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Abstract 

Colon carcinoma is one of the leading causes of cancer-related death in both men and women. Au-

tomatic colorectal polyp segmentation and detection in colonoscopy videos help endoscopists to 

identify colorectal disease more easily, making it a promising method to prevent colon cancer. In 

this study, we developed a fully automated pixel-wise polyp segmentation model named A-Dens-

eUNet. The proposed architecture adapts different datasets, adjusting for the unknown depth of the 

network by sharing multiscale encoding information to the different levels of the decoder side. We 

also used multiple dilated convolutions with various atrous rates to observe a large field of view 

without increasing the computational cost and prevent loss of spatial information, which would 

cause dimensionality reduction. We utilized an attention mechanism to remove noise and inappro-

priate information, leading to the comprehensive re-establishment of contextual features. Our ex-

periments demonstrated that the proposed architecture achieved significant segmentation results on 

public datasets. A-DenseUNet achieved a 90% Dice coefficient score on the Kvasir-SEG dataset 

and a 91% Dice coefficient score on the CVC-612 dataset, both of which were higher than the scores 

of other deep learning models such as UNet++, ResUNet, and U-Net, for segmenting polyps in co-

lonoscopy images. 

Keywords: Image segmentation, Convolutional neural networks, Colonoscopy, 

Polyp segmentation, Deep learning, Attention, Dilated convolution 

Introduction 

The third most common form of cancer worldwide for both men and women is colorectal can-

cer, and its prevalence is increasing every year [1]. The primary cause of colorectal cancer is the 

growth of glandular tissue in the colonic mucosa. Precise and earlier determination of polyps from 

virtual colonoscopy screenings are of great significance for the avoidance and timely treatment of 

colon cancer [2]. However, manual detection depends on proficient endoscopists, and it takes a long 

time. Recent surveys have shown that more than 25% of polyps in patients undergoing colonoscopy 

are not detected [3]. The late diagnosis of missed polyps can lead to a low survival rate for colon 
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cancer patients [4]. Computer-aided detection (CAD) systems are used to detect and segment polyps 

from endoscopic images and video screenings, which allows endoscopists to focus their attention on 

the polyps displayed on the screen and act as a second viewer. This can decrease the likelihood of 

overlooked polyps [5]. 

Designing an accurate CAD system is challenging because of the high cost of labeled medical 

datasets for training and testing. Polyps have a wide range of colors, sizes, shapes, appearances, or 

combinations of these features. There are similar inter-classes and various intra-classes for four dif-

ferent polyp classes: adenoma, hyperplastic, serrated, and mixed. In addition, background objects 

are very similar; for example, the background mucosa can mix with a polyp or stool [43]. Even 

though these factors make the polyp segmentation task challenging, we surmise that there is still a 

great prospect to create such systems for medical use. 

In recent years, deep-learning-based techniques have achieved significant success in the com-

puter vision domain [44]–[46], and interest in applying deep learning to endoscopic image segmen-

tation has grown. In particular, encoder-decoder-based methods such as U-Net [7], UNet++ [35], 

SegNet [47], and fully convolutional networks (FCNs) [19] have been commonly used for semantic 

segmentation. These networks down-sample the image several times to capture the required feature 

maps and up-sample once or multiple times to enable effective localization [7][19]. Furthermore, 

skip connection strategies have been successful in saving fine-grained information and improving 

the efficiency of the network, even on complicated datasets. 

Recent research has shown that the attention mechanism has been commonly used to preserve 

the dependency of features in certain computer vision tasks such as object detection [54], image 

classification [52][53], and image segmentation [48]–[51]. The attention method enables the model 

to attend more closely to essential features without any external supervision, and it can avoid iden-

tical feature maps at various scales to lead to better feature representation. The attention mechanism 

improves network efficiency over traditional methods with or without multiscale features. 

