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Abstract 

A method for solving dense stereo matching 

problem is presented in this paper. First, a new 

generalized ground control points (GGCPs) scheme is 

introduced, where one or more disparity candidates for 

the true disparity of each pixel are assigned by local 

matching using the oriented spatial filters. By allowing 

“all” pixels to have multiple candidates for their true 

disparities, GGCPs not only guarantee to provide a 

sufficient number of starting pixels needed for guiding 

the subsequent matching process, but also remarkably 

reduce the risk of false match, improving the previous 

GCP-based approaches where the number of the 

selected control points tends to be inversely 

proportional to the reliability. Second, by employing a 

two-pass dynamic programming technique that 

performs optimization both along and across the 

scanlines, we solve the typical inter-scanline 

inconsistency problem. Moreover, combined with the 

GGCPs, the stability and efficiency of the optimization 

are improved significantly. Experimental results for the 

standard data sets show that the proposed algorithm 

achieves comparable results to the state-of-the-arts 

with much less computational cost. 

1. Introduction 

1.1. Motivation

Stereo matching is a problem to find corres-

pondences between two or more input images. It is one 

of fundamental computer vision problems with a wide 

range of applications, and hence it has been extensively 

studied in the computer vision field for decades.  

However, there still exist some difficult inherent 

problems in stereo matching; for example, the presence 

of homogeneously textured regions, and the occlusions 

near the object boundaries that make the disparity 

assignment very difficult. 

To resolve these difficulties, numerous attempts 

have been made to lessen the matching ambiguities by 

propagating the reliable matching results [4, 8, 20, 22, 

23]. In these reliability-based approaches, one of the 

most important tasks is to select the reliably matched 

pixels, i.e. ground control points (GCPs). It is known 

that the false matches in GCPs could severely degrade 

the final matching results. On the other hand, the 

number of the obtained GCPs would decrease if stricter 

constraints are enforced for outlier removals, which in 

turn could lead to the lack of information needed for 

appropriately guiding the subsequent matching process. 

The first motivation of our paper is to solve those 

problems of conventional GCP-based approaches. To 

this end, we propose the generalized ground control 

points (GGCPs) scheme in which unlike conventional 

GCP-based approaches where only reliably matched 

pixels are selected, multiple disparity candidates are 

assigned to all pixels by local matching using the 

oriented spatial filters. Using this scheme, the 

probability of false match drops remarkably, and 

furthermore sufficient information is always provided 

for dense matching, since all pixels take part in guiding 

the subsequent matching process without loss of 

reliability. 

GCPs or GGCPs can be applied to various matching 

techniques [4, 8, 11, 22]. In this paper, GGCPs are 

applied to global optimization using efficient dynamic 

programming. In this sense, the second motivation of 

our paper is to develop a fast matching algorithm, while 

achieving the accuracy comparable to the state-of-the-

arts [5, 9, 13, 19].  So, we propose a two-pass dynamic 

programming technique. The proposed two-pass 

dynamic programming is designed to resolve the 

inconsistency between scanlines, which is the typical 

problem in conventional dynamic programming. It 

performs optimization both along and across the 
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scanlines. Furthermore, since the finite number of 

disparity candidates of GGCPs not only reduce the 

range of possible disparities to be searched, but also 

provide good initial points for optimization, the 

optimization becomes more efficient and stable. 

1.2. Related works  

The proposed algorithm has the workflow in which 

first, the local matching using spatial filters is carried 

out, and then the results of local matching is applied to 

the global optimization. This approach has been already 

adopted in several algorithms [1, 4, 11]. In particular, 

our algorithm has the similar framework to Bobick et 

al.’s algorithm [4], where GCPs were used together 

with dynamic programming. But, we propose the 

GGCPs as extension of the GCPs, and unlike the work 

of Bobick et al. where consistency between scanlines 

were imposed using only GCPs, we guarantee the 

consistency by the two-pass dynamic programming. 

These features bring about remarkable improvement in 

matching accuracy. 

In this paper, disparity candidates of each pixel, i.e. 

GGCPs, are obtained from local matching by the 

oriented spatial filters. These oriented filters have a few 

advantages over the windows commonly used in stereo 

matching. First, they can delineate the object 

boundaries more clearly. Second, even when the 

oriented filters are applied to the slanted plane, at least 

one filter among the filters with various orientations 

satisfies the fronto-parallel plane assumption, and 

therefore more accurate matching results for the slanted 

planes can be provided. Additionally, in order to take 

the best advantages of the oriented filters for stereo, it 

is desirable for the filters to have high resolution in 

orientation. To this end, we adopt the oriented rod-

shaped filters, instead of the Gaussian-based filters that 

used commonly in conventional algorithms [10, 12]. It 

can be shown that the coefficients of the rod-shaped 

filter are more concentrated along the orientation of 

filter that leads to higher resolution in orientation (see 

figure 1). The detailed description on the rod-shaped 

filter will be presented in section 2. 

