretic methods entail. One solution is to exploit the
CUE’s ability to ‘highlight’ only those propositions of crit-
ical interest. Another popular strategy is to use Dirichlet
BoEs so that CUE-based (and also DCR-based) fusion re-
sults remain Dirichlet. On the other hand, soft information
is more likely to be represented in terms of uncertain im-
plication rules of the type A =⇒ B with a confidence
in [α, β], where 0 ≤ α ≤ β ≤ 1 [5]. As we previously
mentioned, probability theory cannot adequately well cap-
ture the evidence contained in such rules [6]. DS theory of-
fers ways to effectively model these implication rules while
preserving the material implications of propositional logic
statements that such rules represent, viz., reflexivity, tran-
sitivity, and contra-positivity [5]. Dirichlet BoEs however
are inadequate to model these DS theoretic models. One so-
lution is to use cautious updating to contain the growth of
focal elements. Actually, as it turns out, with cautious up-
dating, a Dirichlet hard DS-TEC will remain Dirichlet when
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it is updated with an arbitrary soft DS-TEC.

6 Concluding Remarks
As its various properties demonstrate, the CUE appears to be
ideally suited for fusion of hard and soft evidence. While its
DS theoretic basis enables a smooth transition to probability,
the CUE also has the ability to smoothly transition between
the different BoEs that are being fused (e.g., see the α = 1
and β(O) = 1 cases of Obj-g in Table 1). The CUE also can
easily ‘highlight’ selected propositions (e.g., see Obj-2 and
DB-2 in Table 1) so that the tone of the fused result could ac-
cordingly be changed. The existence of convergent solutions
for the mutual updating schemes means that one is guaran-
teed to eventually arrive to a point where no further benefit
can be extracted from each other: receptive updating guar-
antees complete agreement (see M-1 and M-2 in Table 1);
cautious updating guarantees an ‘agree-to-disagree’ status
(the proofs of these results will appear elsewhere).

Previous work amply demonstrates the utility of DS theo-
retic conditional updating schemes in applications involving
temporally sequenced data [15], knowledge extraction from
imperfect data, graphical dependency models, etc. CUE
clearly holds the same promise. The extension of the CUE
to handle non-exhaustive FoDs is also of importance and we
are currently looking into this issue. With CUE being able to
handle non-exhaustive FoDs, the ‘extension’ of ÊDB to Θ,
and the allocation of mΘ2(Θ) = 0 would not be necessary.

The DS-theoretic BoE generated by the proposed scheme
can be used by a decision-maker (DM) for decision mak-
ing under uncertainty, which is a combination of decision
making under risk and ignorance [17]. “Risk” here means
that the DM only knows a probability distribution over the
states of nature, while “ignorance” means that no knowl-
edge about the states of nature is available. While in the
former, actions with the maximum expected utility can be
chosen, in the latter expected values cannot be computed
without any additional assumptions that reflect the DM’s at-
titude. For example, the DM could weigh the BEST and
WORST outcome and select the alternative with the high-
est H = αBEST + (1 − α)WORST for some chosen
α ∈ [0, 1]. In general, the DM will choose an action ai with
highest ‘expected’ value EVi = F (ri,1, ri,2, ..., ri,n) where
F is some aggregate function whose forms depends on the
DM’s attitude and the ri,1 are the rewards for action ai for
n different states of nature. For decision making under un-
certainty, we then obtain an ‘expected’ value EVi for each
action ai by using the weights of focal elements in the BoE
(instead of probabilities): Ei =

∑
B∈FΘ

r(ai, B) ·mΘ(B),
where r(ai, B) is the reward for action ai and state of na-
ture S ∈ B. This leads to a collection of payoffs Rai,B =
{EVi,j |Sj ∈ B} for each ai and focal element B. The ‘ex-
pected’ value of this collection is then determined using ag-
gregate function F (as described above).
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