In this work, we propose a novel deep learning method called Adaptive Densely Connected 

UNet with atrous convolution (A-DenseUNet) for medical image segmentation. The core assump-

tion behind our proposed method is that the model can accumulate different levels of semantic in-

formation on a network to obtain global multiscale features. In addition, the proposed architecture 

uses dilated convolution to capture finer details and to eliminate scratching artifact issues. We eval-

uated our model using two public datasets: Kvasir-SEG [39] and CVC-612 [40]. We compared our 

results with those of popular deep learning models such as U-Net [7], wide U-Net [35], ResUNet 

[8], and UNet++ [35]. The results indicate that our method boosts performance and achieves better 

results than other methods. 

In summary, this study makes the following contributions: 

• We designed a new robust U-Net-based encoder-decoder network structure that uses dense con-

nections as a powerful encoder model and accomplishes an adaptable image segmentation al-

gorithm to integrate deep and superficial features, which can directly combine multiscale fea-

tures to boost segmentation performance. 

• We utilized an attention mechanism that fuses derived information from various modules and 

focuses on core information by removing noise and irrelevant regions. 
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• Our method uses dense blocks, residual blocks, transition blocks, and atrous convolution block 

capabilities, and it improves the outcome of the colorectal polyp segmentation compared to 

other state-of-the-art methods. Our model obtained good results with small datasets.  

• We evaluated our model on the Kvasir-SEG and CVC-612 datasets, and the experimental results 

show that it achieved the highest intersection over union (IoU) and Dice coefficient. 

The remainder of this paper is organized as follows. In Section II, we review some existing related 

studies. In Section III, we present our proposed densely connected deep learning architecture. We 

present the experimental settings and qualitative and quantitative analysis of the semantic segmen-

tation results in Sections IV and V, respectively. In Section VI, we discuss the experimental results. 

Finally, we conclude this paper in Section VII. 

Related Work 

Over the past two decades, the detection and classification of gastrointestinal (GI) tract diseases 

and the creation of effective, robust methods to automatically detect polyps in colonoscopy images 

and videos have been active scientific areas. The performance of machine learning-based polyp de-

tection and segmentation software has come close to that of high-level endoscopists.  

Some earlier studies used the texture and color details of polyps to create handcrafted de-

scriptors [10][11][12][13]. For instance, Karkanis et al. [10] utilized a supplemented sliding window 

scheme and color wavelet texture information as descriptors to designate polyps from colonoscopy 

images and videos. Subsequently, researchers used spatio-temporal, edge, intensity, and shape fea-

tures to detect polyps automatically. For example, Hwang et al. [14] used elliptical shape infor-

mation to detect polyps automatically, whereas Wang et al. [15][16] presented edge cross-section 

profiles. To improve the detection performance, some methods combine two or more features 

[17][18]. Tajbakhsh et al. [18] integrated local intensity variation patterns and global geometric con-

straints to detect polyps. Although these methods achieved significant progress, they still suffer from 

inferior detection accuracy. The primary cause of the low accuracy level is the limited representation 

ability of handcrafted features to deal with both the low-level inter-class variety between hard mim-

ics and polyps and the high-level intra-class variety of polyps. 

Recent deep convolutional neural networks (CNNs) have shown noticeably better results in 

many biomedical image analysis domains, including object detection [26][27][28][29], classifica-

tion [23][24][25], and semantic segmentation [7][30][31][32]. Some researchers have attempted to 

use CNNs to manage the automated polyp detection domain. For instance, Tajbakhsh et al. [33] 

suggested a CNN architecture for polyp detection that takes low-level handcrafted information as 

input and utilizes a group of CNNs to learn the shape, color, and temporal features of polyps. How-

ever, this model learned temporal and spatial information using various networks that may limit the 

discrimination capability. Thus, most features from colonoscopy videos have not been fully ex-

plored. 

The new generation of CNNs uses transposed convolution layers to generate a probability map 

in image segmentation tasks. Long et al. [19] proposed the fully convolutional network (FCN) 
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method, which achieved state-of-the-art semantic segmentation results. FCN obtains the segmenta-

tion results without post-processing steps by using pixel-to-pixel and end-to-end training. 