Finally, there have been many works to solve the 

scanline inconsistency problem of dynamic 

programming [2, 3, 6, 14]. For examples, Birchfield et 

al. [3] conducted a post-processing using heuristics, 

and Cox et al. [6] locally dealt with the inconsistency 

problem by minimizing the discontinuities between 

neighboring scanlines. But, these algorithms only 

offered partial remedy for the inconsistency problem. 

The proposed algorithm carries out the two-pass 

dynamic programming using the scanline optimization 

[17] without consideration of the ordering constraint. 

By excluding the ordering constraint from optimization 

process, we can readily perform the optimization across 

the scanlines, by the same manner as the one used in 

the optimization along the scanlines. Here, we should 

note that our idea on the two-pass dynamic 

programming is inspired from the algorithm proposed 

by Zickler et al. [24] who applied the two-pass dynamic 

programming to binocular Helmholtz stereopsis. 

However, we adapt the two-pass dynamic programming 

for stereo matching. Furthermore, by combining the 

two-pass dynamic programming with the information 

from GGCPs, we can obtain a remarkably enhanced 

solution for inter-scanline inconsistency problem. 

2. Preliminaries 

For convenience, we assume that input images are 

rectified. Then, the correspondences between input 

images are represented by a univalued disparity 

function ( , )d x y  with respect to a pixel ( , )x y of the 

reference image. The disparity function can take one of 

integer values within the disparity ranges of the scene.  

A pair of a pixel ( , )x y  and its disparity d  generates 

a point ( , , )x y d , which constructs a 3D disparity space. 

An initial matching cost 
0
( , , )C x y d  measures the 

pixel-based error of a match at the point ( , , )x y d . The 

simplest matching cost uses absolute intensity 

differences between a pixel ( , )x y  of the reference 

(left) image
1

I  and a pixel ( , )x d y− of the matching 

(right) image
2

I , i.e.
0 1 2
( , , ) ( , ) ( , )C x y d I x y I x d y= − − .

In the proposed algorithm, the rod-shaped spatial 

filters with N orientations are used. Examples of the 

filters are illustrated in Figure 1 where each filter is 

rotated by 15 . Generally, the rod-shaped filter which 

is 2 1l +  pixels long, and inclined at θ  to the horizontal 

axis can be numerically expressed as  

                            

1 sin cos   if sin cos  < 1, 
( , )

  0                 otherwise

x y x y
f x yθ

θ θ θ θ− − −
=

    (1) 

for < cosx l θ  and  < sin .y l θ

To avoid the problem that filters are across the 

object boundaries, we perform local matching using 

three filters for each orientation, where the centers of 

the filters are shifted to the three different positions, 

and only the best filtering result is taken. The shifted 

versions of the oriented filter are shown in figure 2. The 

shiftable filtering is implemented by a cascade of a 
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single oriented filtering and a minimum (or maximum) 

finding for the three center points instead of three 

repetitive filtering for each center point. So, only little 

additional computation is required for the shiftable 

filtering. For more information on the shiftable 

filtering, interested readers may refer to [15, 17].  

3. Local matching 

In local matching, the disparity candidates for true 

disparity of each pixel are obtained. And these 

candidates are computed by the sequential operation of 

following three steps: preprocessing, local aggregation, 

and post-processing.  

3.1. Preprocessing 

The preprocessing aims to classify each pixel in the 

reference image into two groups (homogeneous group 

and heterogeneous group) according to the intensity 

variation around each pixel. To compute the intensity 

variation of each pixel, small-sized (for example, 

dimension of 3× 3) Laplacian of Gaussian filter is first 

applied to the reference image, followed by shiftable 

oriented filters with N orientations in order to take 

account of the intensity variations along the 

neighborhood of the each orientation where local 

aggregation is performed. In the shiftable filtering, a 

minimum finding (not maximum) is used for picking 

the best result. Since the shiftable filtering is carried out 

independently for N orientations, N minimum values 

are assigned to each pixel as the intensity variations 

around it. Finally, if at least one of the N values of a 

pixel is over a threshold, the pixel is labeled as 

heterogeneous pixel; otherwise, it is labeled as 

homogeneous pixel. Thus, a homogeneous pixel has no 

significant intensity variation for any orientation along 

which the filtering is executed. 

