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Abstract—Sleep plays a pivotal role in the quality of life,
and sleep posture is related to many medical conditions such
as sleep apnea. In this paper, we design a dense pressure-
sensitive bedsheet for sleep posture monitoring. In contrast to
existing techniques, our bedsheet system offers a completely
unobtrusive method using comfortable textile sensors. Based
on high-resolution pressure distributions from the bedsheet,
we develop a novel framework for pressure image analysis to
monitor sleep postures, including a set of geometrical features
for sleep posture characterization and three sparse classifiers
for posture recognition. We run a pilot study and evaluate
the performance of our methods with 14 subjects to analyze
6 common postures. The experimental results show that our
proposed method enables reliable sleep posture recognition and
offers better overall performance than state-of-the-art methods,
achieving up to 83.0% precision and 83.2% recall on average.

Keywords-Sleep Posture, Bedsheet, Sparse Classifier, Pres-
sure Image Analysis.

I. INTRODUCTION

As the best way to heal the human body and recover ener-

gy, sleep has many implications on our overall health. It has

been widely used as a diagnostic indicator in diverse medical

applications. For example, sleep stage is a proven biometric

in diagnosing cardiovascular disease, diabetes and obesity

[1]. Sleep difficulty is associated with psychiatric disorders

such as depression, alcoholism and bipolar disorder [2].

Among the indicators of determining sleep quality (such

as sleep stage and sleep difficulty), sleep posture is one of

the most important factors and is heavily used in performing

medical diagnosis.

There are many medical conditions affected by sleep

posture. One of the most common is sleep apnea. There

have been several research works on sleep apnea analysis

with sleep postures in recent years. Lee et al. reported that

lateral (lying on side) postures can reduce sleep disorders

for mild and moderate sleep apnea patients [3]. Ambrogio

et al. discovered the relationship between sleep postures

and chronic respiratory insufficiency, which leads directly

to sleep apnea [4]. Oksenberg and Silverberg investigated

breathing disorder and sleep postures [5]. They suggested

that patients with obstructive sleep apnea should avoid sleep

in the supine (lying on back) position.

Another medical application that is affected by sleep

posture is the recovery from serious operative procedures. It

has been shown that sleep quality affects the recovery times

of patients [6]. More specifically, one of the main problems

for post-surgical patients and elderly patients is formation of

pressure ulcers [7]. Pressure ulcers, or bedsores, are local-

ized injury to body tissue, usually near the bone, resulting

from low blood circulation and lack of movement. Hospital

staff need to be attentive to subjects that are more susceptible

to this condition, and take action to relieve pressure on the

highly sensitive locations by changing their sleep postures.

Current best practices in nursing involve moving patients

every several hours. However, there is no guarantee that

patients remain in one posture in the meantime.

Given these applications, autonomously monitoring pa-

tients during recovery is desired, especially when pres-

sure ulcers can develop very quickly. The goal of any

medical system that prevents the formation of pressure

ulcers requires the analysis of sleeping postures, as well as

notifications of susceptible and impending pressure points

on the patient’s body. Other health issues associated with

sleep postures include snoring, night sweats, and narcolepsy.

Therefore, there is indeed a need for automatic sleep posture

monitoring.

To date, researchers have proposed different ways to

monitor sleep posture automatically. Video cameras and

microphones have been used previously to study sleep

posture patterns. For example, Nakajima et al. [8] prototyped

a system based on visual signals to analyze sleep posture

changes. However, the drawbacks of using video involve

lighting issues. Low light levels at night adds noise to

the images, and even when near-infrared cameras are used

[9] the images still produced non-uniformity and artifacts.

Furthermore, video and voice taping raise serious privacy

concerns for users.

Inertial sensors, including accelerometers, gyroscopes and

magnetometers, are another applied technique used to mon-

itor sleep. Sadeh and Acebo attached several tri-axial ac-

celerometers on limbs of people to monitor the sleep via acti-

graph [10]. Kishimoto et al. deployed 14 wearable motion

sensors on users at home for remote sleep posture analysis
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[11]. The main downside to this technique is that sensors

have to be attached to body which can be uncomfortable or

burdensome to the users.

Alternatively, dispersed pressure sensors deployed in the

mattress can record when changes in body posture occur.