Ronneberger et al. added modifications and extensions to the FCN to develop the U-Net [7] archi-

tecture. U-Net integrates high-resolution spatial feature maps with high-level contextual information 

for medical image segmentation. Inspired by these approaches, several researchers have proposed 

models to solve segmentation issues in a wide variety of areas [8][9][20]. 

The majority of studies published in the sphere of polyp segmentation achieved significant re-

sults only on special datasets, and test cases often utilized small validation and training datasets 

[21][22]. Furthermore, some of the scientific work focuses only on a particular type of polyps, and 

some of them employ non-public datasets, which makes it difficult to compare and reproduce the 

results. Consequently, the ML models cannot yet achieve similar or better results than endoscopists. 

There is an opportunity to enhance the efficiency of CAD systems, making major improvements and 

producing more effective and reliable architectures for polyp segmentation. 

Proposed Method 

The A-DenseUNet architecture is based on UNet++ [9] and densely connected convolutional 

networks (DenseNets) [34], utilizing the strength of U-Net [7] and DenseNet [34]. The proposed A-

DenseUNet architecture takes advantage of dense blocks, atrous convolution, residual blocks, atten-

tion blocks, and restrictive skip connections. 

Overview  

The proposed segmentation architecture utilizes the U-Net [7] concept which includes an en-

coder block on the left and a decoder block on the right. Figure 1 depicts the entire structure of the 

proposed method. It takes a training dataset X that consists of N sample images x: X = 𝑥1, 𝑥2,…, 𝑥𝑁, with corresponding Y = 𝑦1, 𝑦2,…, 𝑦𝑁. Then, each ground truth pixel i of any given 

sample y is y ∈ [0, 1]. We feed our network with a 224×224×3 image and obtain a 224×224×1 output 

segmentation mask. In the encoding path, an input image passes through a dense block that includes 

a combination of atrous convolutional, rectified linear unit (ReLU), and batch normalization layers. 

The dense block is followed by a transition block that contains a pooling layer that reduces the size 

of the feature map after each successive dense block. In the decoding path, transposed convolution is 

used to increase the feature map size back to the original size. After a very deep encoder path, there 

may be a loss of essential details. To handle such a problem, UNet++ [9] introduces restrictive skip 

connections that combine the encoding part with the output of up-sampling through channel concat-

enation. 

We applied skip connections to unify various depths of U-Nets into one structure and used an 

attention mechanism to filter irrelevant information from the features. The depth of the network, s, 

is 5, which means we used a down-sampling approach five times and halved its feature map size 

each time. After five down-samples, we obtained the final 7×7 spatial feature map. We used the 

attention mechanism to create a relationship between the various model information at different 
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depths. The attention blocks reduce the noise and unnecessary features, and only important infor-

mation can pass to the next layer. The output of the attention block is up-sampled by transposed 

convolution and concatenated with the same depth output as the encoder part. After concatenation,  

the feature map passes the residual block (dilated convolution followed by batch normalization and 

ReLU activation), which allows features to converge more quickly. Other decoder blocks at levels 

s=2 to s=5 use such blocks. Finally, feature maps from all U-Net depths are agglomerated and then 

averaged, after which layers for 1×1 convolution and sigmoid activation, as shown in Equation (1), 

are used to obtain the final segmentation map. We trained our network with the binary cross-entropy 

loss function based on the ground truth for the training images. Equation (2) shows the formula of 

the loss function, where y is the label and p(y) is the predicted probability for N pixels. 𝑦 = 11 + 𝑒−𝑥  (1) 

𝐿 = − ∑ 𝑦𝑖 log(𝑝(𝑦𝑖)) + (1 − 𝑦𝑖) log(1 − 𝑝(𝑦𝑖))𝑁
𝑛=1  (2) 

Dense Units  

Training deeper neural networks can increase a model’s accuracy, but it can also cause degra-

dation problems and interrupt the training process [8][34]. To solve this type of problem, Huang et 

      

 

     

Figure. 1.  Block diagram of the proposed A-DenseUNet architecture: DenseNet is used as an encoder, Transposed convo-

lution is performed for up-sampling between levels. 
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al. [34] proposed densely connected convolutional networks (DenseNets), which allow all subse-

quent layers to connect directly, as shown in Figure 2. 