3.2. Local Aggregation 

In this stage, candidates for the true disparity of each 

pixel are provided by locally aggregating the initial 

matching costs using the spatial filters. The detailed 

procedure for determining the disparity candidates of 

each pixel is as follows. First, the initial matching cost 

0
( , , )C x y d for each pair of a pixel ( , )x y  and its 

disparity d  is evaluated by 

0

1 2

1 2

( , , )

 ( , ) ( , )           if ( , )

 ( , ) ( , )   if ( , ) ,      

C x y d

I x y I x d y x y homogeneous

g I x y g I x d y x y heterogeneous

=

− − ∈

⊗ − ⊗ − ∈

(2)

Figure 1. Examples of the rod-shaped oriented filters 

Figure 2. Diagram of the three shiftable oriented filters, 

where the centers of the filters are marked in black. 

where g denotes the Gaussian kernel, and 

( 1,2)ig I i⊗ = represents the convolution. Note that the 

initial costs of the heterogeneous pixels are computed 

from the smoothed input images by Gaussian filter. 

This low-pass filtering helps to suppress the sampling 

artifacts in the intensity-varying areas, which are known 

to be quite common in a kind of small-sized box filters 

like our rod-shaped filters [21]. After computing the 

initial cost, the aggregation of the initial matching cost 

is implemented using the shiftable oriented filters. 

However, note that in order to reduce the matching 

ambiguities induced by the lack of intensity variation in 

the homogeneous pixels, large-sized shiftable windows 

are additionally applied to the homogeneous pixels. In 

mathematical terms, the aggregation can be expressed 

by 

0( , , )  ( , ) ( , , ),  (3)
m n

C x y d f x m y n C x m y n d= − − ⋅ − −

where f  denotes a 2D spatial filter. Notice that in our 

algorithm, the aggregation is performed for N

orientations, so that N aggregated costs are assigned to 

each pixel-disparity pair. Of course, N+1 costs 

including the one from the shiftable windows are given 

to the homogeneous pixels. Finally, at each pixel the 

best disparity associated with the minimum cost value 

is selected. Since each pixel has N (or N+1)

aggregation results, the N (or N+1) best disparities are 

stored in each pixel, and these best disparities are 

established as the disparity candidates of each pixel. In 

addition, the aggregated costs at the best disparities 

become the matching costs of the disparity candidates. 

Specially, if the same best disparity is produced from 

multiple filters, the smallest one among each filter’s 

aggregated costs is assigned to the disparity. The 
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disparities other than candidates are excluded in the 

subsequent matching process by setting their matching 

costs to be very large. 

3.3. Postprocessing 

To enhance the reliability of local aggregation, some 

heuristic methods are used; these are similar to those 

used by Bobick et al. [4] to identify the GCPs. 

Visibility test Visibility test confirms the 

consistency of the bi-directional matching based on the 

uniqueness assumption, and mainly aims to eliminate 

the matching ambiguities occurred by occlusions. Let 

min1
d  be the winner-take-all disparity of a pixel ( , )x y of 

the reference image, i.e. 

min1
arg min ( , , )

d

d C x y d= ,

and 
min 2

d  be the winner-take-all disparity of a pixel 

min1
( , )x d y− of the matching image, i.e. 

min 2 min1
arg min ( , , ).

d

d C x d d y d= − +

If 
min1 min 2

,d d≠ the pixel ( , )x y fails to pass the visibility 

test, and its local aggregation result is invalidated by 

equalizing the matching costs of all candidates at the 

pixel ( , )x y  to an arbitrary value (zero in our algorithm), 

which eliminates the difference between the 

aggregation results of the candidates. Pay attention to 

that the matching costs of the disparities other than the 

disparity candidates are kept as an initially assigned 

value, i.e. very large predefined value. 

