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ABSTRACT: 
 
Today imaging science has an important development and has many applications in different fields of life. The researched object of 
imaging science is digital image that can be created by many digital devices. Biomedical image is one of types of digital images. One 
of the limits of using digital devices to create digital images is noise. Noise reduces the image quality. It appears in almost types of 
images, including biomedical images too. The type of noise in this case can be considered as combination of Gaussian and Poisson 
noises. In this paper we propose method to remove noise by using total variation. Our method is developed with the goal to combine 
two famous models: ROF for removing Gaussian noise and modified ROF for removing Poisson noise. As a result, our proposed 
method can be also applied to remove Gaussian or Poisson noise separately. The proposed method can be applied in two cases: with 
given parameters (generated noise for artificial images) or automatically evaluated parameters (unknown noise for real images). 
 
 

1 INTRODUCTION 

One of the important types of digital technique that has many 
applications in many fields of life is digital image. It is a type of 
a signal that is obtained from a real analogous signal by 
discretization and quantization. There are many devices can 
create digital images, such as digital camera, X-ray scanner, and 
so on. Ordinarily these devices can give unexpected effects. 
One of them is noise. Noise reduces image quality and 
efficiency of image processing. 

The problem of noise removal from digital images is very 
actual today. In order to remove noise more effectively, we need 
to classify it. There are many types of noise, for example, 
Gaussian noise (almost for digital image by using digital 
camera), Poisson noise (for X-ray image), speckle noise (for 
ultrasonogram), and so on.  

There are many developed strong approaches to solve noise 
removal problem. The approach that uses total variation (Chan, 
2005; Burger, 2008; Chambolle, 2009; Xu, 2014; Rankovic, 
2012; Lysaker, 2006; Li, 2006; Zhu, 2012; Tran, 2012; 
Getreuer, 2012; Caselles, 2011; Rudin, 1992; Chen, 2013) is 
well-known and very promising.  

Rudin (1992) is pioneer to apply this concept. He proposed 
the total variation to solve many problems in image processing. 
Especially, he built a model to remove noise on digital images. 
This model is named as ROF (Rudin, 1992; Chen, 2013). 

 However, ROF model is usually used to remove only 
Gaussian noise. Of course it can also remove other types of 
noise, but not very effectively. Another popular noise in 
medical images is Poisson noise. For example, this noise 
appears in medical X-ray images. ROF model cannot treat this 
noise effectively. Therefore, Le T. (2007) developed so called 
modified ROF model. 

Both of Gaussian and Poisson noises is popular, but their 
combination is also important (Luisier, 2011). This combination 
of noises usually appears in biomedical images, for example, in 
electronic microscopy images (Jezierska, 2011; Jezierska 2012). 

As we talk above, ROF and modified ROF models 
ineffectively treat this combination. ROF model gives priority 

to Gaussian noise, but modified ROF model gives it to Poisson 
noise. 

In order to treat this combination of noise, we will combine 
ROF model (for Gaussian noise) and modified ROF model (for 
Poisson noise). Our model will treat this combination by 
considering proportion of noise between them.   

In experiments, we used a real image and add noise into 
them. We performed denoising of digital images by proposed 
method and other methods, such as ROF model, median filter 
(Wang, 2012) and Wiener filter (Abe, 2012). In order to 
evaluate an image quality after denoising, we used well-known 
criteria MSE (Mean Square Error), PSNR (Peak Signal-to-
Noise Ratio) and SSIM (Structure SIMilarity) (Wang, 2004; 
Wang, 2006). We give priority to PSNR, because it is most 
popular and used to evaluate the quality of restored signal in 
signal processing in general, and in image processing, 
especially.  

2 DENOISING MODEL FOR MIXED POISSON-

GAUSSIAN NOISE 

Let in 2R  space a bounded domain 2RΩ ⊂  be given. Let us 
call functions 2( , ) Ru x y ∈  and 2( , ) Rv x y ∈ , respectively, ideal 
(without noise) and observed images (noisy),  where 
( , )x y ∈ Ω .  

If the function u  is smooth, then its total variation is 
defined by 

[ ] | |TV u u dxdy
Ω

= ∇∫ , 

where ( , )x yu u u∇ = is a gradient (nabla operator), /xu u x= ∂ ∂ , 

/yu u y= ∂ ∂ , 2 2| | x yu u u∇ = + . In this paper, we only consider 

function u  that always has limited total variation [ ]TV u < ∞ . 
 