Accordingly, the 𝑙𝑡ℎ layer takes the feature maps of all previous layers, 𝑥0,… 𝑥𝑙−1, as input: 𝑥𝑙 =  𝐻𝑙([𝑥0, 𝑥1, … , 𝑥𝑙−1]) (3) 

where [𝑥0, 𝑥1,…, 𝑥𝑙−1] refers to the concatenation of the feature maps produced in layers 0, …, l-

1. Dense encoder blocks have several advantages; for example, densely connected layers have fewer 

output dimensions than other networks, which can help to avoid learning excessive features and 

reduces the time required.  

Furthermore, the densely connected layers provide maximum gradient flow, and very deep neu-

ral networks alleviate the vanishing gradient problem. Based on these advantages, we used Dense-

Nets [34] as the encoder part of our proposed method. Table 1 presents the encoder layers of the 

proposed architecture. The input layer takes 224×224×3-sized images; thus, all training data were 

resized to fit the given size. 

In the first layer of the network, using 7×7 dilated convolution with 96 filters and a stride of 

two, we obtained an output feature map of 112×112×96 after the first convolution layer. Then, we 

used four dense blocks and three transition blocks to create the remaining encoder layers, s=2 to 

s=5. Each dense block includes batch normalization, dilated convolution, and ReLU non-linearity 

and is repeated several times, as shown in Table 1, to create a deeper encoder path and obtain more 

robust feature maps. After each dense block (except dense block 4) is a transition block, which 

consists of 1×1 convolution and 2×2 average pooling with a stride of two. A 1×1 convolution is used 

 
Figure. 2. Five-layer dense block with grow rate n = 4. Each layer takes all previous information and includes batch normal-

ization, atrous convolution, and ReLU activation. 

  

Table 1. Densely connected encoder block of the proposed A-DenseUNet architecture. Note that “1 × 1, 192 conv” corre-
sponds to 1 × 1 kernel size convolution with 192 features and a sequence of BN-Conv-ReLU layers. “[] × n” indicates n 
iterations of the dense block. 

 

 Feature size Encoder DenseNet-164 (k=48) 

input 224 x 224 x 3 - 

convolution 1 112 x 112 7 x 7, 96, stride 2 

pooling 56 x 56 3 x 3 max pool, stride 2 

dense block 1 56 x 56 [1 x 1, 192   conv
3 x 3, 48    conv ] x 6 

transition layer 1 
56 x 56 1 x 1 conv 

28 x 28 2 x 2 average pool, stride 2 

dense block 2 28 x 28 [1 x 1, 192   conv
3 x 3, 48    conv ] x 12 

transition layer 2 
28 x 28 1 x 1 conv 

14 x 14 2 x 2 average pool, stride 2 

dense block 3 14 x 14 [1 x 1, 192   conv
3 x 3, 48    conv ] x 36 

transition layer 3 
14 x 14 1 x 1 conv 

7 x 7 2 x 2 average pool, stride 2 

dense block 4 7 x 7 [1 x 1, 192   conv
3 x 3, 48    conv ] x 24 
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before the pooling layer to reduce the channels of the feature map. After dense block 4, a robust 7×7 

feature map is obtained, which is decoded to produce the final output. 

Adaptive Network Structure 

The original U-Net obtains the final segmentation result from a fixed number of down-samples 

and a corresponding number of up-samples. In practice, some datasets contain images of various 

sizes, and there is a significant difference between the amount of information contained in various-

sized images. One down-sampling and one up-sampling might be sufficient to obtain satisfactory 

segmentation results from small, simple data. Large, complicated datasets require multiple up- and 

down-samplings to obtain semantic feature maps of various regions because it is difficult to obtain 

global information from a small-scale network. Figure 3 represents the U-Net network with depths 

of one and two. To overcome different depth problems, Zhou et al. [35] proposed redesigning the 

skip connections to integrate the advantages of different depths of U-Net into one architecture.  