This method is unobtrusive and does not interfere in the

comfort of users. Also it is a stable medium that is not affect-

ed by changes in the environment. Hoque et al. facilitated a

mattress with wireless-powered accelerometers to record the

movement activity [12]. Jones et al. developed a bedsheet

system with 24 pressure sensors [13]. However, the focus

was on detecting posture change rather than recognizing

body posture.

In this paper, we focus on sleep posture analysis using

pressure sensors. We employ a dense pressure sensitive

textile bedsheet and apply pressure image analysis for

sleep posture recognition. Our contribution in this work

is threefold. First, we propose a framework for automatic

sleep posture analysis based on a dense pressure sensitive

bedsheet prototype (64×128 sensors) with e-textile material.

We would like to argue that pressure image analysis is

more challenging than visual image due to the stronger

self-occlusion (examples will be shown in the following

sections). Second, we define and discuss a set of geometric

features from pressure images for posture analysis. These

features are effective to not only distinguish different pos-

tures but characterize each posture with physical meanings

(the details about geometric features will be elaborated in

Section III). Third, we develop three heuristics based on

sparse representation to classify sleep postures. We evaluate

our proposed methods with 14 subjects for 6 common sleep

postures.

The proposed method exhibits better performance in terms

of accuracy and robustness than state-of-the-art methods.

Since people do not usually change sleep postures often, we

focus only on steady state sleep postures. Although there

may be information from previous postures and during the

transitions from one posture to another, we do not consider

this in the current scope of this paper.

The remaining part of the paper is organized as follows.

Section II describes the overall design of this monitoring

system that incorporates a pressure sensitive bedsheet. Sec-

tion III describes the algorithmic process of sleep posture

recognition by extracting pressure image features and clas-

sification using the theory of the Sparse Classifiers. Exper-

imental set up and results are given in Section IV. Finally,

future work and conclusion are discussed in Section V.

II. BEDSHEET DESIGN

In this section, we present the design of the bedsheet

system. The goal of this specialized bedsheet is to record

the pressure distribution of the body while sleeping and then

perform data analysis for medical applications. For instance,

when a patient has had recent surgery around the left hip,

limited pressure should be applied on that area and a left-

lying posture should not be allowed. When the bedsheet

system detects that the patient is lying on his left side for a

period of time, the patient or caregivers can receive an alert

to change the posture. Accordingly, the bedsheet system is

designed with the following consideration:

• High-resolution: The bedsheet should offer high reso-

lution for pressure sensing. Given enough resolution,

it is possible to quantify the applied pressure on body

parts and enable high accuracy medical diagnosis.

• Comfort: The user should feel comfortable lying on the

sheet. Also, it should be easy to deploy in the home or

hospital.

• Low-cost: For widespread use, the cost for the bedsheet

implementation should be low and affordable for most

people.

There are some existing sensor products [14], [15] that

comprise of many piezo-electrical pressure sensors. Howev-

er, none of them meets the above design criterions for wide

applications.

Figure 1. The pressure sensitive bedsheet consists of three parts: a textile
sensor sheet, a sampling unit and a tablet.

Figure 1 shows the prototype of our bedsheet system. The

system consists of three components: a 64 × 128 pressure

sensor array, a data sampling unit, and a tablet for data

analysis and storage. The sensor array is based on eTextile

material which is a fiber-based yarn coated with piezoelectric

polymer [16]. The initial resistance between the top and

bottom surfaces is high. When extra force is applied on

the surface of the eTextile, the intra-fibers will be squeezed

together and the electrical resistance will become smaller.

The textile sensor array has a three-layer sandwiched

structure: the top layer is normal fabric uniformly coated

with 64 parallel conductive lines; an eTextile layer in the

middle; and a bottom layer with 128 conductive lines

(perpendicular to the top 64 lines). Within this structure,

each intersection of conductive lines becomes a pressure

sensitive resistor. In total there are effectively 8192 pressure

sensors.
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Figure 2. Sleep Posture Recognition Framework

For the scanning, each conductive bus on the bottom is

connected to an ADC via analog switch module, S1, and

to ground via an offset resistor; each conductive bus on

the top is connected to the voltage supply Vcc via analog

switch model, S2. The scanning sequence of S1 and S2 is

synchronized by a microcontroller. For example, when S2

connects bus i on the top layer to Vcc and S1 connects

bus j to ADC, the scan will read the sensor located in row i

and column j. Therefore, this peripheral circuitry has random

access to any sensor in the bedsheet. The advantage of this

design is the 64×128 sensor structure has only 192 I/O pins,

one for each of the bus lines. Further details of this scanning

circuit design are described in our related work [16].

