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A denoising framework for 3D 
and 2D imaging techniques based 
on photon detection statistics
Vineela Chandra Dodda 1,4, Lakshmi Kuruguntla 1,4, Karthikeyan Elumalai 1, 
Sunil Chinnadurai 1, John T Sheridan 2 & Inbarasan Muniraj 1,3*

A method to capture three-dimensional (3D) objects image data under extremely low light level 
conditions, also known as Photon Counting Imaging (PCI), was reported. It is demonstrated that by 
combining a PCI system with computational integral imaging algorithms, a 3D scene reconstruction 
and recognition is possible. The resulting reconstructed 3D images often look degraded (due to 
the limited number of photons detected in a scene) and they, therefore, require the application of 
superior image restoration techniques to improve object recognition. Recently, Deep Learning (DL) 
frameworks have been shown to perform well when used for denoising processes. In this paper, for 
the first time, a fully unsupervised network (i.e., U-Net) is proposed to denoise the photon counted 
3D sectional images. In conjunction with classical U-Net architecture, a skip block is used to extract 
meaningful patterns from the photons counted 3D images. The encoder and decoder blocks in the 
U-Net are connected with skip blocks in a symmetric manner. It is demonstrated that the proposed DL 
network performs better, in terms of peak signal-to-noise ratio, in comparison with the classical TV 
denoising algorithm.

Auto stereoscopic (i.e., glasses-free) 3D imaging and display techniques have numerous applications in numer-
ous research fields e.g., biomedical, remote sensing, manufacturing, autonomous driving, and augmented reality 
(AR), to name a  few1–3. Integral Imaging (II) is one of the techniques that captures a 3D object under incoherent 
light source and displays a reconstructed 3D scene which can be viewed without the use of special eye wear i.e., 
3D  glasses4,5. In principle, a multiple perspective of a 3D object must be recorded to reconstruct and display a 
3D scene. For this purpose, various approaches have been demonstrated in the  literature6. Owing to the simpli-
fied nature of the image capturing process, II has been widely  applied1–3. To note, II was either combined with 
existing optical imaging systems or applied directly for auto-stereoscopic 3D imaging  applications6. For instance, 
 in7, an AR based navigation system was demonstrated for an in-vivo bio-imaging application. II system was 
combined with a conventional microscopy for a novel Light Field  Microscope8. A method to synthesize a digital 
hologram using II dataset was demonstrated  in9,10. Furthermore, imaging 3D objects under the turbid water was 
also proposed  in11, to mention a few.

In addition to these, a method of photons detection under extremely dark conditions was combined with II 
systems, known as Photons Counted Integral Imaging (PCII), for low light 3D object imaging and  visualization12. 
Thereafter, such system was examined for various applications such as biological  imaging13, remote  sensing14, 
night  vision15, object  detection16, autonomous  driving17 and data  encryption18, to cite a few. We note that most 
of these systems were proposed to demonstrate the feasibility of capturing and displaying 3D images under 
low light. Therefore, these analyses were typically limited to the single channel or monochromatic imaging. 
Nevertheless, intuitively, colour perception of a 3D object in such a degraded environment should enable better 
scene interpretation. For this reason, we have developed a simplified single-channel based colour 3D imaging 
 system19,20. Our system consists of a DSLR camera which translates both in horizontal (x) and vertical (y) direc-
tions to capture multiple two-dimensional (2D) images (often known as Elemental Images (EIs)) with different 
perspective. In one of our previous  works19, we demonstrated that a 3D scene reconstruction is possible from 
just ∼ 10 photons/scene. However, a 3D object (visual) recognition was possible only with >1000 photons/scene. 
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It is worth mentioning that the photons collection, in a given time interval by a photo sensor, is purely a random 
process. As a result of this spatial and temporal randomization, PCIs that are recorded, in general, represents a 
binary image i.e., either the presence (1) or absence (0) of photons. Accordingly, a 3D scene that are generated 
using the PCII dominated by impulse-like  noises20. In such cases, it is ideal to use a denoising filter to remove 
the excessive noises that are prevalent in an image to preserve the scene as much as possible.