We redesigned the skip connections in our proposed method to connect different depths in the 

U-Net structure. In addition, we added an efficient feature map transition and aggregated different 

layer characteristics. As shown in Fig. 1, horizontal dense connections and connections between 

each depth are added. Horizontal densely connected layers are equipped with dilated convolution, 

batch normalization, and residual blocks. Dense connections pass feature maps efficiently at vari-

ous depths. Even though the use of various depth decoder architectures and densely connected 

structures increases the network size, it enhances the efficiency of the method. The final segmenta-

tion mask is achieved by averaging the output of each U-Net depth and employing a 1×1 convolu-

tion and sigmoid classifier. 

Attention Units 

Over the last few years, the attention mechanism has become very popular in various deep 

learning research areas, starting with natural language processing (NLP) [36]. Recently, it has been 

applied to computer vision tasks. The attention model has been utilized as a pixel-wise prediction 

model in the semantic segmentation domain [37]. It identifies the sections of the network that need 

more attention. Continuous use of an attention mechanism at each level allows long-range spatial 

dependency of feature maps. The attention block also decreases each image’s computing cost to a 

fixed dimensional vector. Thus, the fundamental value of an attention unit is that it is straightforward 

 
Figure. 3. Multi-depth U-Net models. 
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and can be applied to every input scale to strengthen the consistency of the features that emphasize 

the result. 

We implemented an attention block in the proposed method for medical image segmentation. 

We placed the attention block before the up-sampling layer at each level of the U-Net decoder path. 

Specifically, the model encodes various semantic feature maps at various stages. The attention 

mechanism is used to enhance the flow of the spatial feature map to the next level of the decoding 

side; to generate relevant feature maps, up-sampling information is fused with the corresponding 

encoder-side information. Thus, attention blocks at various stages allow the proposed network to 

encode low-level to high-level information at different scales and provide only relevant regions to 

the next layer. 

Dilated Convolution 

The concept of dilated convolution comes from wavelet decomposition [38]. It is also called 

“atrous convolution” and “algorithm à trous.” Dilated convolution enables the model to arbitrarily 

expand the filter field of view at every DCNN (Deep Convolutional Neural Network) layer. In order 

to hold both the calculation and the number of parameters contained, CNNs usually use small con-

volutional kernels (typically 3×3). Dilated convolution with a rate of r adds r-1 zeroes between the 

consequent filter values, as shown in Figure 4. It thus provides an efficient field of view control 

mechanism and finds the optimal trade-off between detailed localization (small field of view) and 

assimilation of context (large field of view).  

The results section demonstrates that one of the keys to the success of our model is the use of 

dilated kernels, as they allow the network to increase the receptive field without adding computa-

tional complexity or increasing the network information capability. We replace normal convolutions 

from Equation (4) by atrous convolution in Equation (5) with a dilation rate of 2 for every layer of 

the network. In Equation (5), s + lt = p indicates that some points have been skipped during the 

convolution. (𝐹 ∗ 𝑘)(𝑝) = ∑ 𝐹(𝑠)𝑘(𝑡)𝑠+𝑡=𝑝  (4) 

(𝐹 ∗ 𝑘𝑙)(𝑝) = ∑ 𝐹(𝑠)𝑘(𝑡) 𝑠+𝑙𝑡=𝑝 (5) 

 
Figure. 4. Dilated convolutions with different dilation rates. A dilation rate of one is normal convolution.  
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Experiments 

We evaluated our proposed A-DenseUNet architecture on two public segmentation datasets, 

Kvasir-SEG [39] and CVC-612 [40]. 