Figure 3(a) shows an example of a user lying on the

bedsheet. The subject sleeps on the bedsheet in a right fetus

posture, and the corresponding pressure image is illustrated

in Figure 3(b). We can see that body parts (such as hip, legs)

are shown clearly in the pressure image due to the dense

sensors in the bedsheet. It is helpful to characterize the geo-

metrical features of sleep postures and posture classification,

which will be discussed in detail in the next section.

(a) One subject on the bedsheet system (b) Pressure image

Figure 3. System demonstration with one subject sleeping in a right fetus
posture.

III. FRAMEWORK FOR SLEEP POSTURE ANALYSIS

Figure 2 shows the sleep posture analysis process. The

central three steps, Pre-processing, Feature Extraction, and

Sparse Classification, will be discussed in this section.

A. Pre-processing

The pre-processing on the raw pressure images is required

so that the images can be standardized in such a way to en-

able successful classification. The raw images contain noise

and artifacts that affect classification, and pre-processing

mitigates the side effects as much as possible.

• Firstly, the subject can be located anywhere on the

bedsheet, so to correct this, the images are aligned to a

common center of mass and relocated to the center of

the image.

• A smoothing filter of a symmetric 5 × 5 unit normal

distribution is applied. This smoothing minimizes the

effect of noise in the pressure map.

• The images are rotated so that the dominant axis of

the body shape is aligned vertically in the image. The

dominant axis is found by an eigenvector calculation by

approximating the human body geometry as an ellipse.

This accounts for the different lying angles for the

subjects.

• The images are normalized so that the sum of pixel

weights is one. This step attempts to counteract the

affects for the different body mass of patients.

B. Feature Extraction

Traditional feature extraction methods on images include

dimension reduction techniques. Widely popular is Princi-

pal Component Analysis [17] which relies on finding the

dominant orthogonal axes which maximizes the statistical

variances in the data. PCA is largely data dependent and is

a general method to find macro structure in datasets. This

method has been applied to sleep posture recognition in

current literature [18].

In this work, we propose a different method of feature

extraction for posture classification that is based on the

geometry of the pressure images. It is more attuned to the

physical characteristics of the body shape and has a definite

physical meaning. An advantage of using these proposed

features over PCA reduction is the processing time required

to extract these features; our proposed features are based on

simple geometry.

In all, we propose 32 features to be extracted from each

of the pressure images. The features are described as either
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Spatial features or Bodypart features. Spatial features are

those features that describe global aspects of the image

such as the proportion of the image that is covered by

the subject, how symmetric is the image, and direction of

any curvature in the pressure image. Bodypart features are

localized features that describe location and size of expected

body parts such as the hip and shoulder.

Table I
GLOBAL SPATIAL FEATURES

No. Name Description

1 Coverage Proportion of image covered

2 Per25 Coverage of 25% of pressure

3 Per50 Coverage of 50% of pressure

4 Per75 Coverage of 75% of pressure

5-12 Reg1 - Reg8 Coverage over 8 fixed rectangular regions

13 Symmetry Measure of pressure symmetry

14 Balance Measure of pressure on both sides of image

15 DirCurve Measure of curvature of pressure image

Refer to Table I for a full a listing of the global Spatial

features and Table II for the localized Bodypart features.

A more detailed explanation of the features follows here.

Unless otherwise stated, we will assume the x axis is along

the short side of the bedsheet, the y axis runs along the

long side of the bedsheet.

Coverage Features (1-12)

The first feature is Coverage which is the number of

pixels that have non-negative sensor values divided by the

total number of pixels. The next 3 features only consider

coverage for the pixels that contain 25%, 50%, 75% of the

total pressure. Features 5-12 are coverage by regions. The

regions are 8 equally sized subdivisions of the image as

shown in Figure 4. Given that the original dimensions of

the image are 64× 128 pixels, the region sizes are 32× 32
pixels.