 

2.1 Denoising Model 

According to results (Chang, 2005; Burger, 2008; Rudin, 1992; 
Chen, 2013; Scherzer, 2009), image smoothness is characterised 
by the total variation. The total variation of noisy image is 
always greater than the total variation of smoothed image.  

When Rudin solved the problem [ ] minTV u → , he used 
this characteristic and assumed, that Gaussian noise variance is 
fixed by the additional constraint  

2( )u v dxdy const
Ω

− =∫ . 

He proposed the ROF model to remove Gaussian noise 
from an image 

* 2arg min | | ( )
2u

u u dxdy u v dxdyλ

Ω Ω

 
 = ∇ + −
  
 
∫ ∫ , 

where 0λ > is a Lagrange multiplier. 
Le T. (2007) proposed another model to remove Poisson 

noise based on ROF model: 

* arg min | | ( ln( ))
u

u u dxdy u v u dxdyβ
Ω Ω

 
 = ∇ + −
  
 
∫ ∫ , 

where β  is a regularization coefficient. We call it a modified 
ROF model for Poisson noise. 
In order to develop the denoising model for mixed noise, we 
also solve the problem based on the smooth characteristic of the 
total variation 

[ ] minTV u → . 
And we also define a constrained condition. We assume that 
with given image u , the mixed noise in image is fixed too 
(Poisson noise is unchangeable, and Gaussian noise only 
depends on noise variance): 

ln( ( | ))p v u dxdy const
Ω

=∫ , (1) 

where ( | )p v u  is a conditional probability. 
Let us consider Gaussian noise. Its probability density function 
(p.d.f.) is 

2

1 2
( )( | ) exp / ( 2 )

2
v up v u σ π

σ

 −= −  
 

. 

For Poisson noise the p.d.f.  is 

2
exp( )( | )

!

vu up v u
v
−= . 

We have to note that intensity levels of image colours are 
integer (for example, the intensity interval for an 8-bit grayscale 
image is from 0 to 255), so we regard u  as an integer value, but 
this will ultimately be unnecessary (Le 2007). 
In order to treat combination of Gaussian and Poisson noises, 
we assume the following linear combination 

1 1 2 2ln( ( | )) ln( ( | )) ln( ( | ))p v u p v u p v uλ λ= + , 
where 1 0λ > , 2 0λ > , 1 2 1λ λ+ = . 
According to (1), we obtain the denoising problem with 
constrained condition as following: 

*

21
22

arg min | |

( ) ( ln( )) ,
2

u
u u dxdy

v u u v u dxdyλ λ κ
σ

Ω

Ω

 = ∇

   − + − =   

∫

∫
  

where κ is a constant value. 
We can transform this constrained optimization problem to the 
unconstrained optimization problem by using Lagrange 
functional 

21
2( , ) | | ( )

2
L u u dxdy v u dxdyλτ τ

σ
Ω Ω


= ∇ + − +



∫ ∫  

2 ( ln( ))u v u dxdyλ κ
Ω


− −



∫  

to find 
* *

,
( , ) arg min ( , )

u
u L u

τ
τ τ= , (2) 

where 0τ >  is a Lagrange multiplier.  
This is our proposed model to remove mixed Poisson-

Gaussian noise from digital image. We have to notice that, if 
1 0λ =  and 2β λ τ= , we obtain modified ROF model for 

removing Poisson noise. If 2 0λ =  and 2
1 / (2 )λ λ σ= , then we 

obtain ROF model for removing Gaussian noise. In the case of 
1 20, 0λ λ> >  we get the model for removing mixed Poisson-

Gaussian noise. 

2.2 Model Discretization 

In order to solve the problem (2), we can use the Lagrange 
multipliers method (Zeidler, 1985; Rubinov, 2003; Gill, 1974).  

However, in this paper, we will solve it by using the Euler-
Lagrange equation (Zeidler, 1985).  

Let function ( , )f x y  be defined in limited domain 2RΩ ⊂  
and be the second-order continuous differentiable one by x  
and y  for ( , )x y ∈ Ω .  

We consider the special convex functional 
( , , , , )x yF x y f f f , where /xf f x= ∂ ∂ , /yf f y= ∂ ∂ .  