Since first proposed, Deep Learning (DL)  frameworks21,22 have received considerable attention across all dis-
ciplines and also among optical engineers and scientists. For instance, DL was applied for 3D object recognition 
and classification in very low light illumination  conditions23 . DL was also been shown to be suppressing noises 
that occur due to the misalignment of optics in diffraction  tomography24. Similarly, DL network was proposed to 
remove the speckle noise from Digital Holographic (DH) imaging dataset.  In25, authors developed a Denoising 
Convolutional Neural Network (DNCNN) to remove the speckle noise that occurs during phase measurements 
in DH imaging system. Whereas  in26, multi-scale U-net architecture was used together with a customized cost 
function i.e., weighted combination of mean absolute error (MAE) and edge loss to minimize the noise from DH 
system. Further  in27, an attention based CNN was proposed in which a customized cost function was developed 
using polarization loss to denoise the polarimetric images. In addition to this,  in28, the authors proposed a com-
bined KullBack Liebler (KL) divergence and Total Variation (TV) regularization as a cost function to enhance 
the denoising performance of the conventional CNN. Recently, a modified DNCNN was developed to enhance 
the quality of the reconstructed image of polarimetric 3D imaging under a degraded  environment29. It is evident 
from these studies that supervised learning (SL) method was primarily used. It is known that, in general, SL 
requires a larger labeled clean data to train and test the network. However, such a clean labeled data may not be 
available and generating (synthetically) larger dataset is a time-consuming task. This process is applicable for 
PCII systems and therefore sufficiently larger (training) dataset is not available. To overcome such limitations, 
in this paper, for the first time, we propose to use a method which does not require a labeled dataset. Such a 
network is known as an end-to-end unsupervised network. In this work, we propose to use U-Net architecture 
with skip  blocks30 to denoise the photon counted 3D integral imaging dataset.

Results
Figure 1 shows the Photons Counted Integral Imaging (PCII) setup. In principle, PCII can be implemented in 
two steps. Step 1 (Pickup): In this process, a 3D object is being captured (in multiple different perspectives ) by 
moving the camera both in vertical and horizontal directions. This process results in capturing four-dimensional 
(4D) light-field data i.e., two spatial dimensions (x,y) and two angles in which light rays are measured (θx , θy)10. 
The captured images are known as Elemental Images (EIs) or an Elemental Image Array (EIA). Step 2 (Recon-
struction): The recorded 2D EIs are combined to produce a 3D scene. Reconstruction is in fact a reverse process 
of step 1, therefore by using a ray back propagation technique, a 3D scene can be reconstructed. It is worth to 
mention the fact that during reconstruction process the objects that were positioned at the same (object) plane 
combined flawlessly, thus they appear clearly in focus. The objects that were positioned in other planes appear 
blurry i.e., out of focus. A detailed Bayer patterned based EIA capturing and reconstructing can be found  at19,20.

In some applications, image reconstruction is shown to be possible with only low scattered  photons31.This 
can be done either by employing a physical camera, e.g. EMCCD and sCMOS, to capture a scene at low light 
 conditions16,31, or by using the computational  approaches12,32. In this work, we have used a computational 
approach, in such cases, a Poisson distribution is used to estimate the photons at any given  image12,29. Let the 
total number of photons detected in a normalised elemental image (ÊI) is np , then by using a Poisson parameter 
� , we can estimate the photons counted image as given  below32:

(1)P(Cx |Ix) ∼ PoissonDistribution(� = np × ÊI(x, y))

Figure 1.  Pickup process of Photons Counted 3D Integral Imaging. Here, camera array depicts the rectangular 
translation of a single camera on the pick up plane to capture multiple 2D elemental images.
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We then apply the parametric maximum likelihood estimator (MLE) to the photons counted elemental images 
to reconstruct the photons counted 3D sectional  images19:

where MF denotes the magnification factor of the imaging system which is given as MF = z/d in which d is 
the distance between pick up grid and image plane, see Fig. 1. Subscripts r,s indicate the pick-up location of the 
elemental image and p denotes the photon counted images. Crs(.) is the photon counted pixel value of the (r, s) th 
elemental image, corresponding to the voxel value Izp19.