Figure 4. Coverage by Regions: Features 5-12

Symmetry and Balance (13, 14)

Symmetry is the sum of the absolute value of the difference

of pixels on either side of the center image line. A supine

posture would have more symmetry than a side posture.

Balance is the sum of the difference of pixels on either side

of the center image line. This is different to the Symmetry

measure; we do not take the absolute value of the difference

of pixels. The resulting measure describes which side of

the image contains most of the pressure.

Direction of Curvature (15)

This measure detects the dominant direction of curvature

of the body image. A person lying on one side will have a

detected body curvature, whereas a supine position should

exhibit a straighter pressure image. The steps to extract this

feature metric are as follows:

• Create a binary image that contain pixels that are above

a suitable threshold. The choice of threshold is obtained

experimentally, although a reasonable estimate is 50%

of the peak sensor value.

• Skeletonize the binary image by finding midpoints of

boundary pixels (see Figure 5).

• Remove joint pixels from the skeleton so that each

curve is separated. Remove curves that are shorter than

5 pixels.

• For all pixels along the curve, find the angle bisector.

The director of curvature is taken as the sum of the

y components of the angle bisectors, i.e. in the lateral

axis of the bedsheet.

Figure 5. Direction of Curvature feature: Left: original image. Middle:
thresholded image. Right: skeletonized image.

Table II
LOCAL GEOMETRICAL BODYPART FEATURES

No. Name Description

16,17 HipPoint (x, y) location of hip location

18-21 HipBox (x, y, width, height) of bounding box of hip

22 HipArea Area in pixels of bounding box of hip

23 HipPtoBox Ratio of hip location to bounding box width

24,25 ShPoint (x, y) location of shoulder location

26-29 ShBox (x,y,width,height) of bounding box of shoulder

30 ShArea Area in pixels of bounding box of shoulder

31 ShPtoBox Ratio of shoulder location to box width

32 HipShDist Hip to Shoulder Distance

Hip Features (16-23)

Since pre-processing of the image is done initially, we

make the assumption that the hip is located in the quarter of

the image below the center of mass of the pressure image.

An estimate of the hip location is taken to be the pixel that
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is located at the weighted center of pixels in this quarter

image. The bounding box around the hip is the rectangular

region of the pixels that contain 75% of the pressure value

within the quarter image below the center of mass of the

pressure image. The ratio of hip location to bounding box

width provides a measure that shows where the hip location

is in relation to the bounding box of the hip.

Figure 6. Hip and Shoulder Features

Shoulder Features (24-31)

Similar to the hip features (16-23) above, we extract the

same information for the shoulder. A similar assumption

applies to the quarter image above the center of mass for

the shoulder location. Figure 6 shows a sample of the

locations and bounding boxes of the hip and shoulders.

Finally, Feature 32 is the pixel distance between hip and

shoulder locations.

Since all the features described above are on different

scales, the feature values are scaled and shifted so that the

resulting values are in the range [0,+1].

C. Classification using Sparse Representation

Sparse Classification has been used previously in other

medical analysis and has been shown to have effective

performance over a wide range of applications [19]. The

classification method comes from the theory of Compressed

Sensing [20] which proposes that data exhibits sparsity in

some transformed representations. That is, a signal can be

represented as a sparse signal in a transformed feature space,

and can be accurately re-constructed with a lower sampling

rate than the Nyquist-Shannon rate.

Given a data set of n samples, with each sample having m

dimensions (features), define the data matrix A ∈ Rm×n that

comprises of these m-element column vectors arranged side

by side. Now given a new sample y ∈ Rm, can a solution

x ∈ Rn be found such that x is described in terms of the

data set? i.e. can we find x that satisfies:

y = Ax. (1)

So y is a linear combination of the columns in the data

set, and x = [x1, x2, ..., xn]
T is an unknown vector of

coefficients. This linear system is underdetermined when

there are more unknowns than equations, and hence there

are infinitely many solutions for x. This is the case for our

formulation of posture classification in this paper. However,

if certain constraints are imposed, then a unique solution

for x will exists that will accurately represent the original

sample. There are 3 main sparsity constraints on x that have

been considered in literature.