The solution of the optimization problem 

( , , , , ) minx yF x y f f f dxdy
Ω

→∫  

satisfies the following Euler-Lagrange equation 

( , , , , ) ( , , , , )
xf x y f x yF x y f f f F x y f f f

x
∂− −
∂

  

( , , , , ) 0
yf x yF x y f f f

y
∂ =
∂

, 

where 
/fF F f= ∂ ∂ , /

xf xF F f= ∂ ∂ , /
yf yF F f= ∂ ∂ . 

We use the result above to solve the problem (2). The 
solution of the problem (2) is given by the following Euler-
Lagrange equation: 

 
1

22 ( ) (1 )vv u
u

λ λ
σ

− − + − −   

2 2 2 2
0,yx

x y x y

uu
x yu u u u

µ µ
   

∂ ∂   − =   ∂ ∂   + +   

. 
(3) 

where 1 /µ τ= . We can reduce (3) to 

1
22 ( ) (1 )vv u

u
λ λ
σ

− − − +  (4) 



 

2 2

2 2 3/2
2

0
( )

xx y x y xy x yy

x y

u u u u u u u

u u
µ

− +
=

+
, 

where  
2

2xx
uu

x
∂=
∂

, 
2

2yy
uu

y
∂=
∂

, 

xy yx
u uu u

x y y x
 ∂ ∂ ∂ ∂ = = =   ∂ ∂ ∂ ∂  

. 

In order to discretize the equation (4), we add an artificial 
time parameter and consider the function  ( , , )u u x y t= . Then 
the equation (4) relates to the following diffusion equation 

1
22 ( ) (1 )t

vu v u
u

λ
λ

σ
= − − − +  

2 2

2 2 3/2
2

( )
xx y x y xy x yy

x y

u u u u u u u

u u
µ

− +

+
, 

(5) 

where /tu u t= ∂ ∂ . 
We can write the discretized form of the equation (5) as 

following: 

11
2 ( )k k k

i j i j i j i ju u v u
λ

ξ
σ

+ 
= + − −


 

2(1 )i j k
i jk

i j

v

u
λ µϕ


− +



, 
(6) 

where 
2

2 2 3/2
( )( ( ))

(( ( )) ( ( )) )

k k
xx ij y ijk

i j k k
x ij y ij

u u

u u
ϕ

∇ ∇
= +

∇ + ∇
 

2

2 2 3/2
2 ( ) ( ) ( ) ( ( )) ( )

(( ( )) ( ( )) )

k k k k k
x ij y ij xy ij x ij yy ij

k k
x ij y ij

u u u u u

u u

− ∇ ∇ ∇ + ∇ ∇

∇ + ∇
, 

1, 1,( )
2

k k
i j i jk

x ij
u u

u
x

+ −−
∇ =

∆
, , 1 , 1( )

2

k k
i j i jk

y ij
u u

u
y

+ −−
∇ =

∆
, 

1, 1,
2

2
( )

( )

k k k
i j ij i jk

xx ij
u u u

u
x

+ −− +
∇ =

∆
, 

, 1 , 1
2

2
( )

( )

k k k
i j ij i jk

yy ij
u u u

u
y

+ −− +
∇ =

∆
, 

1, 1 1, 1 1, 1 1, 1( )
4

k k k k
i j i j i j i jk

xy ij
u u u u

u
x y

+ + + − − + − −− − +
∇ =

∆ ∆
, 

1 1 2 20 1 1, , 0 1 , 1 ,; ; ; ;k k k k k k k k
j j N j N j i i i N i Nu u u u u u u u+ += = = =  

1 21,..., ; 1,..., ;i N j N= =  
0,1,..., ; 1; 0 1k K x y ξ= ∆ = ∆ = < < . 

Here K is enough great number. In this paper, we use 500K = .   

2.3 Finding Optimal Parameters 

We can use the procedure (6) to perform image denoising. In 
this procedure, values of parameters 1 2, , ,λ λ µ σ  need to be 
given. In some cases, we have to define these parameters to 
perform image denoising automatically. Then parameters 

1 2, ,λ λ µ  in process (6) need to be changed into 1 2, ,k k kλ λ µ for 

each step k . So we obtain new procedure that allows us to 

calculate values of these parameters automatically in iteration 
steps. 