Denoising network. In this section, we describe the opted denoising deep learning architecture i.e., U-Net, 
see Fig. 2. As aforementioned, this is an end-to-end fully unsupervised denoising approach where the noisy 
photons counted 3D sectional image is fed as an input to the network. This network uses multiple encoder/
decoder layers in a symmetric manner to retrieve denoised image with very few training data. Let x denote the 
clean 3D sectional image, n be the noise added by the photon counting process to the II system and y represent 
the resulted noisy photons counted 3D sectional images. Mathematically, this is given as:

The objective of image denoising problem is to restore x from y by attenuating the noise n. This process can be 
given as follows:

where x̂ be the estimated denoised photons counted image, H(.;�) is a parametric function and � are the train-
able parameters. The major components in the U-Net are encoder and decoder blocks with skip connection 
 layers33–35. In addition to this, skip blocks (SB) are added to the skip connection strategy in U-Net architecture to 
avoid vanishing gradients problem. These skip blocks and skip connections are designed in encoder and decoder 
blocks according to the features of the photons counted 3D images. Moreover, this strategy has the advantage of 
retaining useful image information. The intuitive reason behind adding the skip connections is that the low-level 
encoder extracts the abstract features which can be lost during the training process of the neural network. To 
avoid such loss in the features, we add skip connection from the encoder layers to the corresponding decoder 
layers. In the training process, 3D input image is given in the form of patches to the network. The advantage of 
applying such a patching technique is to increase the number of training samples such that the image features 
are learned by the network accurately. In the patching process, the patch window is moved horizontally and 
vertically to cover the whole  image36. The patched input image is converted to 1D vector and fed as an input to 
the network. After removing the noises, we unpatch the 1D vector and convert back to the size of input data.

In the following, we will discuss the details of network blocks used: The encoder block consists of two fully 
connected layers, two batch normalization layers and two activation layers. The principle behind encoding opera-
tion is dimension-reduction thereby extracting the useful image content from the noisy image y. The encoding 
operation is expressed as follows:

(2)MLE{IZP } =
1

npRS

R∑

r=1

S∑

s=1

Crs

(
x + r

(
shfx

MF

)
, y + s

(
shfx
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))

(3)y = x + n

(4)x̂ = H(y;�)

Figure 2.  Architecture of the unsupervised denoising network; EB-encoder block, DB-decoder block, and 
SB-skip block.
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where de1 is the output from the encoder and Pm is the input to the encoder which is generated by the patching 
process. We1 and be1 are the weight and bias matrices of the mth encoding layer in the encoding process. Batch 
normalization layer is placed to prevent internal covariate  shifts34. The low-level parameters in the network 
change the high-level data distributions during training process. This leads to the reduction of network accuracy 
due to the accumulation of error. However, the batch normalization layer speeds up the network and prevents 
gradient vanishing problem. The output of the batch normalization layer is passed to Exponential Linear Activa-
tion (ELU) function  layer37, which is given as:

where a is hyper-parameter and a ≥ 0 . The advantage of ELU is that it tries to make the mean activations (average 
activations of neurons in the layer for the given input) close to zero, thus speeding up the network. The output 
of each encoder block is given as:

The role of decoder is to reconstruct the photons counted 3D images from the abstract features extracted from 
the encoder block. The encoder and decoder blocks are symmetrical in structure. The decoder also consists 
of two dense layers, two batch normalization layers and two activation function layers. The output of decoder 
block is as follows:

where Wdm and bdm be the weights and biases of the mth decoder layer and Km is the input for the mth decoder 
layer. The number of neurons in the encoder block are 128, 64, 32, 16, 8 and vice-versa for the decoder  block34. 
The last layer of the network is fully connected layer and reconstructs the output patches into the size of input 
photons counted image. In the training process, the selection of cost function plays a vital role to obtain optimum 
parameters i.e., weights and biases. To minimize the cost function, various optimization algorithms were pro-
posed in the literature. For example, gradient descent, stochastic gradient descent, Adaptive Gradient Algorithm 
(ADAGRAD), Adaptive Moment Estimation (ADAM), to name a  few35,38,39. In our work, we use the ADAM 
optimizer to update the parameters � . The merits of ADAM include: easy implementation, computationally 
inexpensive and requires less  memory35. The ADAM optimizer updates the parameters (ρ) as shown below:

where v̂(t) and n̂(t) are bias corrected first and second moments defined as vt/1− β2 and nt/1− β1 , respec-
tively. Terms nt and vt are exponentially moving averages obtained by using nt = β1nt−1 + (1− β1)gt and 
vt = β2vt−1 + (1− β2)g