• l0 sparsity is defined to minimize the number of non-

zero elements of x. Solving for x has been shown to

be NP-hard [21].

• l2 sparsity is the efficient least squares solution, how-

ever this is not always equivalent to the l0 solution.

• l1 sparsity is defined as the minimal sum of absolute

values of elements of x. Candes et al. [20] have proved

that l1 sparsity is equivalent to l0 and, moreover, can

be solved as a convex optimization problem:

x̂ = argmin
x
||x||1, (2)

s.t. y = Ax.

The sparse representation of a sample is used in classifica-

tion by matching this representation to a set of class labels.

The data set A is composed of training samples and each

sample has been assigned a class label, Cn. Let each training

sample be represented as a column vector, aij , where j is

the sample number within class i. The number of samples

need not be the same for each class. The data matrix A is

shown here with samples grouped together in their classes:

A =

⎡
⎢⎢⎣
| | | | | |

a11 a12 . . . a21 a22 . . . ak1 ak2 . . .

| | | | | |

⎤
⎥⎥⎦ .

︸ ︷︷ ︸
class1

︸ ︷︷ ︸
class2

. . . ︸ ︷︷ ︸
classk

Any test sample y is represented by a linear combination

of the training samples:

y = a11x1 + a12x2 + · · ·+ akjxn, (3)

where k is the number of class labels and j is the number

of training samples for the k-th class.

The l0 minimized sparse solution for x will have only a

small number of non-zero elements. The training samples

that correspond to the non-zero elements are those that can

represent the new sample well. We propose 3 heuristics to

select the class label given a sparse solution for x and the

data set with training labels as follows.

• Maximum Coefficient (MC). The class label belonging

to the training sample that corresponds to the largest

coefficient of the sparse solution of x is the predicted

class label:

k̂ = Cargmaxi(xi). (4)
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• Maximum Sum of Class Coefficients (MSCC). The pre-

dicted class label is the class whose sum of coefficients

of x is maximized:

k̂ = argmax
k

(
∑
i∈aki

xi). (5)

In other words, for each class k, take the sum of

the coefficients of x that correspond to the training

samples belonging to that class. The predicted label

is the class that maximizes these sums. The training

samples that are most closely represented to the test

sample should correspond to the bulk of elements of

the sparse solution to x.

• Minimum Class Residual (MCR). An alternate choice

for a heuristic to predict the class label is to find the

class that minimizes the class residual. The residual is

the error between the test sample and the reconstructed

sample based on the sparse solution to x:

residual = ||y −Ax̂||2. (6)

So the predicted class is

k̂ = argmin
k
||y −Akixi||2. (7)

Each of these 3 heuristics are evaluated in the following

section.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

We run a pilot study in the lab to evaluate the performance

of the system for sleep posture monitoring. There are 14
subjects in the experiment, where 9 subjects are male and

5 subjects are female. The weight of the subjects ranges

from 50kg to 85kg, and height between 155cm and 188cm.

For the sake of consistency, the bedsheet system is also

deployed on a standard twin-size coil spring mattress during

the experiments (See Figure 1).

In Idzikowski’s study of 1000 people [22], left and right

fetus postures, i.e. with legs bent, are most common at 41%.

The other side lying postures, i.e. with straight legs, account

for 28% of positions. We refer to these as log postures.

Supine (lying on back) at 8% and prone (lying on front)

at 7% are the next most common postures. Therefore, for

the experimental evaluation, we investigate the 6 postures

including Left-Log (LL), Left-Fetus (LF), Right-Log (RL),

Right-Fetus (RF), Prone (P) and Supine (S). The examples

of these postures are shown in Figure 7.

In the data collection, 40 samples were recorded for each

of the 6 postures for each subject. At fixed intervals, the

pressure image of the subject’s posture was recorded while

the subject maintained a comfortable sleeping position.

Variations in body, arm and leg positions were allowed

and the system is tested on a range of positions that fall

within the 6 defined postures. All postures include a standard

(a) Right Foetus (b) Right Log (c) Supine

(d) Prone (e) Left Foetus (f) Left Log

Figure 7. Six postures used in experiments

queen size pillow for the head. Testing was carried out with

Leave One Out Cross Validation by subject, i.e. test on

one subject’s data with the training data from all the other

subjects. Repeat this for each subject. Sparse classifiers are

implemented using the CVX convex optimization package

[23].