Datasets 

Kvasir-SEG: We utilized the Kvasir-SEG dataset [39], which has 1,000 polyp images and their 

corresponding ground truth masks annotated by professional gastroenterologists from Vestre Viken 

Health Trust in Norway, as shown in Figure 5. The images have sizes ranging from 332×487 to 

1920×1072 pixels, but training and testing were performed with an image resolution of 224×224 

pixels. The images were randomly split into 80% for training, 10% for validation, and 10% for 

testing. 

CVC-612: In addition, we used the CVC-612 [40] dataset, which has 612 images with a size of 

384×288 pixels from 31 colonoscopy series. The images were split into training, validation, and 

testing sets in the ratio of 80:10:10. All training, validation, and testing were performed with an 

image size of 224×224 pixels. Figure 6 shows some example images and corresponding masks from 

the CVC-612 dataset. 

Data Augmentation 

The effectiveness of deep learning networks depends significantly on the size of the training 

dataset. It is clear that in the case of polyp segmentation, the training dataset is limited, at least with 

respect to typical training images employed in the context of deep learning. Furthermore, certain 

polyp forms are not represented in the dataset, and for other types only a few examples are available. 

 
Figure. 5.  Example of data from Kvasir-SEG dataset. The first row shows original images and the second row presents their 

respective ground truth. 

  

 
Figure. 6. Images and ground truth masks from the CVC-612 dataset.  
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Hence, it is important to extend the training dataset by data augmentation. Data augmentation is 

conducted to provide additional polyp images for training deep neural networks. Even though this 

approach cannot produce new polyp forms, it can provide extra data samples based on various image 

acquisition conditions, such as colon deformations, camera position, and illumination.  

All training samples were resized to 224×224 pixels in a manner such that the image aspect 

ratio was retained. This process included random cropping augmentation. All images were aug-

mented using four augmentation techniques: (1) rotation, with the angle of rotation randomly cho-

sen from the range 0° to 90°; (2) reflection, horizontally and vertically; (3) elastic deformation 

with a fixed 10×10 grid; and (4) color adjustment by random gamma augmentation. After augmen-

tation, the Kvasir-SEG training dataset contained a total of 8,000 images. 

Evaluation Metrics 

To evaluate the polyp segmentation, we used the following well-known segmentation evalua-

tion metrics: recall, precision, intersection over union (IoU), and Dice coefficient. We calculated 

these metrics using well-known parameters such as true positive (TP), false positive (FP), and false 

negative (FN). Recall = T P T P +  F N  (6) 

Precision = T P T P +  F P  (7) 

Intersection over Union: The IoU is a standard metric for evaluating segmentation models. The 

equation presents the similarity between the predicted pixels (Y′) and the true mask (Y).  

 IoU =  |𝑌′  ∩  Y||𝑌′| + |Y| = T P T P +  F P +  F N  (8) 

 

Dice similarity coefficient: The Dice similarity coefficient is a standard metric for comparing the 

pixel-wise results between the ground truth and predicted segmentation. The formula of the Dice 

coefficient is defined as Dice coefficient =  2 ∗ |𝑌′  ∩  Y||𝑌′| + |Y| = 2 ∗ T P T P +  F P +  F N  (9) 

where Y′ is the predicted set of pixels, and Y signifies the ground truth of the item. 

Implementation Details 

We trained all the methods in the Keras framework [41] with TensorFlow [42] as a backend. 

We trained our model with 224×224-pixel images. We set the batch size to 10, and we trained the 

model for 100 epochs. We used the Adam optimizer with reduced learning rate callback; the learning 

rate starts from 0.01 and is divided by 10 when the patience level exceeds 5. We used an early-stop 

mechanism on the validation set to avoid overfitting. We chose ReLU as the non-linear activation 

and binary cross-entropy as the loss function. To convert the predicted pixels to the background or 

foreground, we used a threshold value of 0.5. All the models were implemented using two NVIDIA 
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GTX 1080 GPUs, each with 8 GB of memory. It took five hours to complete the training of our 

proposed model. 