2
t  , respectively. We note, β1 and β2 represents exponential decay rates for the first and 

second moments with the value of 0.90 and 0.999, respectively. The gt is gradient of cost function with respect 
to time and η is learning rate which is generally set as 0.00135. The Mean Squared Error (MSE) is used as the cost 
function in our training process. The loss is calculated between the input noisy patched photons counted 3D 
images P and output denoised patches obtained from the network as follows:

where ψ denotes the denoising approach, ψ(P;�) are the output patches. During the training process, we adapt 
an optimization strategy i.e., early stopping. When the cost function of the validation set does not decrease 
for four consecutive epochs, the denoising network will stop training and save the best  parameters34. The SB 
block consists of one fully connected layer, one batch normalization layer, and one ELU layer. The output of 
mth decoder layer is connected to the output of SB block ŝdm . The final output after each decoder block is 
r̂edl = {d̂e1, ŝdm}.

Experimental results. To test the performance of our proposed denoising network, we used 10× 10 ele-
mental images that were captured by shifting our CCD camera with equal separations of 5 mm in both horizon-
tal (H) and vertical (V) directions (see Fig. 1). In our experiments, we used two 3D objects: one is a tri-colored 
ball known as Object 1 in Fig. 3a and second is a toy bird referred as Object 2 in Fig. 3a. From the pick up grid 
(i.e., imaging sensor) Object 1 and Object 2 were kept at 370 mm and 500 mm away, respectively. Further, the 
focal length of our imaging system is 50 mm and the pixel size is 7.4µm× 7.4µm . To note, the elemental images 
were initially recorded at the size of 1668(H)× 1668(V) but later resized into 422(H)× 539(V) before fed into 
our proposed DL network. Figure 3a depicts the two 3D objects used in our experiments and Fig. 3b, c shows the 
clean sectional images i.e., reconstructed 3D depth images via computational approach as described  in19 without 
using the photon counting technique. As can be seen from Fig. 3b, c in the reconstructed sectional images only 
one of the objects is clearly focused (depends on the corresponding depth location) while the other object is off-
focused or defocused. Further, to note, the images shown in Fig. 3 were captured as Bayer patterned image (i.e., 
GRBG format) which has a potential to be converted as a colour (RGB) image using interpolation techniques. 
Conversion of the Bayer image into a RGB image is out of the scope of this article, therefore not described here. 
However, readers are recommended to  explore19,20 where a detailed 3D imaging setup, reconstruction technique 

(5)de1 = We1Pm + be1

(6)ELU(x) =

{
x if x ≥ 0

a(ex − 1) otherwise,

(7)d̂e1 = ELU(We1Pm + be1)

(8)r̂dm = ELU(WdmKm + bdm)

(9)ρ(t+1) = ρt −
η√

(v̂(t))+ ǫ
n̂(t),

(10)C(�) = min � ψ(P;�)− P �2
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and a comparison of various interpolation techniques can be found (Fig. 4). In addition to this 3D dataset, we 
have also tested the proposed denoising network on a single-photon detector based 2D dataset i.e., Quanta 
Image sensor (QIS)40, for instance see Fig. 5. To reiterate, owing to the stochastic nature of the photons arrival 
to an imaging sensor, photon shot noise prevails at almost every standard imaging (i.e., CCD and CMOS) sys-
tem. In such scenarios, denoising becomes a non-trivial task as the captured images are not only dark (see for 
instance, Figs. 3 and 5) but the noise is camouflaged with the recorded scene which makes it hard to distinguish 
from the object of interest. In the following, we present our denoising results.

The results are produced by performing simulations on an Intel®  Xeon®  Silver 4216 CPU @2.10 GHz (2 
processors) with 256 GB RAM, 64-bit operating system. The software used is Spyder integrated development 
environment from Anaconda Navigator. It took around 68 s to run the python code and obtain the results. To 
note, np = 5000 photons/scene is used to synthesize the photon counted 3D sectional image (PCSI), as described 
in Eq. (1). Our network is then trained using a single PCSI, which is fed into our DL network in the form of 
multiple patches. This patching process reduces the time required to create a dataset either by a physical or 
a synthetic  process41. Thus, the demand for larger dataset is obviated as the network learns the features only 

Figure 3.  Three-dimensional (3D) objects used in our experiments: (a) EI of the 3D scene with Bayer format, 
(b) 3D reconstructed sectional image in which Tri-coloured balls is focused and (c) 3D reconstructed sectional 
image in which Toy bird is focused.