B. Sparse Classification Results

Table III summarizes the precision and recall results of 6
posture classification using the set of geometric features with

different classifiers. The Sparse Classifiers with Maximum

Sum of Class Coefficients (MSCC) heuristic and Minimum

Class Residual (MCR) heuristics show a good improvement

in accuracy over Decision Tree and Nearest Neighbor clas-

sifiers.

Table III
COMPARISON TO OTHER CLASSIFIERS

Precision Recall Average*

C4.5 Decision Tree 57.0% 56.8% 56.9%

k-Nearest Neighbor 64.7% 62.1% 63.4%

Sparse Classifier (MC) 65.4% 61.0% 63.2%

Sparse Classifier (MSCC) 83.1% 82.7% 82.9%

Sparse Classifier (MCR) 83.5% 82.9% 83.2%

*Average is the arithmetic mean of precision and recall

We note that the Maximum Coefficient (MC) heuristic

does not show any improvement in the accuracy over Nearest

Neighbor. The reason is that after the transformation into the

sparse domain, the Maximum Coefficient is a metric most

similar in nature to Nearest Neighbor since it essentially

finds the training sample that maximizes its representative-

ness to the test sample, regardless of the class membership.

We look more closely at the results of the Spare Classifiers

and note the confusion matrices given in Tables IV to VII.
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Table IV
CONFUSION MATRIX NEAREST NEIGHBOR

LL LF P RL RF S Recall

LL 123 6 7 26 41 83 43%

LF 3 194 14 39 3 33 68%

P 1 27 234 0 19 5 82%

RL 46 21 0 171 6 42 60%

RF 45 9 14 25 185 12 64%

S 42 6 3 20 5 210 73%

Precision 47% 74% 86% 61% 71% 55%

Table V
CONFUSION MATRIX SPARSE CLASSIFIER (MC)

LL LF P RL RF S Recall

LL 149 29 24 19 23 42 52%

LF 15 168 26 30 18 29 59%

P 9 24 202 6 20 25 71%

RL 40 25 5 176 22 18 61%

RF 11 22 23 19 194 21 67%

S 44 13 11 9 11 198 69%

Precision 56% 60% 69% 68% 67% 59%

Table VI
CONFUSION MATRIX SPARSE CLASSIFIER (MSCC)

LL LF P RL RF S Recall

LL 207 6 2 15 6 50 72%

LF 4 249 14 6 9 4 87%

P 1 22 245 1 12 5 86%

RL 14 27 1 219 12 13 77%

RF 0 9 14 3 262 2 90%

S 30 6 2 1 3 244 85%

Precision 81% 78% 88% 89% 86% 77%

Table VII
CONFUSION MATRIX SPARSE CLASSIFIER (MCR)

LL LF P RL RF S Recall

LL 202 8 5 18 5 48 71%

LF 2 252 18 5 6 3 88%

P 1 22 249 1 10 3 87%

RL 12 28 2 225 10 9 79%

RF 0 11 15 5 257 2 89%

S 27 9 3 1 3 243 85%

Precision 82% 76% 85% 88% 88% 79%

Table IV shows the confusion matrix for Nearest Neighbor

classifier and we note the similarity with the Maximum

Coefficient Sparse Classifier (MC) in Table V.

Generally, the log postures are harder to recognize than

the other postures. Recall for both Left Log and Right Log

are always lower than for the other 4 postures, while the

precision rates are generally lower but not always. The log

postures are most similar to each other since both have

legs outstretched and arm positions can vary. The next most

similar posture is Supine. This is seen in all of the confusion

matrices as high counts for predicted switched Left Log and

Right Log, and Supine.

Figure 8 shows two examples of misclassifications of

hard log postures. The left image shows Left Log posture

Figure 8. Misclassified postures. Left image is a Left Log posture that is
classified as Right Log. Right image is a Right Log posture that is classified
as Supine.

that is incorrectly identified as Right-Log. This typical kind

of error can be explained from the pressure map that is

extended behind the subject’s back. Hence misclassifications

can occur since the pressure image now looks like a Right

Log image. Similarly, the right image shows Right Log

posture that is incorrectly identified this time as Supine.