Detection of suspicious pixels Due to some reasons 

such as specularity or perfectly homogeneous texture, 

there exist pixels whose results of local aggregation 

cannot be trusted. We separate such pixels according to 

the following rules. First, if the minimum matching cost 

of a pixel exceeds a threshold 1
t , the pixel is marked as 

an suspicious one. In addition, for a homogeneous pixel, 

if the difference between its first minimum matching 

cost and the second one is below a threshold 2
t , that 

pixel is also labeled as suspicious. The aggregation 

results of these suspicious pixels are then invalidated by 

the same manner used in the visibility test except for 

one difference: the matching costs at all disparities are 

annulled without any distinction between the disparity 

candidates and the remainders. This is because the local 

aggregation result for a suspicious pixel is provided in 

such an unpredictable way that it is not credible that a 

true disparity of the pixel exists in its disparity 

candidates, whereas matching ambiguities of a pixel by 

occlusions near the depth discontinuities arise just 

between foreground disparity and background one, both 

of which are generally included in the disparity 

candidates of the pixel. 

4. Global optimization 

In this section, two-pass dynamic programming is 

performed for global optimization using the scanline 

optimization [17], rather than the typical dynamic 

programming enforcing the ordering constraint. By 

excluding the ordering constraint, the scanline 

optimization makes it easy to optimize across the 

scanlines, where it is impractical to impose the ordering 

constraint.  

The complexity of the scanline optimization is 
2( )O mn  for m pixels and n disparities, which is larger 

than ( ),O mn the complexity of the typical dynamic 

programming. But, the proposed algorithm can work 

very efficiently because it only considers the disparity 

candidates of each pixel, but not all disparities within 

the search range. 

4.1. PASS 1: Optimization along the scanlines 

The optimization along the scanlines finds a path of 

disparities that minimizes the following energy 

functional, 

h 1 1 1

1 1 1

E ( ( , )) ( , , ( , ))

                    ( , ) ( ( , ) ( 1, ))

x

x

d x y C x y d x y

x y d x y d x yλ ρ

= +

− +
(4)

for a scanline 
1

y . In equation (4), C  is the matching 

cost obtained from the local aggregation, ρ is an 

increasing function of the disparity difference between 

adjacent pixels evaluating the smoothness of a disparity 

function, and λ  is a weight function.  

As a ρ function, Potts model [16] has been widely 

used since it can handle the disparity jumps, and it is 

adopted in our algorithm as well. The Potts model is 

0 0
( )

1 0.

α
ρ α

α

=
=

≠
(5)

For homogenous pixels with valid matching costs (see 

section 3.3), on the other hand, modified Potts model is 

used to avoid the excessive smoothing in the 

homogeneous textured regions. The modified Potts 

model incorporates the disparity gradient constraint 

into the original Potts model, and is written as 
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 0 if 0

'( ) 0.5 if 1 or -1

 1 otherwise.

α

ρ α α α

=

= = =  (6) 

In contrast to the original Potts model preferring the 

fronto-parallel planes (especially, this preference will 

be intensified in the homogeneous pixels where the 

smoothness constraint dominates the energy functional 

of equation 3.), the modified Potts model encourages 

the slanted planes by lowering the cost imposed on one-

pixel sized disparity difference to be one-half. This 

strategy aids to diminish the influence of the 

smoothness constraint on the slanted surface where 

disparities of neighboring pixels commonly vary within 

a smaller range than one-pixel difference. 

The weight function λ  has a functional value 

inversely proportional to the intensity gradient to help 

align the disparity jumps with the intensity edges [4, 5, 

7]. In our algorithm, λ  is defined as 

1 1 2

1 1 1 1 2

0.5 if ( , )  

( , )  if  ( , )

2 otherwise,

h

h

c I x y i

x y c i I x y i

c

λ

∇ >

= < ∇ < (7)

where c is a constant and 
1 1
( , )h I x y∇  denotes the 

horizontal intensity gradient computed by 3 3× sized 

horizontal Sobel operator. Both 
1
i and 

2
i  are thresholds 

for the intensity gradient. 

For each pixel-disparity pair 
1

( , , )x y d  on a 

scanline
1

y , a typical scanline optimization usually 

proceeds to compute the minimum cost 

1
( , , )hC x y d required for reaching each pair, and when 

finally arriving at the end point ex , the optimal path is 

decided as the one that gets to the 
1 min

( , , ( )),e ex y d x   

where 
min

( )ed x =
1

arg min ( , , )h e
d

C x y d . Our algorithm, 

however, does not follow this procedure. Instead, the 

cost 
1

( , , )hC x y d  is incorporated into the energy 

functional defined in the PASS 2 where the final 

optimal disparities are chosen, while the optimal 

disparities of the PASS 1 just bias the final disparities 

toward them by lowering their costs by a constant. 