Results 

We performed comprehensive experiments to assess the effectiveness of our proposed A-Dens-

eUNet architecture. Four state-of-the-art deep learning models, U-Net [7], wide U-Net [35], 

ResUNet [8], and UNet++ [35], were selected for comparative analysis of the proposed method. 

To test the effectiveness of the dilated convolution, we trained our model with standard and 

dilated convolution with a 3×3 filter size and dilation rate of two. Figure 7 presents the training IoU 

score with and without dilated convolution, showing that the model with dilated convolution per-

formed better than the model with standard convolution. In addition, to show the efficacy of the 

attention mechanism, we trained our proposed model with and without attention blocks. A compar-

ison between the models trained with and without attention blocks shows that the model with an 

attention mechanism demonstrated strong attention ability by emphasizing the discriminative region 

of interest rather than concentrating on specular reflection and the normal area. Figure 8 depicts the 

qualitative difference between them. 

Kvasir-SEG dataset results: We improved our proposed A-DenseUNet architecture with vari-

ous sets of hyperparameters. During the model training, we manually tuned the hyperparameters 

 
Figure. 7. IoU score with and without dilated convolution. 

 
Figure. 8. Effect of attention block in the network. By adding this, we were able to suppress the irrelevant 

regions. 
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with various hyperparameter sets and evaluated the results. Table 2 presents the results of A-Dens-

eUNet, ResUNet [8], UNet++ [35], wide U-Net, and the original U-Net [7] on the Kvasir-SEG [39] 

dataset. The data indicate that the proposed architecture outperformed all current methods. 

CVC-612 dataset results: After achieving good results on the Kvasir-SEG dataset, we tested 

our method on the CVC-612 dataset. Table 3 presents the performance of all the models on the CVC-

612 dataset. The proposed method achieved the largest Dice coefficient, IoU, and recall. U-Net ob-

tained the highest precision score, but its other important metric scores for segmentation were not 

competitive. 

Figures 9 and 10 present the qualitative results for all deep learning methods. Tables 2 and 3 

and the qualitative results show the dominance of A-DenseUNet over the baseline methods such as 

UNet++ [35], ResUNet [8], wide U-Net, and the original U-Net [7]. On the Kvasir-SEG dataset, the 

proposed architecture achieved mean improvements of 10.64%, 12.21%, 14.4%, and 20.23%, as 

measured by the Dice coefficient, and 14.12%, 32.21%, 15.03%, and 29.86%, as measured by the 

IoU score. The large margin of difference between the proposed architecture and the existing meth-

ods could be interpreted as indicating that the combination of dilated convolution, attention mecha-

nism, and multiscale features plays a crucial role in optimizing segmentation efficiency. The pro-

posed model encodes multiscale semantic information at every stage, which allows the conservation 

of more fine-grained feature maps at the decoder block, unlike U-Net and ResUNet, which use the 

same-scale feature map concatenation. Furthermore, the attention mechanism enhances the network 

by focusing on important information that boosts the segmentation efficiency. 

Discussion 

The proposed A-DenseUNet model achieved adequate results on both the CVC-612 and Kvasir-

SEG datasets. From the qualitative results, it is obvious that the proposed model’s segmentation 

mask performed better than other methods to capture the shape of information on the Kvasir-SEG 

dataset. The results show that the predicted segmentation mask in A-DenseUNet is closer to the 

Table 2. Kvasir-SEG evaluation results of all methods. 

Method Params Dice IoU Recall Precision 

A-DenseUNet 11.0M 0.9085±0.77 0.8615±0.43 0.9448±0.31 0.9766±0.91 

UNet++ [35] 9.0M 0.8021±1.9 0.7215±0.34 0.7914±1.36 0.9321±0.61 

ResUNet [8] 8.5M 0.7864±1.35 0.5421±0.58 0.7861±0.94 0.8912±1.45 

Wide U-Net [35] 9.1M 0.7645±0.62 0.7112±0.91 0.7684±0.55 0.9231±0.57 

U-Net [7] 7.8M 0.7062±0.46 0.5628±0.13 0.7768±0.61 0.9022±0.63 

 

Table 3. CVC-612 evaluation results of all methods. 