Visually, this image is hard to not identify as Supine.

Personalized training can further enhance the classifica-

tion accuracy of this system. A generalized system that will

be pre-trained on a large cohort of trial subjects will also

enable improved accuracy. Such a system would be easy to

use and not rely on patient specific setup.

C. Stability Analysis

We also analyse the robustness of the classification by

investigating the variation during cross validation. Stabil-

ity is a measure that describes how closely the classifier

evaluates results if given different data. Figure 9 shows the

classification variation for the 6 postures for each of the

classifiers.

Figure 9. Classification variation for 6 postures
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The Sparse Classifiers have smaller variation values than

the other traditional classifiers. This indicates that sparse

classification is a more stable classification method. The log

postures have a higher variation in classification accuracy

than the other postures. This is explained by the higher

variation in weight distribution for these postures. In our

data, the log postures vary much between fully lying on the

side and lying on the back.

Although the Maximum Coefficient (MC) Sparse Classi-

fier achieves the same accuracy as Nearest Neighbor, it does

perform better when considering its better stability.

Figure 10. Classification robustness with random row deletions

We also consider the robustness of the algorithm with

regards to input errors, such as from disconnected wires in

the bedsheet. The effect of this would be missing rows or

columns of data in the pressure image. Figure 10 shows

experimentally how a random number of failures of bus lines

will affect the accuracy of the classification result. Roughly

20% of the hardware connections can fail with only a 4%
drop in classification accuracy.

D. Feature Selection

In this section, we examine the effect of feature selection

in classification. 32 features are extracted from the pressure

image set for classification. It is most certainly the case

that some features are redundant or do not have any effect

on classification results. We employ Sequential Forward

Selection (SFS) to find subsets of features that are most

descriptive of the whole feature set [24]. This method is

considered a wrapper method, ie the feature selection is

based on using the classification results themselves and the

selection process wraps around the classification.

With this method, the first feature is selected by testing

each feature individually in classification. The feature with

the highest accuracy performance is chosen first. In the

second round of selection, each of the remaining features

Figure 11. The impact of feature dimension on classification accuracy
based on Sequential Feature Selection

is used with the first feature in classification. The feature

with the highest accuracy result is chosen as the second

feature in the feature selected subset. This process continues

as one feature is added at a time until all of the features

are selected. Since the classification always uses previously

selected features, redundant features are not selected until

the end.

Figure 11 shows the relationship between number of se-

lected features chosen using SFS and classification accuracy

for each of the classifiers. Accuracy generally increases as

more features are used for all of the classifiers. There is

a sharp increase in accuracy using the Sparse Classifier

with both Maximum Sum of Class Coefficients (MSCC)

and Minimum Class Residual (MCR) heuristics, from 65%
to 78% between 15 features and 20 features. Moreover

the three Sparse Classifiers appear to have a threshold at

20 features in the accuracy results, with a smaller rate

of increase in accuracy as more features are used. The

traditional kNN and Decision Tree show modest increase of

about 10% throughout the whole feature selection process.

V. CONCLUSION

This work presents a sleep analysis design that monitors

sleep posture using a pressure sensitive bedsheet. An appli-

cation for such a system is to enable caregivers the ability to

automatically identify when patients are at risk of developing

pressure ulcers or when subjects experience sleep apnea.

This work also presents the novel use of relevant features

that can be extracted from pressure images, as well as state

of the art classification methods. We developed three heuris-

tics for sparse classification, and in our experiments, show

that both Maximum Sum of Class Coefficients (MSCC) and

Minimum Class Residual (MCR) heuristics produce reliable

sleep posture estimation.

Pressure monitoring systems need not be limited to sleep

posture recognition. In nursing home settings, evaluation of
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fall risk is a desirable endeavor. Advanced beds are now

being developed that can re-distribute support to different

regions of the bed [25] and also aid in the heat flow through

the bed mattress. Using pressure point monitoring, the goal

is to increase healing speed of patients.

Future work also involves the ability to monitor transi-

tional states as patients move between pre-defined stable

classified postures. There are more challenges here because

of the large variations in different subjects’ motions. 3D

model reconstruction of patients from 2D pressure image is

another goal that can be accomplished using the results of

this research work.
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