In the typical scanline optimization, the cost 

1
( , , )hC x y d  increases with x, but the same dimensions 

with respect to the x-direction are required to apply the 

cost to the energy functional of the PASS 2. To achieve 

this symmetry, we use the similar approach to the one 

used by Zickler et al. [24]; the cost 
1

( , , )hC x y d  is 

obtained by summing 
1 1
( , , )hC x y d , the cost from the 

computation in the increasing direction of x, and 

2 1
( , , )hC x y d , the cost from the computation in the 

reverse direction.  

4.2. PASS 2: Optimization across the scanlines 

In this pass, the objective is to provide a final 

disparity path that minimizes an energy functional,  

1 1 1 1 1

1 1 1

E ( ( , )) ( , , ( , )) ( , , ( , ))

                  ( , ) ( ( , ) ( , 1)).       (8)

v h

y y

y

d x y C x y d x y C x y d x y

x y d x y d x yλ ρ

= +

+ − +

for a vertical line 
1

x x= . In equation (8), C is the 

matching cost by the local aggregation, identical to the 

one used in equation (4), and hC  is the cost obtained 

from the previous optimization pass, and ρ enforces a 

smoothness on the disparity function as before, but this 

time, the original Potts model is used instead of the 

modified Potts model on the pragmatic grounds, since it 

shows slightly better experimental results. A weight 

function λ  is written as 

1 1 2

1 1 1 1 2

0.5 if ( , )  

( , )  if  ( , )

2 otherwise,

v

v

c I x y i

x y c i I x y i

c

λ

∇ >

= < ∇ < (9)

where all parameters are identical to those of equation 

(7) except that the intensity gradient is computed by the 

3 3× sized vertical (not horizontal) Sobel operator 

denoted by 
1 1
( , )v I x y∇ . Note that the energy functional 

of equation (8) wholly considers three factors: the local 

matching result, the result from optimization along the 

scanlines, and the smoothness of a disparity function in 

the vertical direction. By minimizing this functional, we 

can get the disparity map preserving the consistency 

between scanlines. 

The matching process is finished with the simple 

sub-pixel refinement using the following rule: if the 

number of disparity candidates of a pixel ( , )x y  is two, 

and the disparity difference between candidates is one, 

then the sub-pixel refinement for the pixel ( , )x y  is 

carried out by the heuristic equation,  

sub 0 1
( , ) 0.75 ( , ) 0.25 ( , ),d x y d x y d x y= + (10)
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where 
0

d  denotes the disparity candidate selected in 

the optimization, and 
1

d  the remaining candidate that is 

not selected. Of course, 
sub

d represents the refined 

disparity in sub-pixel. 

5. Experiment 

We evaluated the proposed algorithm using four 

standard data sets, Tsukuba, Sawtooth, Venus, and Map 

that are provided by Sharstein and Szeliski on the web 

[25]. The quality metric is the percentage of error 

disparities deviating from the ground truth more than 1 

pixel [17, 18]. 

Experimental setting In the experiment, 3 3×  sized 

Laplacian of Gaussian filter with standard deviation 1.0 

was used for texture analysis; 3 3×  sized Gaussian 

filter with standard deviation 0.85 was applied to the 

heterogeneous pixels for removing the sampling 

artifacts of the oriented filters; 36 oriented filters, (i.e. 

rotated by 5 ) which are 15 pixels long were used for 

local aggregation, and 11 11× sized shiftable windows 

were additionally used for local aggregation of the 

homogeneous pixels. In addition, all parameters were 

fixed for the four data sets. Threshold 
1 2
,t t  for 

detecting the suspicious pixels (see section 3.3) were 

set to 5.0 and 0.05 respectively. In equation (7) and (9), 

the value of constant c  was given 1.0, and thresholds 

1 2
,i i were set to 20 and 140 respectively. Although the 

above-mentioned parameter setting gives the best 

results, our algorithm performed well for all data sets 

under the significant changes of the parameters, and we 

believe this is due to the use of GGCPs. 

Effectiveness of GGCPs To validate the 

effectiveness of GGCPs, two tests were executed. The 

first test examines the percentage of erroneous pixels 

that do not have the true disparity within their disparity 

candidates. Table 1 summarizes the result. 