2.3.1 Optimal Parameters λ1 and λ2 

Let ( , )u τ  be a solution of the problem (2). Then we get the 
condition 

( , ) 0L u
u

τ∂ =
∂

. 

This condition gives us the optimal parameters 1 2,λ λ : 

1

2

(1 )

1 ( ) (1 )

v dxdy
u

vv u dxdy dxdy
u

λ

σ

Ω

Ω Ω

−

=
− + −

∫

∫ ∫
, 

2 11λ λ= − . 
Its discretized form is 

1 2

1 2

1 1
1

2
1 1

(1 )

( 1 )

N N
ij
k
iji jk

N N k
ij ij ij

k
iji j

v

u

v u v

u

λ

σ

= =

= =

−

=
−

+ −

∑∑

∑∑
, 

2 11k kλ λ= − , 

where 0,1,...,k K= . 

2.3.2 Optimal Parameter µ 

In order to find an optimal parameter µ , we multiply (3) by 
( )v u−  and integrate by parts over Ω . Finally, we obtain the 
formula to find the optimal parameter µ : 

2
21

22

2 2
2 2

( )( ( ) )

( )x x y y
x y

x y

u vu v dxdy
u

u v u v
u u dxdy

u u

λ λ
σ

µ Ω

Ω

−− − −

= +
+ −

+

∫

∫
. 

Its discretized form is 
1 2

1 2

2
21

22
1 1

1 1

( )
( ( ) )

N N kk
ij ijk k

ij ij k
iji jk

N N
k
ij

i j

u v
u v

u
λ λ
σ

µ

η

= =

= =

−
− − −

=
∑∑

∑∑
, 

where 
2 2( ( )) ( ( ))k k k

ij x ij y iju uη = ∇ + ∇ −  

2 2

( ) ( ) ( ) ( )

( ( )) ( ( ))

k k
x ij x ij y ij y ij

k k
x ij y ij

u v u v

u u

∇ ∇ + ∇ ∇

∇ + ∇
, 

1, 1,( )
2

k k
i j i jk

x ij
u u

u
x

+ −−
∇ =

∆
, , 1 , 1( )

2

k k
i j i jk

y ij
u u

u
y

+ −−
∇ =

∆
, 

1, 1,( )
2

k k
i j i jk

x ij
v v

v v
x

+ −−
∇ =

∆
, , 1 , 1( )

2

k k
i j i jk

y ij
v v

v
y

+ −−
∇ =

∆
, 

1 1 2 20 1 1, , 0 1 , 1 ,; ; ; ;k k k k k k k k
j j N j N j i i i N i Nu u u u u u u u+ += = = =  

1 1 2 20 1 1, 0 1 , 1 ,; ; ; ;j j N j N j i i i N i Nv v v v v v v v+ += = = =  



 

1 21,..., ; 1,..., ;i N j N= = 0,1,..., ; 1k K x y= ∆ = ∆ = . 

2.3.3 Optimal Parameter σ 

In order to evaluate this parameter σ , we use the result of 
Immerker (1996): 

1 2

1 2 1 1

/ 2 | * |
6( 2)( 2)

N N

ij
i j

u
N N

πσ
= =

= Λ
− − ∑∑ , where 

1 2 1
2 4 2

1 2 1

− 
 Λ = − − 
 − 

 is the mask of an image. 

Operator * is a convolution operator, where 
1, 1 33 , 1 32 1, 1 31 1, 23*ij i j i j i j i ju u u u u− − − + − −Λ = Λ + Λ + Λ + Λ +  

22 1, 21 1, 1 13 , 1 12 1, 1 11ij i j i j i j i ju u u u u+ − + + + +Λ + Λ + Λ + Λ + Λ , 

1 21,..., ; 1,..., ;i N j N= =  
0iju = , if 0i = , or 0j = , or 1 1i N= + ,  

or 2 1j N= + . 
We have to notice, that the parameter σ  is just evaluated at 

first time of the iteration process. 