Method Params Dice IoU Recall Precision 

A-DenseUNet 11.0M 0.8912±0.57 0.8553±0.35 0.9448±0.35 0.9266±0.75 

UNet++ 9.0M 0.7815±0.15 0.7241±1.67 0.8064±0.73 0.9076±0.20 

ResUNet 8.5M 0.7397±0.59 0.5597±0.93 0.7643±0.36 0.8627±1.02 

Wide U-Net 9.1M 0.7754±1.31 0.7078±1.31 0.7831±0.43 0.9113±0.59 

U-Net 7.8M 0.6943±0.94 0.5798±0.97 0.7648±0.57 0.9418±1.24 
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ground truth mask than that in other state-of-the-art architectures. However, segmentation masks 

from UNet++ and wide U-Net are also competitive. 

During the training process, we used various loss functions to improve our results, such as Jac-

card  loss, Dice loss, mean square loss, and binary cross-entropy loss. According to our experiments, 

the method achieved a better Dice coefficient value with all loss functions, whereas the IoU score 

was higher with a binary cross-entropy loss function. We chose the binary cross-entropy loss func-

tion based on our analytical assessment. In addition, we found that the number of kernels, batch size, 

optimizer, loss function, and depth of the model may affect the result. 

We speculate that the efficiency of the model could be further improved by enlarging the dataset 

size, using various augmentations, and adding certain post-processing steps. We designed a very 

deep neural network architecture to achieve significant performance, although it can increase the 

 

Fig. 9. Qualitative segmentation results of various models on the Kvasir-SEG dataset. Experimental results show that A-

DenseUNet produces better segmentation masks than other state-of-the-art networks. 

 

 

Fig. 10. Qualitative segmentation results of various models on the CVC-612 dataset. 
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number of parameters. Our proposed A-DenseUNet model not only achieved better results on bio-

medical image segmentation but also achieved good results in pixel-wise image classification and 

natural image segmentation tasks. We used all our experience and knowledge to optimize the model, 

but there might be further optimizations, which could affect the performance of the method. 

Conclusion 

In this paper, we have presented an end-to-end biomedical image segmentation architecture, 

A-DenseUNet, to achieve more accurate segmentation results. The proposed architecture takes ad-

vantage of dense blocks, atrous convolution, residual blocks, attention blocks, and restrictive skip 

connections. Experiments on the CVC-612 and Kvasir-SEG datasets demonstrate that the pro-

posed method outperforms the state-of-the-art UNet++, ResUNet, and U-Net architectures in pre-

dicting accurate segmentation masks. Our model achieved the best Dice coefficient and IoU score 

among the models. Future studies need to evaluate our model on various medical and natural im-

age segmentation datasets. 
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Figures

Figure 1

Block diagram of the proposed A-DenseUNet architecture: DenseNet is used as an encoder, Transposed
convolu-tion is performed for up-sampling between levels.



Figure 2

Five-layer dense block with grow rate n = 4. Each layer takes all previous information and includes batch
nor-malization, atrous convolution, and ReLU activation.

Figure 3

Multi-depth U-Net models.



Figure 4

Dilated convolutions with different dilation rates. A dilation rate of one is normal convolution.

Figure 5

Example of data from Kvasir-SEG dataset. The �rst row shows original images and the second row
presents their respective ground truth.



Figure 6

Images and ground truth masks from the CVC-612 dataset.

Figure 7

IoU score with and without dilated convolution.



Figure 8

Effect of attention block in the network. By adding this, we were able to suppress the irrelevant regions.

Figure 9



Qualitative segmentation results of various models on the Kvasir-SEG dataset. Experimental results show
that A-DenseUNet produces better segmentation masks than other state-of-the-art networks.

Figure 10

Qualitative segmentation results of various models on the CVC-612 dataset.