Figure 4.  Denoised results: (a1, b1, c1) represents noisy Photon counted 3D sectional image, TV denoised 
image and result of our proposed denoising method when object 1 is in focus, respectively and (a2, b2, c2) 
represents the noisy Photon counted 3D sectional image, TV denoised image and result of our proposed 
denoising method when object 2 is in focus, respectively.
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through these patches. We note, our network was tested with various patch sizes to achieve better denoising 
accuracy. It was estimated, based on our simulations, an 8 × 8 patch size provides a superior result in terms of 
peak signal-to-noise ratio (PSNR). It is worth to mention the fact that the selection of smaller patch size gives 
the finer details while the larger patch size may lose the finer details from an inputted  image42. To note, we used 
20% of the PCSI patches for validation and 60% of patches are allotted for training purpose. The validation loss 
(val_loss) is continuously monitored, via the model checkpoint callback function, to estimate the optimum model 
i.e., the loss is minimized. In addition to this, we also used an early stopping criterion that stops the training 
process when the val_loss is not converging even after at least 5 epochs, in the interest of computational time. 
In this work, 15 epochs were used with a learning rate of 0.001 to train the network. Further, we also calculated 
the computational complexity for the proposed denoising architecture and it is estimated the time taken for the 
classical TV denoising algorithm was 15.09018 s while it takes 2110 s (for both training and testing) to execute 
the proposed DL network.

In addition to this, to quantitatively evaluate the performance of the opted denoising DL network against the 
photon counted 3D sectional images and the 2D QIS dataset, we have used two standard image quality metrics: 
first is the Peak signal-to-noise ratio (PSNR) which is defined as follows:

where Imax is the maximum possible pixel intensity value of an image. MSE refers to the mean squared error 
between the clean image i.e., (Fig. 3b, or c) and the corresponding noisy PCSI (i.e., Fig. 4)19. For instance, the 
PSNR value given in Fig. 4b2 is an estimation between Figs. 3c and 4b2. The second metric, that we used in our 
simulations to test the performance of the opted denoising DL network, is structural similarity index measure 
(SSIM), which is given as:

where µx ,µy , σx , σy , andσxy represents mean, standard deviation, cross-covariance and C1 and C2 denotes the 
constant values,  respectively43. For our proposed DL network, SSIM is calculated as 0.8540 when the Object 1 
is in focus (i.e., Fig. 4a1), but when the same 3D sectional image was denoised using the classical TV denoising 
technique we obtained SSIM of 0.7218. Similarly, when the Object 2 is in focus (i.e., Fig. 4a2) the SSIM value of 
0.6445 is achieved with the proposed DL method and 0.5913 with the classical TV denoising method. Further-
more, for the QIS dataset, we estimated SSIM of 0.3222 when our proposed DL method was applied and 0.3205 
for the classical TV denoising method.

It is therefore evident from these results that the proposed DL method outperforms the classical TV denois-
ing by maximum of 1.91 dB (for 3D dataset), 1.38 dB (for QIS dataset) in terms of PSNR and by maximum of 
0.1322 (for 3D dataset) and 0.0017 (for QIS dataset) in terms of SSIM.

Conclusion
In summary, we have proposed a deep learning network for denoising the 3D (photons counted three-dimen-
sional integral imaging) and 2D (Quanta Image Sensor) dataset. We demonstrated that it is possible to denoise 
the low light level imaging dataset using a fully unsupervised network. In this work, encoder and decoder with 
skip blocks were opted to learn object features from the noisy photon counted 3D sectional images and QIS 
based images. The patches are selected randomly, covering the whole data, to obtain satisfactory results. As the 
denoising network does not require clean labels, the method is feasible for use in a wide variety of scenarios. It 
is therefore planned to extend this investigation by more closely identifying the patching process and parameter 
tuning in the architecture to achieve better denoised  results42. This includes examining such network on some 
classical optical imaging systems that suffer from inevitable noises.

Data availability
Data for this paper are not publicly available but shall be provided upon reasonable request to the correspond-
ing author.

(11)PSNR = 10.log10
I2max

MSE

(12)SSIM (x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ 2
x + σ 2

y + C2)

Figure 5.  Denoised results: (a1), (b1), (c1) represents noisy QIS image, TV denoised image and result of our 
proposed denoising method with corresponding PSNR values.
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