2.4 Image Quality Evaluation 

In order to evaluate image quality after denoising, we use 
criteria MSE (Mean Square Error), PSNR (Peak Signal-to-
Noise Ratio) and SSIM (Structure SIMilarity) (Wang 2004, 
2006): 

1 2
2

1 2 1 1

1 ( )
N N

MSE ij ij
i j

Q u v
N N

= =

= −∑∑ , 

1 2

2
1 2

2

1 1

10lg

( )
PSNR N N

ij ij
i j

N N LQ

u v
= =

 
 
 
 =
 
 −
 
 
∑∑

, 

1 2
2 2 2 2

1 2

(2 )(2 )
( )( )

uv
SSIM

u v

u v C CQ
u v C C

σ
σ σ

+ +
=

+ + + +
, 

where 
1 2

1 2 1 1

1
N N

ij
i j

u u
N N

= =

= ∑∑ , 
1 2

1 2 1 1

1
N N

ij
i j

v v
N N

= =

= ∑∑ . 

1 2
2 2

1 2 1 1

1 ( )
1

N N

u ij
i j

u u
N N

σ
= =

= −
− ∑∑ , 

1 2
2 2

1 2 1 1

1 ( )
1

N N

v ij
i j

v v
N N

σ
= =

= −
− ∑∑ , 

1 2

1 2 1 1

1 ( )( )
1

N N

uv ij ij
i j

u u v v
N N

σ
= =

= − −
− ∑∑ , 

2 2
1 1 2 2 1 2( ) , ( ) ; 1; 1C K L C K L K K= = << << .  

For example, 6
1 2 10K K −= = , L  is image intensity, where, for 

example, 82 1 255L = − =  for an 8-bit greyscale images. 
The greater value PSNRQ , the better image quality. If 

PSNRQ  is between 20 and 25, then an image quality is 

acceptable, for example, for the wireless transmission (Thomos, 
2006). 

SSIMQ  is used to evaluate image quality by comparing 
similarity of both images. Its value is between -1 and 1. The 
greater value SSIMQ , the better image quality. 

MSEQ  is a criterion to evaluate the difference between two 
images. MSEQ  is mean-squared error. The lower value MSEQ , 
the better restoration result. The value of MSEQ  also relates to 
the value of PSNRQ . 

2.5 Initial solution 

Because the iteration process uses the initial solution to perform 
finding solution, so the restoration result of automatically 
evaluated parameters case also depends on this initial solution. 
This dependency affects to restoration result, but it is not too 
much. 

The initial solution can be given by one from two methods: 
directly given or given through a set of initial parameters 
( 0 0 0

1 2, ,λ λ µ ). 
If the initial values of parameters 1 2, ,λ λ µ  are given, the 

obtained solution is not very good. Because when we set up the 
initial parameters to find initial solution, the priority of 
processing of Gaussian and Poisson noise on initial solution is 
fixed and the result will depend on these initial parameters.  

If the initial solution is constant value, the total variation 
and the differences by x-direction and y-direction will be 0. This 
is very bad for our iteration process. 

If we make an artificial image by randomizing, the 
restoration result is bad. Because the random function will 
affect to the noise property. 

The best case is the initial solution need to be enough 
different with noisy image but not much. In experiment, we 
make this solution by using average neighbour pixels (closed 
similar with noise assessment method of Immerker). 

2.6 Experiments 

We use an example to test our model in the case of processing a 
real image. In this case, we use an image of human skull with 
the size 300x300 pixel (Figure 1a). We zoom, crop and show 
the part of the original image under processing (Figure 1b – 1f). 

First, we create the noisy image by adding Gaussian noise 
(Figure 1c) and second, create noisy image by adding Poisson 
noise (Figure 1d).  

In order to calculate proportion between intensities of 
Gaussian and Poisson noises, we calculate the variance of 
Poisson noise. The value of variance of Gaussian noise is 
calculated via Poisson noise variance. Let the variance of 
Gaussian noise be four times greater than the variance of 
Poisson noise. 

First, let us consider Poisson noise. Its distribution is 

2( | )p v u , value of the variance of Poisson noise is 2 ijuσ = , 

respectively, with iju  at every pixel ( , )i j  of image, where 

1 21,..., ; 1,...,i N j N= = . We denote this Poisson noisy image 

as (2)v . Obviously, intensity value of (2)v  ought to be between 
0 and 255. If the intensity value of some pixels are out of this 
interval, they need to be reset to intensity value of respective 
pixel of the original image u , that means (2)

ij ijv u= .  



 

In this case, number of them is 5 (0.0056%). The variance 
of Poisson noise can be calculated as average 
value 2 10.0603σ = .  