Table 1. Reliablity of GGCPs in terms of density of 

valid pixels (D) and their error rates (e), where valid 

pixels mean those which can provide GGCPs (see 

section 3.3)

 Tsukuba Sawtooth Venus Map 

D (%) 95.2 98.9 92.9 98.5 

e (%) 0.24 0.07 0.09 0.23 

For all data sets, the error rates are within 

0.07%~0.24% for the valid pixels that amount to more 

than 90% of whole pixels. This result verifies that 

GGCPs can provide the enough reliable information to 

guide the subsequent matching process. The second test 

counts the number of disparity candidates that each 

pixel has, aiming to verify the efficiency improvement 

gained by GGCPs. Figure 3 plots the cumulative 

density function with respect to the number of 

candidates. For three data sets except Venus, more than 

90% of pixels have the candidates less than five, and 

about 70% of pixels for the Venus data set. By 

remarkably reducing the range of possible disparities to 

be searched by the optimization process, GGCPs bring 

about the significant speed-up of the computation. 

Running time Table 2 reports the running time 

obtained on a Pentium IV 2.4GHz PC. Through the 

reference to Y. Wei et al.’s paper [22] mentioning that 

their algorithm should be one of the fastest among the 

state-of-the-arts, we argue that our algorithm may be 

the fastest among the state-of-the-arts since our 

algorithm is faster than their method.  

Table 2. Running Time in seconds. 

 Tsukuba Sawtooth Venus Map 

pixels 110,592 164,920 166,222 61,344 

disp. 15 21 21 30 

time 4.4 11.8 11.1 4.9 

Matching Accuracy Figure 4 shows the final 

disparity maps computed using the two-pass dynamic 

programming. For illustrating the enhanced inter-

scanline consistency by the two-pass algorithm, the 

intermediate results obtained by single optimization 

along the scanlines (PASS 1) are shown as well. Due to 

the use of GGCPs, the disparity maps provided by the 

PASS 1 show better inter-scanline consistency than the 

conventional single-pass dynamic programming, but we 

still have scanline inconsistency problem. However, 

this inconsistency is fully removed in the final disparity 

maps. Here, acute observers would see a few vertical 

streaks in the final disparity maps. But, these streaks 

don’t have an impact on the matching accuracy since 

they don’t produce gross errors more than 1 pixel. The 

overall evaluation and comparison on the standard 

platform [25] is presented in Table 3. Our algorithm 

ranks the 5
th

 out of 32 algorithms, and has little 

difference from the top-ranked algorithm.  

Figure 3. Cumulative density function with respect to 

the number of disparity candidates
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6. Conclusion 

This paper presented a new two-pass dynamic 

programming technique combined with generalized 

ground control points (GGCPs) for a dense stereo 

matching. The main contribution of our work is twofold. 

First, we introduced a new scheme of GGCPs, which 

guarantee to provide a sufficient number of starting 

points needed for guiding the subsequent matching 

process without loss of reliability, improving the 

previous GCP-based approaches where the number of 

the selected control points tends to be inversely 

proportional to their reliability. Second, we resolved 

the inconsistency between scanlines, which was the 

typical problem in dynamic programming, by 

employing the two-pass dynamic programming 

technique combined with GGCPs. Experiment results 

on the standard data sets showed that our algorithm 

achieved a high accuracy ranked among the state-of-

the-arts with much less computational cost. 
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Table 3. Performance comparison table (incomplete) from the Middlebury Stereo Vision Page [25]. Error 

percentages are calculated over three different areas in the image, classified as untextured(untex), 

discontinuous(disc), and the entire image(all). Algorithms are in order of their ranking. Our algorithm ranked the 5th 

out of 32 algorithms. Subscript number is ranking in each column. 

Tsukuba Sawtooth Venus Map Algorithm 

all untex disc all untex disc all untex disc all disc 

Segm.-based CG 1.23
3

0.29
2

6.94
4

0.30
3

0.00
1

3.24
3

0.08
1

0.01
1

1.39
1

1.49
20

15.46
25

Segm.+glob.vis. 1.30
5

0.48
5

7.50
6

0.20
1

0.00
1

2.30
1

0.79
4

0.81
5

6.37
8

1.63
22

16.07
27

Layered 1.58
8

1.06
10

8.82
 9

0.34
4

0.00
1

3.35
4

1.52
11

2.96
20

2.62
3

0.37
10

5.24
10

Belief prop 1.15
 1

0.42
3

6.31
1

0.98
11

0.30
15

4.83
8

1.00
7

0.76
4

9.13
14

0.84
17

5.27
11

Our method
1.53

7

0.66
7

8.25
8

0.61
7

0.02
7

5.25
9

0.94
5

0.95
6

5.72
7

0.70
15

9.32
16

Tsukuba

Sawtooth 

Venus

Map 

reference image                     after pass1                    final disparity map                   ground truth 

Figure 4. Disparity maps produced by our method. 
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