Now, we consider Gaussian noise. Its variance need to be 
40.2412 (because we explained above, variance of Gaussian 
noise is four times over variance of Poisson noise). We denote 
this Gaussian noisy image as (1)v . As above case, intensity 

value of (1)v  also need to be between 0 and 255. In this case, 
there are 5780 pixels out of this interval, respectively 6.42% of 
all image pixels. 

We create resulting noisy image (Figure 1e) by combining 
first noisy and second noisy images with proportion 0.5 for 
Gaussian noisy image (1)v  and 0.5 for Poisson noisy image 

(2)v . 

This means (1) (2)0.5 0.5v v v= + . Hence:  

1 2/λ λ =
40.2412 0.5 4 /1
10.0603 0.5

⋅ =
⋅

. 

As a result: 1 4 / 5 0.8λ = = , 2 1 / 5 0.2λ = = . 
 Values of QMSE, QPSNR and QSSIM of noisy image are 

respectively 427.9526, 21.4168, and 0.4246. 
 

  

a) b) 

  

c) d) 

  

e) f) 

  Figure 1. Denoising of real image: a) original image, b) 
cropped image, c) with Gaussian noise, d) with Poisson noise, 

e) with mixed noise, f) after denoising. 
 

 QPSNR QSSIM QMSE 

Noisy 21.4168 0.4246 427.9526 
ROF 26.5106 0.8465 145.2183 

Median 25.6477 0.7871 177.1364 
Wiener 24.2657 0.6596 243.5077 

Proposed 
method with 

λ1=0.8, 
λ2=0.2, 

µ = 0.0857, 
σ = 40.2412. 

27.4315 0.8198 117.4713 

Proposed 
method with 

evaluated  
parameters 
λ1=0.8095, 
λ2=0.1905, 
µ = 0.0970, 

σ = 38.2310. 

27.2567 0.8383 122.2941 

Table 1. Quality comparison of noise removal methods for real 
image of human skull. 

 
The Table 1 shows the result of denoising for real image in 

cases: given parameters and automatically evaluated parameters. 
We have to notice, that in the case of the real image, the 

value of QPSNR of denoising for given ideal parameters is better, 
than the value of QPSNR of denoising for automatically evaluated 
parameters, but the value of QSSIM is inversed. 

Based on experimental results, we can see that the 
restoration result of automatically evaluated parameters case 
depends on initial solution.  

We use convolution operator to make a new image. The 
Table 2 shows the dependency of restoration result on initial 
solution, where:  

(a) Initial parameters 0 0
1 20, 1, 1λ λ µ= = = ;  

(b) Initial parameters 0 0
1 2 0.5, 1λ λ µ= = = ;    

(c) Initial solution 0 ( , )u rand= ⋅ ⋅  with ( , )rand ⋅ ⋅  to create 
randomized two-dimensional matrix with specific size; 

(d) Initial solution 0 * Au v=  with 
1 1 1

1 1 1 1
9

1 1 1
A

 
 =  
 
 

. 

Table 2 shows the best denoising result for the case (d) with 
respect two most important criteria (PSNR and MSE) . 

 

 
 (a) (b) (c) (d) 

λ1 0.8095 0.8114 0.9256 0.8069 
λ2 0.1905 0.1886 0.0744 0.1931 
µ 0.0970 0.0985 0.1026 0.0965 
σ 38.2310 

QPSNR 27.2567 27.1327 26.4279 27.2571 
QMSE 122.2941 125.8371 148.0081 121.6320 
QSSIM 0.8383 0.8381 0.8497 0.8384 

 
Table 2. Dependency of restoration result on initial solution.  

 



 

3 CONCLUSIONS 

In this paper, we proposed the method that is based on 
variational approach to remove combination of Poisson and 
Gaussian noises (mixed noise). 

The denoising result depends on parameters, especially on 
coefficients of linear combination 1λ  and 2λ . We can specify 
the values of parameters or these values can be automatically 
evaluated. In order to apply this model to real image, we need to 
use the proposed method with automatically evaluated 
parameters. In this case, the solution also depends on initial 
solution. 

The proposed method can be applied to remove separate 
Gaussian or Poisson noise (respectively ROF model and 
modified ROF model for Poisson noise), or mixed Poisson-
Gaussian noise as well. 

We also can use this variational approach to remove other 
kinds of noise, such as noise of magnetic resonance images 
(MRI), ultrasonogram, etc. 
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